
Design Systems for Micro Frontends

An Investigation into the Development of Framework-Agnostic

Design Systems using Svelte and Tailwind CSS

Bachelor Thesis

prepared by

Marvin Christian Klimm
Matriculation number: 11103348

submitted to the

TH Köln - University of Applied Sciences
Campus Gummersbach

Faculty of Computer and
Engineering Sciences

in the degree program

Media Informatics

1. Auditor: Prof. Christian Noss
TH Köln - University of Applied Sciences

2. Auditor: Prof. Dr. Stefan Bente
TH Köln - University of Applied Sciences

Gummersbach, February 2021

Addresses: Marvin Christian Klimm
Am Hepel 61
51643 Gummersbach
studies@marvinklimm.de

Prof. Christian Noss
TH Köln - University of Applied Sciences
Institute for Computer Science
Steinmüllerallee 1
51643 Gummersbach
christian.noss@th-koeln.de

Prof. Dr. Stefan Bente
TH Köln - University of Applied Sciences
Institute for Computer Science
Steinmüllerallee 6
51643 Gummersbach
stefan.bente@th-koeln.de

Abstract

German version below

English Version

This bachelor thesis deals with framework-agnostic design systems in the environment of
micro frontends. The properties of micro frontends and design systems are developed in-
dividually, to finally get combined. Important disciplines of this research are in particular
cybernetics and system thinking, whereby further properties in the relationships between
the stakeholders and the design system are highlighted and defined. In addition, based
on the highlighted properties, a practically oriented evaluation is prepared, which demon-
stratively verifies how framework-agnostic design systems can be realized using Svelte and
Tailwind CSS. The insights gained from this work can be used for further considerations
in other works within the domain, or similar domains. In particular the cybernetic view of
systematic design offers potential for further investigations.

Deutsche Version

Diese Bachelorarbeit setzt sich mit framework-agnostischen Design Systemen im Umfeld von
Micro Frontends auseinander. Dabei werden den die Eigenschaften von Micro Frontends
und Design Systemen indivuell erarbeitet und schließlich gemeinsam zusammengeführt.
Wichtige Disziplinen dieser Untersuchungen sind dabei inbesondere die Kybernetik und
das System-Thinking, wodurch weitere Eigenschaften in den Beziehungen zwischen den
Stakeholdern und dem Design System herausgestellt und definiert werden. Außerdem wird
basierend auf den herausgestellten Eigenschaften eine praktisch orientiert Evaluation ange-
fertigt, die demonstrativ überprüft, wie sich framework-agnostische Design Systeme gemein-
sam mit Svelte und Tailwind CSS realisieren lassen. Die gewonnenen Erkenntisse dieser Ar-
beit können zur weiteren Betrachtung anderer Arbeiten in dieser Domäne, oder ähnlichen
Domänen, herangezogen werden, wobei insbesondere die kybernetische Sichtweise von sys-
tematischen Design Raum für weitere Untersuchungen bietet.

3

Preliminary Remark

During my practical project and various conversations with other web developers I became
interested in design systems and micro frontends. These two topics are relatively new con-
cepts, which already have some literature and discussions, but have not yet been considered
together in depth. Therefore, the following work will focus on the field of framework-agnostic
design systems in micro frontends. In particular, the technologies Svelte and Tailwind CSS
are considered, for which the following prototype repositories were created for evaluation
purposes:

• Component library: https://github.com/netzfluencer/svelte-tailwind

• Component usage in a Vue app: https://github.com/netzfluencer/vue-vite-svelte

4

https://github.com/netzfluencer/svelte-tailwind
https://github.com/netzfluencer/vue-vite-svelte

Contents

1 Introduction 2
1.1 Context . 2
1.2 Scope of the Thesis . 4

2 Fundamentals of Design Systems 5
2.1 Describing Design Systems . 5

2.1.1 Determining a Systematic Approach 5
2.1.2 Purpose and Goals of Design Systems 6
2.1.3 The Essence of Design Systems . 6
2.1.4 Qualities of Design Principles . 7

2.2 Modeling Design Systems . 8
2.2.1 The Foundations Model . 9
2.2.2 Model of Systematic Design . 9

3 Characteristics of Micro Frontends 12
3.1 General Characteristics of Micro Frontends 12

3.1.1 Team Scalability . 12
3.1.2 Strategical and Tactical Focus . 13
3.1.3 Reusability . 13
3.1.4 Technology-Agnosticism . 13
3.1.5 Complexity . 14
3.1.6 No Standards . 14

3.2 General Domain of Micro Frontends . 14

4 Design Systems for Micro Frontends 16
4.1 An Investigation into the Context . 16

4.1.1 Stakeholder Analysis . 16
4.1.2 Environmental Constraints . 22

4.2 About Framework-Agnosticism . 23
4.2.1 The Relation between Design Systems and Frameworks 23
4.2.2 From Frameworks to Compilers . 25

4.3 Cybernetically Enhanced Design Systems . 25
4.3.1 Introduction to Cybernetics . 26
4.3.2 Ashby’s Law . 27
4.3.3 Second-Order Cybernetics . 28
4.3.4 Thinking Cybernetical in Micro Frontend Design 29

5

Contents

5 Evaluation with Svelte and Tailwind CSS 36
5.1 Utility-First CSS with Tailwind CSS . 36

5.1.1 The Variety of CSS Styling . 36
5.1.2 The Potential of Tailwind CSS in Micro Frontend Design 38

5.2 Designing Svelte Components with Tailwind CSS 41
5.2.1 Set Up Approach for the Framework-Agnostic Pattern Library 41
5.2.2 Using a Compiled Svelte Component in a Vue-Based Frontend 43
5.2.3 Managing Tailwind CSS . 47

6 Conclusion 49

List of Code Examples 51

List of Figures 52

Bibliography 55

1

1 Introduction

“As application development becomes increasingly dynamic and complex, it’s a
challenge to achieve the effective delivery of accessible and usable products that
are consistent in style.” (ThoughtWorks, Inc., 2019, p. 8)

1.1 Context

New techniques and new frameworks are frequently influencing the development of web
applications by offering new solutions for new sets of problems. In the world of frontend
development, single-page applications have already achieved great popularity and underlying
frameworks like vue.js or react.js are among the most popular projects on Github (2020).

While single-page applications are predominantly delivered as monolithic frontends an-
other backend-inherited architectural approach, described by the term micro frontends, has
gained interest and adoptions (ThoughtWorks, Inc., 2020a, p. 8). Similar to the concepts
of microservices, micro frontend based applications compose the final product out of multi-
ple smaller and independent maintained frontends, allowing teams to work and scale more
effectively. Normally each micro frontend serves a specific purpose of an application and
is owned by a specific team. As micro frontends aim to reduce coupling and dependence
between each other, the teams gain more freedom and responsibility for the implementation
of their autonomous micro frontend, which opens the need for a global and consistent design
approach.

