

REST
Why it became the new norm on the web

Literature Review

Sebastian Faust

Bachelor Student of

Media Technology and Computer Science,

Technical University Cologne

Written while studying abroad in Kristiania University College

for the course Systems Development

Overseen by

Prof. Tor-Morten Grønli,

Kristiania University College

Oslo, Norway in September 2018

ABSTRACT

REST became the go to approach when it comes to large

scale distributed systems on, or outside the World Wide

Web. This paper aims to give a brief overview of what

REST is and what its main draws and benefits are.

Secondly, I will showcase the implementation of REST

using HTTP and why this approach became as popular as it

is today. Based on my research I concluded that REST’s

advantages in scalability, coupling, performance and its

seamless integration with HTTP enabled it to rightfully

overtake classic RPC based approaches.

1. INTRODUCTION

Software and its complexity have been rapidly growing

over the last few decades. A solution for developing ever

expanding and evolving systems was in dire need. A logical

step in tackling this problem was the approach of

“Separation of Concerns”, which is the idea of splitting one

system into smaller subsystems that can be developed and

maintained by separate teams. With the birth of the World

Wide Web, these systems and their teams did not even have

to be in the same geographical location, but could instead

be spread throughout the globe, working independently.

With this approach, one big problem was solved, but

another one arose: what is the best and most efficient way

for these subsystems to interact with each other? One

common approach to solve this problem was to have one

system execute procedures on another system and then

receive the result of that procedure remotely (RPC). This

simple solution was the norm before 2000 and it worked

beautifully. But with ever-expanding systems and ever-

growing complexity, this solution revealed some inherent

problems.

REST is an architectural style first introduced by Roy T.

Fielding in his dissertation.1 It is one solution to the

problem of largescale distributed systems, that has rapidly

evolved to be the norm since its publication in 2000. REST

and its derived adjective “RESTful” have become

buzzwords and the source of heated arguments ever since it

started gaining popularity. The google searches of the term

“REST” under the topic of “Computers & Electronics” have

been steadily increasing since 2004 (Figure 1). The highly

prestigious conference “Oracle Code One” has 37

scheduled events on or related to REST within its four-day

runtime in 2018.2 The “ProgrammableWeb” is the biggest

library of web APIs. In 2017, 82% of their listed APIs were

based on a RESTful architecture (Figure 2). The two

biggest publishing houses in computer science, IEEE and

ACM have collectively published ~2200 pieces of academic

literature on and related to RESTful architecture.3 4

1 Fielding, “Architectural Styles and the Design of

Network-Based Software Architectures.”

2 “Session Catalog | Oracle Code One 2018.”

3 IEEE, “IEEE Xplore Digital Library.”

Figure 1 Google Trends search of the term: "REST" in the

category "Computers & Electronics" 5

Clearly, REST is a highly relevant topic. This paper aims to

explore the reasons why it became so popular, what exactly

are its advantages, and how it can be implemented with

HTTP. In section 2. I will explain what exactly a RESTful

Architecture is. In section 3 I will review four highly

relevant papers on the topic of REST. The first three

focused on the advantages of REST and the last one on how

to properly implement REST with HTTP to gain those

advantages. In section 4 I will discuss the reviewed papers

and in section 5 I will draw my conclusion on RESTful

architecture, its advantages and its rise on the web.

Figure 2 the percentages of API architectural styles for

profiles in the “ProgrammableWeb” API directory 6

4 ACM, “ACM Digital Library.”

5 Google LLC, “Google Trends - REST since 2004.”

6 Santos, “Which API Types and Architectural Styles Are

Most Used?”

2. WHAT IS REST 7 8

The REST architectural style can be broken down into a list

of seven constraints (rules) a given service must follow.

When these constraints are fully embraced within the

service, it is considered RESTful. A RESTful service has

many advantages that will be showcased in section 3 and 4,

here I will exclusively focus on the constraints themselves.

One thing to keep in mind is that REST describes the

interface over which two separate systems interact with

each other and not how those two systems work internally.

Figure 3 diagram showcasing where exactly RESTful

architecture lies in a client-server module

Client–Server

Every REST based system is message based. It consists of

two entities:

Client

The system sending requests.

Server

The system receiving those requests and processing them.

Statelessness

The Server should not save any state or session information.

All information about the current interaction is saved on the

client. Every message a client sends to the server needs to

contain all the information necessary to process it and

cannot rely on any previously sent messages.

