@article{KnospeWashington2021, author = {Knospe, Heiko and Washington, Lawrence C.}, title = {Dirichlet series expansions of p-adic L-functions}, journal = {Abhandlungen aus dem Mathematischen Seminar der Universit{\"a}t Hamburg}, volume = {91}, number = {2}, issn = {0025-5858}, doi = {10.1007/s12188-021-00244-0}, institution = {Fakult{\"a}t 07 / Institut f{\"u}r Nachrichtentechnik}, pages = {325 -- 334}, year = {2021}, abstract = {We study p-adic L-functions Lp(s, 휒) for Dirichlet characters 휒. We show that Lp(s, 휒) has a Dirichlet series expansion for each regularization parameter c that is prime to p and the conductor of 휒. The expansion is proved by transforming a known formula for p-adic L-functions and by controlling the limiting behavior. A fnite number of Euler factors can be factored of in a natural manner from the p-adic Dirichlet series. We also provide an alternative proof of the expansion using p-adic measures and give an explicit formula for the values of the regularized Bernoulli distribution. The result is particularly simple for c = 2, where we obtain a Dirichlet series expansion that is similar to the complex case.}, language = {en} }