Design systems are also gaining attention (ThoughtWorks, Inc., 2019, p. 8) as a solution
to ensure consistent design within growing products by introducing systematic guidance to
teams and are already prevalent in many monolithic frontends. Although design systems
are occasionally referred to as pattern libraries (or component libraries), these libraries are,
in general, only parts of design systems. Design systems consist of interconnected patterns,
principles, and guides helping stakeholders to create a product that achieves the product’s
purpose. Especially micro frontends target to support further dynamics and freedoms in
the application development. On the one hand, that context highlights the relevance of a
systematic design approach to help ensure unity in a product. On the other hand, design
systems introduce some sort of coupling which could evolve an anti-pattern to the idea of
micro frontends and therefore advances the requirements for design systems in the context
of microarchitectures.

One of these requirements of design systems for micro frontends is to create and deliver
patterns, that are usable in every micro frontend by not requiring a specialized environment.
That means, that a pattern, like a button, can be used by any micro frontend without the

2

1 Introduction

need for a specific framework setup. Therefore an approach to create framework-agnostic
design systems with sets of defined patterns is necessary for the context of micro frontends.
It is important to mention, that the framework-agnostic characteristic is only relevant for
the created patterns, but not for the creation itself. As long as a pattern does not require a
micro frontend to use a specific framework it can be considered as framework-agnostic even
though the pattern had been created by a framework or compiler during development. A
framework-agnostic example could be a CSS-based pattern library, created by using a CSS
preprocessor that transpiles SASS1 to normal CSS and offers each frontend the opportunity
to apply these patterns by using CSS classes. Contrary, if this pattern library would also
have some dynamic JavaScript functionality, based upon a framework like jQuery, it could
not be considered as framework-agnostic anymore.

As patterns within single-page applications tend to be created as components with char-
acteristics like predefined markup, state management, and reactivity, a framework-agnostic
pattern library based on CSS would be limiting. Therefore it is beneficial to search for
another compatible approach. Svelte is a relatively new technology that is experiencing
a recent gain in interest within the web community (ThoughtWorks, Inc., 2020b, p. 5)
and serves the purpose to create components based upon JavaScript-like Code compiled to
common (completely framework-less) JavaScript instructions, or alternatively to the stan-
dardized custom elements (WHATWG, 2020). These both component formats qualify Svelte
as a suitable and worth to inspect tool for the creation of framework-agnostic patterns that
are usable in multiple micro frontends of the same product.

Tailwind CSS, a CSS framework that sets up an alternative approach, compared to tra-
ditional CSS styling, is also recently rising in the awareness of developers (ThoughtWorks,
Inc., 2020a, p. 30). In comparison to other popular frameworks Tailwind CSS is currently
obtaining the greatest satisfaction ratio among surveyed developers, with a still rising trend,
by delivering lower-level atomic utility CSS classes (Greif and Benitte, 2020a). In the con-
text of design systems for micro frontends, this utility-first approach might be well suited
for the tokenization of design languages and connecting diciplines across micro teams (cf.
section 4.3) while creating various frontends with diverse technologies. But the danger of
prevailing a framework-agnostic anti-pattern is even higher. This would be the case if devel-
opment teams are required to set up Tailwind CSS in their own micro frontends in order to
use the design system and its pattern library. Although it might appear that using Tailwind
CSS results in losing the agnosticism of a design system it could also turn out the opposite
way. If Tailwind CSS is used for setting up CSS utilities of the design system, which are then
delivered as common atomic CSS classes to the micro frontends the design system would
be considered fully framework-agnostic to each micro frontend environment, while also in-
troducing an even deeper systematic design approach into the tokenization and usability of
the pattern library forming design language. Still, the micro frontends could optionally rely
on the design systems Tailwind configuration to create other frontend-specific utilities, but
they would not have to from the technological point of view.

1SASS: Syntactically Awesome Style Sheets

3

1 Introduction

1.2 Scope of the Thesis

As presented in the previous section and introduced by the quote at the beginning of this
chapter this thesis aims to investigate the dynamic and complex topic of defining, developing,
and using design systems for micro frontend environments. There are many directions that
would be worth investigating for the numerous use cases of modern web development. For
one party comparison metrics of various implementations would be relevant, for others exact
long-term investigations of real-world usages in specific domains, and also for others it would
be important to take advantage of proven procedure models. As the title of this thesis also
indicates the goal of this thesis is at first hand the general investigation of micro frontend
design. This is because the subtopics design systems and micro frontends already have some
well-founded, but also few, literature, and a more in-depth combination of both does not yet
register any major dedicated work. Therefore, this thesis aims to provide a solid introduction
to the development of framework-agnostic design systems for micro frontends by looking in
particular at the theory of the system. Thereby known and generally accepted works from
systems thinking and cybernetics will be used to generate a suitable picture of design systems
in microarchitectures which might also include new insights. Furthermore, the findings are
visualized by sophisticated models, in order to provide foundations for further scientific
works in other areas of design systems. In addition, the property of framework-agnosticism
shall be defined and an evaluation of the findings based on the technologies mentioned in
the title and in the previous section, Tailwind CSS and Svelte, will be made with the aim
of assessing the feasibility of such implementation.

4

2 Fundamentals of Design Systems

This chapter elaborates the basics of design systems. It starts by defining the concept of
design systems and explaining the reasons for creating a design system. Furthermore, it
provides an introduction to the characteristics and elements of a design system.

2.1 Describing Design Systems

Currently, no general definition of design systems is present, and within the web community,
various understandings are present (Kholmatova, 2017, p. 86). For example, one compares
design systems to a Lego bricks box for UIs (Geers, 2020, sec. 1.1.4) while another explicitly
exemplifies a negotiation of this comparison (Immich, 2019, p. 35). This section deals with
describing the general nature and behavior of design systems which combines multiple ideas
and definitions in a big picture.

2.1.1 Determining a Systematic Approach

The term design system indicates that the definition of a system should be highlighted first.
The general system theory (GST) describes a system as follows:

“A system is a set of elements in interaction.” (Bertalanffy, 1968)

While the GST is a general definition that is applicable for various domains, there is also
a standard definition of a system in the software engineering domain presented by the ISO,
IEC, and IEEE:

“System: Combination of interacting elements organized to achieve one or more
stated purposes.” (ISO/IEC/IEEE 15026-1:2019(en), 2019)

Scheithauer (2017) deals with the question “What is not a system?” and exemplifies that
a Lego box is not a system, as it is a set of not interacting elements. Furthermore, its
attributes are evaluated through simple addition (e.g., the weight of the box).

Although the previous definitions described the elements as “interactive” it is also com-
mon to define them as “interconnected“:

“A set of things working together as parts of a mechanism or an interconnecting
network.” (Oxford University Press, 2020)

5

2 Fundamentals of Design Systems

“A system is an interconnected set of elements that is coherently organized in a
way that achieves something.” (Meadows, 2008, p. 11)

These definitions are opening another abstract view into systems where elements, connec-
tions, and a purpose are defining a system. If these three properties are present, interactivity
is also possible. If, for example, a building-instruction guide for a Lego car is added to the
elements of the previously mentioned Lego box still no interactivity is present although an
interactable system is established which has the purpose to enable someone to build the car.