Resource Based

REST is resource based. This means that every information

a server provides must be modeled as a resource. But what

exactly is a resource? A resource is any significant part of

your system, that can be labeled with a noun. In the context

of a calendar application for example, every individual day

could be a resource. Every event a given user has added to

their calendar could be a resource. The most important

thing when designing a RESTful service is to think in terms

of nouns instead of verbs. Modeling resources instead of

procedures. Another thing to keep in mind when designing

7 Xinyang Feng, Jianjing Shen, and Ying Fan, “REST - An

Alternative to RPC for Web Services Architecture.”

8 Fielding, “Architectural Styles and the Design of

Network-Based Software Architectures.”

resources is, that the resources themselves are separate from

their representations. The resource “user” for example,

could be made available in multiple representations, such as

JSON, XML or HTML.

Uniform Interface

This constraint aims to achieve one goal: One uniform

service interface for all clients to communicate through.

Every resource of a given service is addressable through a

unique identifier (URI). Every resource a client receives

from a service should include all the information the client

needs to manipulate that resource. The only way to interact

with a given resource should be through a fixed set of

clearly defined “verbs”, such as the set of HTTP verbs:

GET, PUT, POST, DELETE.

Hypermedia as the Engine of Application State

This constraint is closely linked to the uniform interface

constraint. The idea is to build up an API in a similar way

as a web page, enabling a user to navigate through relevant

resources with hyperlinks. To go back to the example of a

calendar application, a given day-resource, could include

links to all events that take place on that day. If this concept

is fully embraced, a service should be usable by a client

through only one entry point URI, from which the client

can navigate through the API and find all relevant

information or perform all relevant procedures.

Caching

The system should include a caching mechanism. That

enables a client to request noncritical data with a lower

frequency and thus lower the traffic between client and

server significantly.

Layered System

A given service might have a multitude of layers that

process incoming requests. These layers might have various

responsibilities, such as security or cashing. But the

important thing is, that this layered architecture stays

hidden from the client.

3. LITERATURE REVIEW

In this section, I will review four highly relevant papers on

the topic of REST. The section is structured into two parts,

the first one focusing on what the exact advantages of

RESTful APIs are and the second one exploring how to

implement the REST architecture using HTTP.

Advantages of REST

In their Paper “REST: An Alternative to RPC for Web

Services Architecture” 9 Xinyang Feng, Jianjing Shen, and

Ying Fan explored the advantages of REST in comparison

to the classic RPC approach. This paper was published in

2009 when the APIs based on RPC were still the norm. The

paper starts by outlining both architecture styles. Here I will

only showcase RPC because I have already extensively

explained REST in section 2.

9 Xinyang Feng, Jianjing Shen, and Ying Fan, “REST - An

Alternative to RPC for Web Services Architecture.”

REST’s main competitor: RPC

RPC is short for Remote Procedure Call. The idea behind

RPC is, that a client can call procedures on a different

machine to fulfill some sort of task. Machine A could, for

example, call machine B with the command

“getAllUsers()”. Machine B would then execute some

internal logic and then send a list of all users back to

machine A. Protocols like SOAP are based on this idea of

RPC with some additional constraints and features nested

on top. These specifics however, where not further explored

in the paper.

Feng, Shen, and Fan continue by comparing REST and

RPC on six axes. Here I will only showcase four of them:

Scalability, security, performance, and coupling. I will use

the axes defined by Feng, Shen, and Fan to structure my

review, exploring their view on each axis and subletting it

with reviews of related papers by other authors.

Scalability

In RPC every service has its own unique interface. A client

needs to know the specifics of that specific interface to

interact with it. This is sufficient for small-scale or enclosed

systems, but it does not work well on a large scale. Imagine

a World Wide Web in which every website would have to

be read by the browser differently or would require the

download of a specific plugin to function properly.

REST, with its uniform interface, does not face this

problem. Most REST services use the HTTP verbs. To

interact with any RESTful service implemented in this

manner, a developer only has to know the 4 operations

HTTP provides and never learn the specific operations of

that domain area.

The statelessness of REST also provides a great advantage

when it comes to scalability. A server never saves any

session information and every message, the server receives,

holds all the information the server needs to process it.

Thus, if there are ever too many clients for the server to

handle, more servers can just be added to balance out the

incoming requests. Load balancing in RPC style systems is

more complex and often leads to redundancy in saved data.

Security

In RPC style Systems that use HTTP to transfer commands

over the web, every command is wrapped into an HTTP

“envelope”. The envelope passes through the firewall and

the real intention of the command is unwrapped when it

arrives in the system. If a REST system is based on HTTP,

unwanted commands can be blocked on a firewall level. If a

resource is GET only, a request to DELETE it will never go

past the firewall itself. This has clear benefits from a

security standpoint.