By projecting the metaphor of a lego box to the domain of systematic design a collection
of patterns are lacking a systematic usage behavior. Different stakeholders can still use
these patterns but the results and usage-contexts are not secured to be similar. This opens
up the next section 2.1.2 in which the goals of shifting to a systematic design approach are
presented.

2.1.2 Purpose and Goals of Design Systems

According to Couldwell (2020) (Couldwell, 2020, p. 21), there are 7 main goals for building,
using, and maintaining design systems:

1. Efficiency and speed: Decreasing the time to design, develop and deploy a product
or feature

2. Consistence and user experience: Creating predictable and accessible interfaces

3. Creating stronger brands: Establishing a strong consistent and maintainable iden-
tity throughout a product

4. Focus on what matters: Developers and designers are more focused on identifying
and solving new problems than looping through the same or similar challenges.

5. Organisation: Uniforming development approaches like naming conventions and
structures.

6. Providing a team language: Naming conventions and consistent terminologies
provide help to communicate across the team.

7. Source of truth: Setting up highly validated standards for processes and products
across the team.

In conclusion to the goals, the main purpose of design systems is supporting and serving
the development of products (Geers, 2020, sec. 12.1.1).

2.1.3 The Essence of Design Systems

The definitions of systems from section 2.1.1 raises questions regarding the (interconnected)
elements and purposes of design systems. The purpose and goals had been presented in
the previous section. This section deals with giving an overview of the elements of design

6

2 Fundamentals of Design Systems

systems. Design systems are frequently designated as pattern libraries offering UI elements
and patterns to developers and designers (Immich, 2019, p. 35). Section 2.1.1 points out
that a Lego bricks box is not a system and leads to the conclusion that a pattern library
is not a system but can be an element of a design system. Other important parts are the
principles and values of a design system, which are shaping the product’s design language
(Kholmatova, 2017, p. 18).

Every design system’s primary aim is the establishment of a design language that is used
by teams to help achieve the product’s purpose (Kholmatova, 2017, p. 37) as well as a
coherent user interface (Immich, 2019, p. 35). The goal of the design language is to evaluate
a scalable and maintainable codebase that coherently reproduces the UI (Godbolt, 2016,
p. 26) by relying on continuously evaluated principles and patterns (Kholmatova, 2017,
p. 18). These essences of design systems are promoting the conclusion that design systems
are a programmatic representation of a websites or web apps visual language (Godbolt,
2016, p. 27) and therefore are comparable to spoken languages. Furthermore Couldwell
(2020) highlights the importance of branding in systematic design as the essence which is
separating one competitor from another competitor by establishing a unique, strong, and
focused voice (Couldwell, 2020, p. 40). To conclude, design systems are the result of a
“systematic approach to design” (Couldwell, 2020, p. 15) while also supporting to keep
this design approach. The contained elements are interrelated to each other, which means
that design, code, principles, and documentation are cohesively considered by the design
systems interactors to build consistent interfaces and experiences. A systematic design
approach helps to not solve the same or similar problems in isolation but in unity to create
robust design and code solutions (Couldwell, 2020, p. 15).

2.1.4 Qualities of Design Principles

It is common that developers and designers often rely on their own implicit standards
to evaluate their work (Suarez et al., n.d.). Design principles, branding guidelines, and
system values are not only important essences of design systems; they are also building
the foundation of any well-functioning design system (Kholmatova, 2017, p. 46). They are
guidelines that cover all design properties where they are applicable (Couldwell, 2020, p.
87), but also can evolve different focuses in various design systems (Kholmatova, 2017, p.
47). This means that one design system could follow a more brand-focused approach while
another follows a more team-focused approach. A design system can also cover multiple
design properties where one property follows different guidelines than another property
(Couldwell, 2020, p. 87). For example, one property could be a marketing-/landing page
of a product while another is the product itself. Both might have the need for a shared
identity while also serving different goals with the help of suitable guides. Although there
are various approaches for establishing design principles in general all qualities of these have
the goal to lead to effectiveness (Kholmatova, 2017, p. 49). This section mentions the most
relevant ones.

7

2 Fundamentals of Design Systems

Significant Designations

Kholmatova (2017) exemplifies that verbs like “simple, useful or enjoyable” are in general
not providing any help in designing a system. It is better to break these descriptions down
by explaining their specific meaning in the context of the product (Kholmatova, 2017, p.
49-50).

Tools, not Rules

A design system needs to help the product team to achieve the product’s purpose. Therefore
it needs to serve the developer as a guide to solve problems. By setting up a “tools, not
rules” mentality, governance still happens while also supporting freedom and creativity for
the team (Clark, 2019). This means that every guide should be usable as a tool in the first
hand and not be treated as a forcing condition.

Practical and Actionable

While significant designations are introducing a good understanding of context a principle
also should guide actionable advice. This could be for example questions leading the actor
to the evaluation of design elements (Kholmatova, 2017, p. 52). To make a principle
practicable it helps to show an example where this specific principle already gave guidance.
This can be observed in Google’s Material Design Guide1 where a positive example and a
negative example are placed next to each other.

Relatable and Memorable

Remembering more than four things at a time is difficult for humans, that’s why it is good
to limit the number of principles and support recognition by using existing and relevant
relations (Kholmatova, 2017, p. 56-57). The use of acronyms can also promote remembering
principles. Finally, the most important remembering factor is regular use and referencing
of the principles in daily discussion within the team (Kholmatova, 2017, p. 56-57).

2.2 Modeling Design Systems

Currently, there are not many models of design systems present, especially there are no pop-
ular models visualizing the behavior of design systems. This section starts by expounding
the Foundations Model of Couldwell (2020) to visualize the hierarchical layers of elements
within a design system. The section then continues to present a suitable model of the basic
flows and connections inside design systems by using the system-thinking methodologies of
Meadows (2008). This is relevant as descriptions by words and sentences are limited to
logical linearity although “systems happen all at once” (Meadows, 2008, p. 5).

1Material Design Guide: https://material.io/design

8

https://material.io/design

2 Fundamentals of Design Systems

2.2.1 The Foundations Model

Couldwell (2020) introduces the Foundations Model (Fig. 2.1) as a general example for a
design system model that serves as a tool to align teams on their terminologies and structure
of their own design system. The model is flexible in the used terminologies which means
that they can get adjusted to company-familiar labels. As the name indicates the most
important layer is the foundation layer which needs to be well thought and established as
all other layers are based upon this foundation. The foundation includes the product’s
and/or company’s design principles, values, and branding guides. Onto the foundation
different pattern layers follow which Couldwell (2020) categorizes into simple components
on which more complex patterns are following.

Foundations
Guidelines, brand values, ...