Performance
This is one of the main draws of REST. Because most

REST services used on the web are based on HTTP, no

unpacking of commands from envelopes or packing of

commands into envelopes is required. REST also has an

emphasis on cashing, which helps lower the messages

exchanged between client and server. This difference is not

only theoretical. Amazon.com hosts both REST and SOAP

services and they state that REST services run six times

faster than SOAP-based ones. This performance difference

was also extensively explored and documented by Hatem

Hamad, Motaz Saad, and Ramzi Abed in their journal

article “Performance Evaluation of RESTful Web Services

for Mobile Devices”10. In this article, they evaluated SOAP

and REST services in both message size and computation

speed. They used very simple services: one that adds all the

floating-point numbers in a given array and sends its result

back to the client and another one that appends all strings in

a given array and sends that result back. They have

implemented these services in both REST and SOAP. Their

results clearly show the performance benefit of the RESTful

services (Figure 4).

Figure 4 results of REST and SOAP

performance comparison

10 Hamad, Saad, and Abed, “Performance Evaluation of

RESTful Web Services for Mobile Devices.”

Coupling

Another axis Feng, Shen and Fan used to compare REST

with RPC is “coupling”. This part of their paper was

primarily based on the journal article “Demystifying

RESTful Data Coupling”11 by Steve Vinoski. Instead of

summarizing the abbreviation of Feng, Shen, and Fan I will

showcase the work of their source. Vinoski’s work is an in-

depth analysis of the decoupling of server and client in

RESTful architectures. Coupling, from a software

architectural standpoint, is the amount of dependency one

system has on another. With low coupling the systems are

independent and changing one of the two is not relevant for

the other. Therefore, low coupling is very beneficial for

distributed systems. Vinoski argues, that the biggest source

of coupling in distributed systems is specialized data-types.

Specialized data-types are a set of rules in which a set of

data is structured, that is only applicable for one specific

problem or domain area. When two systems interact

through one specialized data-type, they are coupled together

by there shared understanding of how that data-type

functions. If the data-type changes, all systems using that

type must be adjusted. This type of coupling affects both

REST and RPC, but REST has some inbuilt mechanics to

alleviate it. Because REST supports multiple data-

representations for each resource, a client is not bound to

one specific format, but can instead choose which format is

best for their application. Vinoski also adds, that

hypermedia greatly decreases coupling between client and

server. Because all possible operations that can be executed

on a resource are showcased within the resource, no outside

knowledge of the API is required to work with it.

REST on the Web

Those advantages do sound alluring. But how should we

approach the development of a RESTful service when

designing a HTTP-based system? In his journal article

“RESTful Web Services Development Checklist”12, Steve

Vinoski showcases which features of HTTP can be used to

fulfill the constraints listed in section 2. HTTP supports

“content negotiation” which is a good way to implement

multiple representations for a single resource. The HTTP-

header has a field called “content-type”. A client can put

their preferred content type in this header field and the

server can respond with a representation in that format or

with a list of supported formats if the wanted format is not

supported. HTTP has a list of well-defined verbs, that can

be used to fulfill the uniform interface constraint (Table 1).

11 Vinoski, “Demystifying RESTful Data Coupling.”

12 Vinoski, “RESTful Web Services Development

Checklist.”

Verb Definition

GET
Retrieve a resource in a chosen

representation.

PUT
Overwrite a resource or create one if there is

none to be overwritten.

POST

Can be used to perform virtually any action.

In REST it is a common practice to use it to

create a new resource in a collection.

DELETE Delete a resource.

OPTIONS
Show the available operations for a given

resource.

Table 1 the list of HTTP verbs and their

respective definition 13

One thing to keep in mind when using these verbs is that

GET should always be “save”, which means that no

changes on the server should occur when it is executed.

GET, PUT and DELETE should be “idempotent”, which

means that they can be executed multiple times without

changing their effect. HTTP also has an inbuilt mechanism

for cashing, that can be implemented very easily. The E-

Tag field in the HTTP-header should contain a hash, that is

changed every time the resource stored on the server is

changed. If a client wants to GET a resource multiple times,

they can send the E-Tag they received the last time they

retrieved that specific resource. If the resource was not

modified, the E-Tag is identical and the server sends an

empty response with the status-code: “Not Modified”.

Resources in REST with HTTP should be addressable

through hyperlinks (https://www.example.com/calander).

The hypermedia constraint can be easily fulfilled by linking

the relevant resources and their operations together through

such hyperlinks.

4. DISCUSSION

In this section, I will critically discuss the points made in

the papers that I have reviewed in section 3.