Components
Smaller building blocks, mostly actionable

Complex Patterns
Larger building blocks, reoccuring practises

Figure 2.1: The Foundations Model (Couldwell, 2020, p. 84)

This model demonstrates the general hierarchy of elements in the design system, but it
does not communicate a system behavior that is modeled by the general connections within
the system. To illustrate the behavior another model needs to be created.

2.2.2 Model of Systematic Design

To create a basic model of a design system it is beneficial to look at the “design system
first” mentality mentioned by Frost (2016) which sets the consideration of adjusting design
systems in front of developing and designing web applications or pattern libraries (Fig. 2.2).
If something needs to get done in the web application the design system first mentality
supports to first look at possible affections in the union of the whole ecosystem.

With the design system first mentality in mind and by using the terminologies of Meadows
(2008) the flows within a design system can be modeled (Fig. 2.3). Flows are represented
by “arrow headed pipes which are leading into or out of the stocks” (Meadows, 2008, p. 18)

9

2 Fundamentals of Design Systems

design &
development design system

website/
webapp

pattern library

Figure 2.2: Design System First - Mentality (Frost, 2016, Changing minds, once again)

and are responsible for the change of stocks. Stocks are “shown as boxes”(Meadows, 2008,
p. 18) and are defined as elements of a system that are measurable.

“A stock is the memory of the history of changing flows within a system.”
(Meadows, 2008, p. 18)

The diagram shown in figure 2.3 therefore models how tasks are getting transformed to
patterns and to the codebase of the final web applications codebase. As the stocks of the
final implementations change over time it can also happen that older solutions (the stored
in the final stocks) are getting removed in favor of newer solutions or new requirements.
The clouds in the diagram are indicating the source of an inflow or the “sink” of an outflow
which can be ignored within the scope of the modeled system.

patterns

webapplication/
website

tasks deprecation

deprecationdesign/development

design/development

requirements

Figure 2.3: Flows in Design Systems

Although the flows of systematic design are modeled there is a crucial lack of important
design system elements which were mentioned in section 2.1.3. Therefore the next step is to
model these elements into the diagram by also establishing the significant connections of the
system. Elements that are missing in figure 2.3 are the brand guidelines, design principles,

10

2 Fundamentals of Design Systems

and values - all of which can be categorized into the foundation layer by Couldwell (2020). It
could be argued that some of these elements also have the characteristics of stocks, as they
are measurable in amount with the possibility to experience change over time but further
stocks would also increase the complexitiy of the model. Therefore firgure 2.4 shows a basic
model of design systems that has the mission to support, as values, branding and principles
are changing less dynamically compared to patterns.

patterns

webapplication/
website

tasks

deprecation

deprecationdesign/development

design/development

requirements

principlesbranding values

productivity (R)
B

Figure 2.4: Flows and Connections in Design Systems

Figure 2.4 shows the established connections with arrows leading to the flow they are
influencing. All solid arrows are representing supporting influences for development/design
processes emitted by the elements they are starting. The dashed arrows are indicating
specific feedback loops. A feedback loop is present when a changing stock also affects its
own inflows or outflows (Meadows, 2008, p. 24). The reinforcing loop (indicated with R) on
patterns indicates that the more patterns are existent the more productive other patterns
can get created and therefore leads to the “grow as a constant fraction of itself” (Meadows,
2008, p. 31). This reinforcing feedback relation also has another important characteristic
of nonlinearity. Nonlinear behavior is happening when a dominant loop is shifting to an
inverted behavior at some point (Meadows, 2008, p. 94). This is the case for patterns, as
it can get more difficult to develop and maintain a collection of particularly many patterns
which then is leading to a minimization of productivity of changes to the patterns stock.
Therefore a balancing loop (indicated by B) should be established to support deprecations -
if possible - under specific stock characteristics. Meadows (2008) describes balancing loops
as goal-seeking structures in systems which are on the one hand sources of stability but also
sources of resistance of change (Meadows, 2008, p. 30).

11

3 Characteristics of Micro Frontends

This chapter aims to open up the context of problems and requirements for suitable design
systems within micro frontend architectures. The chapter explains the relevant character-
istics of micro frontends and continues by discussing popular concepts and approaches for
setting up those. The chapter concludes by opening up the problem scope of framework-
agnostic design systems in the environment of micro frontends.

3.1 General Characteristics of Micro Frontends

The concept of microservice architecture has been already become a popular approach to
implement backend systems. A backend system is divided into smaller services that exist as
separate processes and can communicate with each other via lightweight mechanisms, often
an HTTP resource API (Fowler and Lewis, 2014, sec. Introduction). Such architecture’s
particular advantages lie in the targeted independence in the development and deployment of
individual services. This means that individual backend teams can work and make changes
in system sections isolated from each other. Besides, the smaller services are easier to
oversee than monolithic systems and thus promote effective development in growing teams
in the long-term.

In single-page applications, this micro architecture can also provide an alternative to
the more common monolithic approaches. This concept is currently gaining interest and
acceptance and is being disseminated under the term micro frontends (ThoughtWorks, Inc.,
2020a, p. 8). In micro frontends, the entire frontend is divided into smaller independent
frontends that are managed by independent teams. This enables advantages that have a
particularly positive impact on team scaling and product scaling.

In the following, the micro frontend key characteristics according to Herrington (2020)
are presented and validated through serval other sources like Geers (2020) and Mezzalira
(2021) to establish a fundamental understanding of the micro frontend world.

3.1.1 Team Scalability

As the development team scales, it is getting more difficult for team members to overview
the whole system, and chances for interference are getting higher (Herrington, 2020). Micro
Frontends offer a way to manage system parts independently by smaller teams which break
up the complexity of developing features (Geers, 2020, sec. 1). In comparison to a frontend
monolithic approach the micro frontend approach allows a vertical team arrangement which

12

3 Characteristics of Micro Frontends

also supports scalability and efficiency for development teams (Geers, 2020, sec. 1.1.1). In a
vertical team arrangement, the teams are not grouped by their specific disciplines anymore
but by a specific purpose. That means that a team consists out of a small set of frontend and
backend developers as well as designers, researchers, and marketers. If a new goal might
need to get included in the application a new autonomous cross-functional team can be
formed for that specific frontend purpose. These cross-functional teams also have not only
the benefit of better scalability but also promote the creation of more creative, effective,
and user-orientated solutions as sections 3.1.2 and 4.3.4 will further explore.

3.1.2 Strategical and Tactical Focus

The teams focus on one area without the need to know other application parts Herrington
(2020). As already in section 3.1.1 mentioned cross-functional teams have all competencies
to develop a specific feature and accomplish a specific goal: The micro frontend archi-
tecture is optimized for feature development (Geers, 2020, sec. 1) by enabling teams to
autonomously and independently take decisions in choosing, upgrading, and changing their
own approaches (Geers, 2020, sec. 1). Therefore, each business domain’s technologic restric-
tion is easier to define inside micro frontends, and teams have clear boundaries in which they
operate (Mezzalira, 2021, ch. 2). Within these boundaries, the focus of user-centered design
increases as the whole micro frontend team takes full responsibility for the final results they
create and not only for a specific disciplinary side task (Geers, 2020, sec. 1).

3.1.3 Reusability

According to Herrington (2020) the establishment of contracts between the boundaries and
frontend communication mechanisms supports the reusability of any micro frontend through
the whole application. Geers (2020) further expands this as parts within a webpage can
consist out of various fragments (Geers, 2020, sec. 1.1.1). Fragments are smaller micro
frontends that are self-contained and usable in other micro frontends. It might be necessary
that a fragment also needs to communicate with the parent page or other fragments on
the same page. In this case, a contract of a defined communication procedure needs to be
available (Mezzalira, 2021, ch. 2). Contracts help keep the deployment of each fragment
independent of other micro frontends and advance the organizational complexity, as section
3.1.5 further describes.

3.1.4 Technology-Agnosticism

Technology-Agnosticism means that every team can autonomously decide on the technology
set it would prefer to use to accomplish a specific feature’s goal. While micro frontends target
that high grade of autonomy from a technical standpoint, teams can still agree on shared
practices from an organizational viewpoint. On the one hand, team scalability and solution
quality might depend on the use of various technologies. On the other hand, it also helps the
whole team use shared practices and technologies to promote knowledge-transfer or team

13

3 Characteristics of Micro Frontends

member shiftings (Mezzalira, 2021, ch. 2). Furthermore, it is important to consider that
technology-agnosticism is only realizable to a specific level: In the web, micro frontends still
rely on key technologies, protocols, and standards like HTML, CSS, JavaScript, and HTTP.
In general technology-agnosticism in micro frontends considers another level of abstraction,
which implies mainly using various web frameworks, CSS preprocessors, and paradigms
within micro frontends. Therefore the term framework-agnosticism is also often mentioned
in the same relation as technology-agnosticism (Geers, 2020, sec. 12.4.1) and will be further
investigated in section 4.2.

3.1.5 Complexity

Mirco frontends aim to reduce the complexity of each individual frontend and therefore in-
troduce complexity in the organizational layer of the architecture (Geers, 2020, sec. 1.4.3).
Micro frontends’ organizational layer ensures that the subsystems are connected to the com-
plete system while also not limiting the gained abstraction in the subsystems themselves.
This includes tasks like autonomous deployment mechanisms that allow continuous integra-
tion and testing of recent micro frontend systems (Mezzalira, 2021, ch. 2), or implementing
failure procedures if a fragment is due to any reason not available (Mezzalira, 2021, ch.
2). Also, as a micro frontend architecture requires a commitment to “create many small
things rather than one large thing” (Jackson, 2019) more aspects need to get managed: like
repositories, pipelines, servers, domains, etc. (Jackson, 2019).

3.1.6 No Standards

The micro frontend architecture has not industry accepted standard and varies in its ap-
proaches (cf. section ??). Therefore decisions need to be taken under the consideration of
the specific use cases of a product (Geers, 2020, sec. 2). That requires strong research and
the ability to correct system development through serval evaluations. There are various
frameworks that help implement specific micro frontend architectures, but these options
need to be weighed.

3.2 General Domain of Micro Frontends

This section investigates the general context in that micro frontends operate. As the specific
implementation of micro frontends is always dependent on the use cases of a product,
this investigation abstracts into a bigger picture with the purpose to show when micro
frontends should get considered in architecture development and when they should not.
Characteristics like team scalability (cf. section 3.1.1) and strategical/tactical focus (cf.
section 3.1.2) have already indicated that micro frontends are an architecture that aims to
make project scaling easier (Geers, 2020, sec. 1.4.1). Therefore a project without the need
of scaling itself and its development team would not benefit from micro frontends: If a team
is small already (and also stays small), it already has the benefits of quick communications
and decisions. This circumstance leads to the conclusion that micro frontends are starting to

14

3 Characteristics of Micro Frontends

be beneficial when teams are bigger, and scaling is required. Therefore it can be concluded
that micro frontends only make sense for medium to large-sized teams (Mezzalira, 2021, ch.
2). Geers (2020) exemplifies that a good team size would consist out of around 5 people,
grounded on the two-pizza rule of Jeff Bezos that states that a team is too big when two big
pizzas are not enough to satisfy the team. Another characteristic of the context of micro
frontends is that micro frontend architectures are more suitable for web applications, even
though the architecture is not limited in theory to that context. Geers (2020) exemplifies
this by showing that the web is much more capable of complex architectures than native
apps published to an app store, as native apps need to be offered as monolithic client systems
that can be reviewed by the store owners (Geers, 2020, sec. 1.4.4).

“The micro frontend architecture generally addresses the domain of medium- to
large-sized web applications, regularly created by more than 10 people.”

15

4 Design Systems for Micro Frontends

In the previous chapters, the fundamentals of design systems, the characteristics of micro
frontends, and utility-first CSS concepts have been introduced. This chapter combines the
previous topics by elaborating the requirements for system design in micro frontends and
introducing various connections between the topics. Furthermore, it investigates how the
technology-agnostic characteristic influences the creation of a proper design system and
opens up a discussion regarding the usage of frameworks in micro frontend design. In
the next step, a cybernetic investigation into micro frontend design is done to identify the
interconnected behaviors inside the system design and take advantage of these discoveries to
create more responsive and feedback-looped design systems. Finally, the concept of utility-
first CSS is put into relation to evaluate cybernetical enhancement possibilities through
utility-first CSS usage.

4.1 An Investigation into the Context

In this section, the general context of design systems in the environment of micro fron-
tends is investigated based on the characteristics of micro frontends (cf. chapter 3) and
a stakeholder analysis that aims to treat all potential persons or person groups that are
relevant for the product creation in the domain of micro frontends (cf. section 3.2). As the
stakeholder analysis method normally addresses specific projects in specific environments to
specific times, this investigation will rely on the abstracted stakeholder analysis according
to Wittmann (2015).

4.1.1 Stakeholder Analysis

Introduction

This section deals with the potential persons and person groups that are involved in system-
atic micro frontend design by using an abstracted stakeholder analysis approach (Wittmann,
2015, p. 56) that is based upon the stakeholder map presented by Lobacher (2015).

According to the ISO stakeholders are defined as follows:

“Individual or organization having a right, share, claim or interest in a system
or in its possession of characteristics that meet their needs and expectations”
(ISO 9241-210:2019-07(en), 2019)

And the stakeholder analysis is defined according to the DIN as follows:

16

4 Design Systems for Micro Frontends

“Analysis of the project participants regarding their influence on the project and
their attitude (positive or negative) towards the project.” (DIN 69901-5:2009-01,
2009, translated from german)

Wittmann (2015) highlights in his stakeholder analysis for the creation of a procedure
model the circumstance that the stakeholder analysis, in general, is used in the context
of a certain project. He also shows that it is possible to shift this method into another,
more general, abstraction level where the scope is located in “in a sense of a meta-level”
and therefore allows his model to be applicable into multiple contexts (Wittmann, 2015,
p. 56). This approach can also be projected from procedure model development into an
investigation of a specific type of system in a specific type of technical environment as the
upcoming analysis demonstrates.