I fully agree with what Feng, Shen, and Fan said about the

advantages of REST in terms of scalability. This advantage

is undeniable. Using a load-balancer to distribute incoming

requests to any number of RESTful services makes

handling large-scale services easy in comparison to SOAP.

This is one of the main reasons why REST became as

popular as it is today.

13 Fielding, Irvine, and Gettys, “HTTP: Method

Definitions.”

https://www.example.com/calander

Security, on the other hand, is not. Feng, Shen, and Fan

only briefly went over this topic and did not do it justice in

my opinion. REST messages can be encrypted when it is

used with HTTPS and not with HTTP. The message will be

encrypted in its entirety while traveling through the web on

HTTPS. SOAP in combination with WS-Security14 is more

flexible. A developer can choose to encrypt only parts of a

message or even encrypt a message in such a way that some

part is readable by one party and other parts are readable by

another. In short, REST’s approach is more lightweight,

easier to handle and often sufficient while SOAP holds

more options but also requires a higher development effort.

Another related topic that was not explored by Feng, Shen,

and Fan is authentication. Because every message has to be

self-descriptive in REST, every message needs to carry the

authentication information of a given user. In SOAP, this is

handled through sessions. Authentication happens once, and

critical authentication data only has to be sent between

client and server once, which has clear benefits from a

security standpoint.

The performance advantages of REST were described by

Feng, Shen, and Fan and then proven by Hamad, Saad, and

Abed. I have nothing more to add to this other than to say

that this discrepancy in performance undoubtedly helped

REST become the new standard on the web. I would have

liked to add an exploration of cashing and how that REST

principle effects performance in the long term, but I could

not find any papers or studies related to this.

I can only agree with Vinoski’s exploration of decoupling

in RESTful services. Strong dependency between different

components of software is a problem that all developers

working on a larger system will face at some point during

their career. And REST does help to alleviate this problem.

REST’s constraints force a developer to build a clearly

defined interface that, at its best, is even self-explanatory.

“REST-Chart”15 is a module that embraces this self-

explanatory nature to its fullest. Any REST API designed

with the REST-Chart approach can be navigated by a

generic client solely through hypermedia without any prior

knowledge of the API. So far this is the peak of client-

server decoupling and it is only possible because of REST

and hypermedia.

In the second part of my review, I looked at the approach

most commonly used to implement REST: HTTP. Roy T.

14 OASIS, “OASIS Web Services Security (WSS) TC.”

15 Li and Chou, “Design and Describe REST API without

Violating REST.”

Fielding, the designer of REST, also was one of the main

contributors to the definition and specification of HTTP16,

so it is not surprising that REST and HTTP work well

together. REST is built to fully embrace all the feature

HTTP has to offer. For every constraint that requires an

underlying technology, there is a corresponding HTTP

feature (Table 2).

REST Constraint HTTP Features

Client-Server

HTTP is the web protocol. It is

inherently used for client-server

connections

Statelessness Requires no underlying technology

Resources

Multiple resource representations are

enabled through content-type header

field

Uniform Interface

(URIs)
Hyperlinks

Uniform Interface

(verbs)
HTTP verbs

Hypermedia Hyperlinks

Cashing E-Tag / Last-Modified header field

Layered System Requires no underlying technology

Table 2 linking REST constraints

to HTTP features

REST embraces all the aspects of the World Wide Web.

Using a well-designed REST API is more like browsing a

website than it is giving instructions to a remote computer.

As Feng, Shen, and Fan put it:

“RESTful Web services are “in” the Web instead of just

“on” the Web.”17

HTTP is the most common way to approach the REST

architectural style for a reason. They work perfectly

together. Many large-scale systems have been implemented

in this manner. A good example for this is “The Web of

Things”18, a promising web-framework that links IOT-

devices to REST resources.

16 Fielding, Irvine, and Gettys, “Hypertext Transfer

Protocol -- HTTP/1.1.”

17 Xinyang Feng, Jianjing Shen, and Ying Fan, “REST - An

Alternative to RPC for Web Services Architecture.”

18 Paganelli, Turchi, and Giuli, “A Web of Things

Framework for RESTful Applications and Its

Experimentation in a Smart City.”

5. CONCLUSION

Is REST the long sought-after silver bullet of software

engineering? 19 No, it is not. It is an architectural style

mindfully designed to solve common problems in large-

scale distributed systems, by using all the features of HTTP

to its fullest extent. Many proponents of REST describe it

as being “simple” or “easy”, but with this however, I do not

agree.20 Designing a stateless system, that is fully resource

based without any operations other than a fixed set of verbs

is not easy, it is highly unintuitive for developers used to

classic programming paradigms. And I am not the only one

with this opinion. The sheer number of guides that explain

what exactly REST is and what the constraint “really”

means, speaks for itself. And most of those articles being

incomplete or even contradictory, does not help this

problem either.21 22 But overcoming REST’s unintuitive

nature yields a wide range of benefits: great scalability,

sufficient security, great performance, and low coupling.