The analysis is done in two steps. In the first step, a rough stakeholder map is modeled
that introduces the stakeholders and their relation to the context. In the case of Wittmann
(2015) his procedure model is the center of the map and around it, the stakeholders are
placed as labeled circles under consideration of the following properties size and distance
(Wittmann, 2015, p. 57). In relation to the design system these properties shall be defined
as follows:

• Center: The design system

• Size: The larger the circle, the more responsibility and influence the stakeholder has
for the success of the system

• Distance: The closer the circle is to the center, the more the stakeholder interacts
with the system

In the second step, the rough stakeholder map is refined and the stakeholders are described
in more detail.

Furthermore, it is necessary to define “the success of the system” to be able to evaluate
the level of responsibility of a stakeholder. Therefore the goals of a design system (cf. section
2.1.2) need to be considered in conjunction with the characteristics of micro frontends (cf.
chapter 3); summarized as follows:

The design system needs to support and serve the development of diverse micro
frontend purposes, team-workflows and various selected technology stacks.

Rough Analysis

In figure 4.1 the three key sources of stakeholder needs are presented. According to Couldwell
(2020) the business, the team and the user needs are necessary to consider to address all
relevant stakeholders (Couldwell, 2020, p. 30-34). For a rough stakeholder mapping it is
therefore helpful to model the following stakeholder groups:

• The Product Team
Has the responsibility to develop the final product by using the design system. There-

17

4 Design Systems for Micro Frontends

Design system Business experts

Product users

Product team

Figure 4.1: Rough Stakeholder Analysis

fore it has a close relationship to the design system. It is also the department that
will benefit the most from the tools of the design system and consists of the engineers
and designers (Couldwell, 2020, p. 31)

• The Business Experts
These are the persons which take care of the company and the product’s economic
success. They include persons like product managers, leaders, as well as heads of de-
partments and have an interest in the return of investment for creating a design system.
Therefore the initial acceptance of this group is necessary to create and maintain the
system. As the design system also aims to unify the company in regards to language
and product understanding (Couldwell, 2020, p.31) this group also frequently comes
in touch with the system.

• The Product Users
These are the people that are using the final product for a specific purpose. They do
not directly interact with the design system but the results created through the design
system. Also while the primary aim of a design system is to support the purpose of a
product this mission can only be successful if it influencing the developed product in

18

4 Design Systems for Micro Frontends

a positive way. Therefore it is relevant that the users are also experiencing benefits
through the systematic design.

Refined Analysis

As the rough map in figure 4.1 has introduced the main stakeholder groups of a design
system the next step is to refine the stakeholders of a design system in the context of micro
frontends. In figure 4.2 the refined stakeholder map is modeled and a new notion is intro-
duced to highlight the autonomous interests of the micro teams in the microarchitecture.
Stakeholders are grouped by a labeled rectangle that represents organizational relations.
The preferred team-organizational approach, when setting up a micro frontend architec-
ture, is the alignment of the teams according to essential parts of the product itself (Geers,
2020, sec. 13.1). That concludes that not only the frontend team is divided regarding the
subdomains of each micro frontend, but also the whole company structure gets aligned into
the subdomains. Therefore the micro teams shown in figure 4.2 are not called micro fron-
tend teams as these teams are not only responsible for the frontend of a specific subdomain
of the product but also for the backend and business cases. In the map two micro teams
are displayed and shall be recognized as follows:

• Micro Team X
Illustrates any micro team out of the total quantity of N micro teams in the architec-
ture.

• Micro Team N
Illustrates every other micro team of the quantity N that is not X

Although the possible types of stakeholders are the same for every micro team it is
important to consider the different teams in the stakeholder map. They all consist, in
general, out of the same property values, but due to the nature of the micro frontend
architecture, they will follow different purposes by working in different workflows which is
an important characteristic to all team stakeholders of the design system. Based on the
stakeholder map in figure 4.2 a specific description of each stakeholder type is presented in
the following and sorted by importance for the success of the design system:

• Design System Manager
The design system manager (or also the management department) is the stakeholder
which has most important for the design system and therefore has the most influence
as well as the most responsibility for the design system. The stakeholder manages
that the design system achieves the goals mentioned in section 2.1.2 in quality and
reliability. It is also possible to introduce other design system responsibilities like a
dedicated pattern creation team or an own product team for the design system. In this
thesis, the focus is set to a decentralized approach due to the investigated benefits of
the cybernetical enlightenment presented in section 4.3. Therefore the primary tasks
of the design system manager are to keep the design system clean and beneficial
for all teams, by first reviewing the system, the micro frontends, and feedback of
stakeholders and then evaluating general improvements. The design system manager

19

4 Design Systems for Micro Frontends

is also the initial initiative when the design system is started to get built and the
primary instance for setting up the general system behaviors and connections, so
definement of principles, values, and branding as well as the development of patterns
and code is influencing all teams. The manager also has a high interest in cross-team
knowledge transfer. The manager has his skillset rooted in design and development
(Couldwell, 2020, p. 115).

• Micro Frontend Architect
The micro frontend architect takes the most technological responsibilities of a tradi-
tional frontend lead developer. This includes setting up the general micro frontend
environment in its coded properties as well as deployment guidelines. He can also
be the person which sets up general deployment procedures but due to the aimed
autonomy of each micro frontend, it is more suitable to introduce a specific devel-
opment operations expert to each micro team. The micro frontend architect mostly
aims to establish a robust ecosystem where the micro frontends are living and able
to autonomously can get updated. The architect also manages that the performance
and quality of the final composition are guaranteed and that fallbacks are available
when services or frontends are not working.

• Frontend Developer
Frontend developers “care about a unified code, version control, consistency, perfor-
mance, organization, efficiency, and naming conventions.” (Couldwell, 2020, p. 31).
The design system offers tools like guidelines and usable patterns to them which need
to help by the mentioned aspects regularly. Also, the frontend developers can be
considered as one of the primary user groups of the design system, while they also
influence the development of it. This influence can happen directly by implementing
solutions into the design system, or by giving feedback and requirements to other re-
sponsibles. In the context of their tasks, they also benefit from being able to use the
most suitable or preferred technologies in a manageable environment.

• Designer
Designers “care about aesthetics, brand, typography, color, user experience, and ship-
ping beautiful products, which stay true to their original version.” (Couldwell, 2020,
p. 31). Typically designers take care of the planning of a part of the product that fits
the user’s needs. Designers do not like to be limited in creativity, while also prefer
an exact reproduction of the designs they deliver to developers (Couldwell, 2020, p.
31). The designers are like the frontend developers also one of the primary users of
the design system, while they also might work on design system improvements.

• Backend Developer
The backend developers share the aspects mentioned for the frontend developers.
The difference in the context of design systems is not only that they are working
on serverside-functionalities, but also that the design system primarily addresses the
visual language of a product. This does not mean that backend developers might not
benefit from the design system. For example, they might still have interests in the
values of a product, so they are able to align their focus also. Communication with

20

4 Design Systems for Micro Frontends

Design system
for micro frontends

Frontend developer

Backend
developer

Designer

User

Micro Team X

Micro Team N

Design system manager

Teamlead

Micro frontend
architect

Business
manager

Dev operator

Tester

Figure 4.2: Refined Stakeholder Analysis

frontend developers is also important and staying consistent with naming conventions
cross-disciplinary help.

• User
The user has an interest in a product that is fulfilling the needs in a unified and

21

4 Design Systems for Micro Frontends

consistent way. The user is not interacting directly with the design system, but to
remember: every design system’s primary goal is to support the purpose of a specific
product. Therefore the user is an important indicator when it comes to the final
assessment of the success of the design system. Observations that are taken from the
user can be related to the design system.

• Development Operations Expert
As already mentioned in the design system manager paragraph it is recommended to
have custom deployment procedures in each micro frontend. As the deployment of a
micro frontend will not live in its own ecosystem but rather in a shared ecosystem,
the expert needs to have requirements and guidelines that help to set up compatible
pipelines and configurations. A DevOps expert therefore is interested in systematic
guidances of deploying the design system and developing a infrastrucutre that is well
suited for the elements of micro frontends.

• Teamlead
The teamleads primary interests are grounded in efficient and predictable develop-
ment times of the micro frontend releases. They are often the key decision takers
especially when it comes to investing in researches and new development tools. They
are organizing the team tactically and therefore due to the close team relation are also
close to the teams working habits like systematic designing and developing.

• Tester
The tester has a special interest in finding errors and ensuring the quality of created
solutions. Besides the manual testing of new implementations, the tester also sets up
automatic tests to ensure that one implementation does not break another implemen-
tation. Testing prohibits that bugs, wrong or incomplete implementations are reaching
the release to the users. There are many topics in that the tester can take advantage
of a design system. For example a tester needs to be able to compare the created
results against the principles of the design system, like performance or appearances.

• Business Manager
Based on Coulwells statement regarding product managers, business managers “care
about how fast the team can ship products, and the impact the work has on business
goals, sales reports, and analytics.” (Couldwell, 2020, p. 31). They bear the main
responsibility of the whole business and are key deciders when it comes to scaling,
department budgeting, and financial alignment.

4.1.2 Environmental Constraints

Normally the context of use refers to the users, goals, tasks, tools, and the physical as well
as the social environment of a certain product (ISO/IEC/IEEE 9241-11:2018(en), 2018). As
section 4.1.1 already presents certain dimensions, other environmental properties are still
missed. Likewise, the stakeholder analysis is done abstractly the environment of the design
system also can only be elaborated abstractly, as no certain product is considered. Therefore
the environmental constraints are mostly based upon the domain and characteristics of
micro frontends (cf. chapter 3) aswell as the general goals of design systems (cf. chapter

22

4 Design Systems for Micro Frontends

2). Furthermore, according to Geers (2020) it is “important to provide ways for people to
exchange knowledge between teams” in micro frontend design, while also highlighting the
autonomy of each micro team.

4.2 About Framework-Agnosticism

The usage of frameworks in web application development has upsides and downsides. On
the one hand, a framework delivers features and foundations into the development of an
application, and on the other hand, it constraints the development team to a specific pre-
designed foundation that is not designed specifically to the goals and requirements of the
final product, while also bringing weight to the overall deployed codebase. Due to that cir-
cumstance, teams need to decide which framework does fulfill the product’s vision the best
by comparing the advantages and disadvantages of several relevant frameworks. The micro
frontend architecture allows the use of several frameworks within a system, where each sub-
system addresses a specific purpose and is capable of selecting its own technology-stack. As
the design system is the element applied to each micro frontend development process, it is
important to consider establishing a framework-agnostic characteristic.

In computer science, the term agnostic is defined as in the following:

“Agnostic: Denoting or relating to hardware or software that is compatible with
many types of platform or operating system.” (Oxford University Press, 2020)

This definition concludes that the adjective framework-agnostic describes an entity as
compatible with many types of frameworks:

“Framework-agnostic design system: A design system that is compatible with
many types of frameworks.”

This section deals with framework-agnosticism and expands the relevance in the domain
of micro frontend design.

4.2.1 The Relation between Design Systems and Frameworks

Frameworks are commonly used in various disciplines and domains and therefore also appear
in different variants, which can be defined and summarized as in the following:

“Framework: a basic structure underlying a system, concept, or text.” (Oxford
University Press, 2020)

In the domain of web development, frameworks are commonly established and used as a
system of concepts, functions, and oftentimes also code to constraint an application into an
environmental structure that promotes the application’s development.

Every design system sets up an environment of systematical creation for solutions and
purpose achievement. Through the establishment of principles, patterns, and the design

23

4 Design Systems for Micro Frontends

language, a design system lays the foundation for the user interface creation of a specific
product and therefore also fits into the definition of a framework. In monolithic frontends,
such a systematic design framework (design system) can be created constrained to the ap-
plication’s selected technology stack, or otherwise, a suitable technology stack might also
get selected upon the design systems framework. Therefore design systems and other appli-
cation frameworks rarely interferer with each other, but in the domain of micro frontends,
technology stacks are allowed to shift more dynamic and freely as micro frontends aim for
high autonomy with the characteristic of technology-agnosticism (cf. 3.1.4). This challenge
of serving different types of micro frontends is modeled in figure 4.3 where the design sys-
tem takes influence on every micro frontend while every micro frontend is also based upon
different application frameworks.

design system
principles
branding
values

patterns

micro frontend
based on vue.js

deprecation

deprecationdesign/development

design/development

micro frontend
based on react.js

deprecationdesign/development

vue.js (framework)

react.js (framework)

Figure 4.3: Frameworks and Design Systems Relation

While figure 4.3 already indicates that a framework directly influences the development
of a frontend in combination with the design system, it does not explain why its influence
is also rooted in the frontend itself. This is due to the reason that once an application
framework like vue.js or react.js is introduced to the development process, it also requires
the frontend to contain and keep the specific structure it relies on. Therefore the design
system needs to be compatible with each framework in the micro frontend architecture. If
a framework like vue.js or react.js gets applied to the development process of the design
system’s patterns, it will interfere with the other front-end frameworks. Therefore the design

24

4 Design Systems for Micro Frontends

system would be unusable for diverse technology stacks and couldn’t be seen as framework-
agnostic. As a well-prepared set of patterns is crucial to the quality of every design systems
(Couldwell, 2020, p. 142), a framework-agnostic approach is needed and will be expanded
in the upcoming section 4.2.2.