All in all, there is a good reason REST became the new

norm. And it is no coincidence that every major web-based

company (Facebook, Netflix, Amazon, PayPal …) switched

from a SOAP to a REST API within the last decade.

6. REFERENCES

ACM. “ACM Digital Library.” Accessed September 20,

2018. https://dl.acm.org/.

Avraham, Shif Ben. “What Is REST — A Simple

Explanation for Beginners, Part 1: Introduction.” Medium

(blog), September 5, 2017.

https://medium.com/extend/what-is-rest-a-simple-

explanation-for-beginners-part-1-introduction-

b4a072f8740f.

Brooks, Frederick. “No Silver Bullet – Essence and

Accident in Software Engineering,” 1986, 16.

Fielding, R., UC Irvine, and J. Gettys. “Hypertext Transfer

Protocol -- HTTP/1.1.” Specification. Hypertext Transfer

Protocol -- HTTP/1.1. Accessed September 19, 2018.

https://www.w3.org/Protocols/rfc2616/rfc2616.html.

Fielding, Roy Thomas. “Architectural Styles and the

Design of Network-Based Software Architectures,” 2000,

90.

Fielding, Roy Thomas, UC Irvine, and J. Gettys.

“HTTP/1.1: Method Definitions.” Specification. Accessed

19 Brooks, “No Silver Bullet – Essence and Accident in

Software Engineering.”

20 Vinoski, “RESTful Web Services Development

Checklist.”

21 Avraham, “What Is REST — A Simple Explanation for

Beginners.”

22 Rouse, “What Is REST (REpresentational State

Transfer)?”

September 20, 2018.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.

Google LLC. “Google Trends - REST since 2004.” Google

Trends. Accessed September 15, 2018.

https://trends.google.com/trends/explore?cat=5&date=all&

q=REST.

Hamad, Hatem, Motaz Saad, and Ramzi Abed.

“Performance Evaluation of RESTful Web Services for

Mobile Devices.” International Arab Journal of E-

Technology 1, no. 3 (2010): 7.

IEEE. “IEEE Xplore Digital Library.” Accessed September

20, 2018. https://ieeexplore.ieee.org/Xplore/home.jsp.

Li, Li, and Wu Chou. “Design and Describe REST API

without Violating REST: A Petri Net Based Approach.” In

2011 IEEE International Conference on Web Services,

508–15. Washington, DC, USA: IEEE, 2011.

https://doi.org/10.1109/ICWS.2011.54.

OASIS. “OASIS Web Services Security (WSS) TC.” Open

Standard. Accessed September 19, 2018.

https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wss.

Paganelli, Federica, Stefano Turchi, and Dino Giuli. “A

Web of Things Framework for RESTful Applications and

Its Experimentation in a Smart City.” IEEE Systems

Journal 10, no. 4 (December 2016): 1412–23.

https://doi.org/10.1109/JSYST.2014.2354835.

Rouse, Margaret. “What Is REST (REpresentational State

Transfer)? - Definition from WhatIs.Com.”

SearchMicroservices, November 2017.

https://searchmicroservices.techtarget.com/definition/REST

-representational-state-transfer.

Santos, Wendell. “Which API Types and Architectural

Styles Are Most Used?” ProgrammableWeb, November 26,

2017. https://www.programmableweb.com/news/which-api-

types-and-architectural-styles-are-most-

used/research/2017/11/26.

“Session Catalog | Oracle Code One 2018.” Accessed

September 15, 2018.

https://oracle.rainfocus.com/widget/oracle/oow18/catalogco

deone18?search=rest.

Vinoski, Steve. “Demystifying RESTful Data Coupling.”

IEEE Internet Computing 12, no. 2 (March 2008): 87–90.

https://doi.org/10.1109/MIC.2008.33.

———. “RESTful Web Services Development Checklist.”

IEEE Internet Computing 12, no. 6 (November 2008): 96–

95. https://doi.org/10.1109/MIC.2008.130.

Xinyang Feng, Jianjing Shen, and Ying Fan. “REST - An

Alternative to RPC for Web Services Architecture.” In

2009 First International Conference on Future Information

Networks, 7–10. Beijing, China: IEEE, 2009.

https://doi.org/10.1109/ICFIN.2009.5339611.