4.2.2 From Frameworks to Compilers

“Frameworks are not tools for organizing your code, they are tools for organizing
your mind.” (Harris, 2019, Founder of Svelte)

While most web frameworks affect the final size and performance of an application due
to the code they are including Harris (2019) highlights the idea that a web framework does
not necessarily need to be binded to the final codebase of a deployed product but rather
can live in the stage of code development through the use of compilers. This idea can be
projected to pattern development by compiling finished patterns to a web standard (for
example JavaScript instructions, as by Svelte, or webcomponents) that is agnostic to other
frameworks.

4.3 Cybernetically Enhanced Design Systems

This section aims to highlight the cybernetical properties of design systems in the context of
micro frontend design. The discipline of cybernetics was first introduced by Norbert Wiener
who worked during the second world war on an anti-aircraft predictor and published in 1948
the book Cybernetics; or, Control and Communication in the Animal and the Machine that
gained world-wide attention (Friis et al., 2009, ch. 20). Although cybernetics deals inten-
sively with the behavioral complexity of systems (Ashby, 1957, p. 1), definitions regarding
cybernetics vary (Friis et al., 2009, ch. 20). The systematic micro frontend design is due
to its environmental requirements a discipline which enables some kind of complexity for
unforeseeable design possibilities while also targeting the general goals of system design (cf.
sec. 2.1.2). This means for example that the autonomous nature of micro frontends, on
the one hand, allows developers to be more creative and flexible in taking decisions. On
the other hand, this case demands a global systematic design approach that is applicable to
many unforeseeable varieties. While this cognition implies risks like threatening the prod-
uct’s consistency or obstructing the share of knowledge between micro teams it also holds
the chance to level up design systems to a layer where they become the environments of
cross-discipline and cross-team thinking, promoting creativity and intelligence of the sum
of all involved members. With this idea in mind, the upcoming subsections introduce the
science of cybernetics in projection to design systems for micro frontends. Furthermore, the
section ends by investigating the possibility to level up system design with technology in a
cybernetic and systematic adaptable occurrence.

25

4 Design Systems for Micro Frontends

4.3.1 Introduction to Cybernetics

Based on the Greek word for “steersman”, cybernetics was first defined by Norbert Wiener
and Arturo Rosenblueth to describe the field of regulation, control, and communication of
information processing systems (Wiener, 1948, p. 11). This work is now considered the
origin of cybernetics and has influenced many fields of study until today. Cybernetics is
an extensive science that can be applied in various forms as long as information-processing
systems are the subject of investigation. In cybernetics an information-processing system
is not defined by technologies or representations but simply seen into a looping circular
sequence that allows processing an input regarding a goal, then sensor the output, and
compare the output against the intended goal, with the ability to adjust its own behavior
based on feedback generated from this comparison. This fundamental characteristic is
known as the negative feedback loop which is shown in figure 4.4 and illustrated by Jackson
(2019).

Activator

Process

SensorComparator

System

Output

Desired goal

Input

Figure 4.4: A Closed-Loop Feedback System by Jackson (2019)

The model shows that a cybernetic system works with two defined parameters: the input
and the desired goal. As long as the system has these parameters it is able to work effec-
tively (Jackson, 2019, ch. 6) and self-maintained through the interconnections shown in the
diagram. In the following the elements of the system that are crucial (Jackson, 2019, ch. 6)
in cybernetics are described:

• Sensor: Detects changes like to the current output, but also other optional parameters

• Comparator: Compares the current outcome and the desired goal (desired outcome)

26

4 Design Systems for Micro Frontends

• Activator: Reacts to the discrepancy feedbacked by the comparator by taking deci-
sions that influence the current outcome regarding the intended goal.

Looping through the elements enables the system to continuously register movements
away from the goal and regarding the goal, which allows the system to automatically correct
itself (Jackson, 2019, ch. 6). As an example of such a feedback-based system a heating
system with a thermostat often gets mentioned [(Jackson, 2019, ch. 6), (Meadows, 2008, p.
36)], where the thermostat is set to a specific desired temperature, senses the environmental
temperature, and based on the feedback of the comparison of these both temperatures
adjusts the heating-output. It is important to mention that the discussed model of feedback
systems is just the basic concept and that more complex systems can rely on various types
of feedback loops that are influencing the behavior of the system in varity. These types
of systems are also considered under Ashby’s Law and in second-order cybernetics that are
discussed in the next sections.

4.3.2 Ashby’s Law

In the fifties, the system theorist W. Ross Ashby published the book “An Introduction to
Cybernetics” which gained international interest in cybernetics through Ashby’s description
of the law of requisite variety. Furthermore, Ashby (1957) highlights two other principles
that are relevant to cybernetics, first the black-box theory and then the negative-feedback
loop. As the negative feedback loop has been already presented in the previous introduction
it will be skipped in this section, but all three principles are forming a framework of cyber-
netics that is applicable to all possible types of machines, “whether electronic, mechanical,
neural, or economic, i.e.” (Jackson, 2019, ch. 6).

The Black-Box

In figure 4.5 the concept of the black box according to Ashby (1957) is shown. Essentially
the black box is a system where internal mechanisms are not available to the evaluation
of the system’s behavior. Taking advantage of the black box theory can help understand
complex systems, while a traditional analysis would fail due to the high amount of elements
and connections occurring. When viewing a system in a black box the experimenter is not
breaking down elements in the system itself to evaluate its behavior but emitting various
types of inputs into the system. After the input has been processed by the system the
output is compared with the previous input. Other examples of inputs follow the procedure
until the experimenter system is able to conclude behaviors of the black box system.

Black box Experimenter

Figure 4.5: Black-Box System and Experimenter System (Ashby, 1957, p. 87)

27

4 Design Systems for Micro Frontends

Furthermore, Ashby (1957) highlights, that through this process of emitting an input
and comparing the result a cybernetic feedback system is established, which is capable to
identify behaviors based on the variety of the emitted inputs.

The Law of Requisite Variety

Ashby’s law is until today one of the fundamental achievements of cybernetics and states
that only “variety can destroy variety” (Ashby, 1957, p. 207). Variety hereby can be
described as the sum of distinct states in which a system can exist which would be for a
simple switch the variety of on and off (Krishnamurthy and Saran, 2007, ch. 2). According
to Ashby, this essentially means that a controller must be at least as complex as the problem
it is designed to control: it requires complexity to handle complexity and solve a problem.
Prof. Peter Kruse, therefore, summarizes the law as follows:

“Wherever we have a highly complex dynamic problem system, we need at least an
as complex dynamic solution system; if we don’t have an equivalent complexity,
we are not capable of solving it [the problem system].”(Kruse, 2007, translated
from the german transcript)

4.3.3 Second-Order Cybernetics

In section 4.3.1 and section 4.3.2 the first fundamental principles of cybernetics have been
introduced. Between the sixtieth and seventieth the ideas of Heinz von Foerster which
he himself summarized under the phrase cybernetics of cybernetics gained attention (Jack-
son, 2019, ch. 6) and created a movement within cyberneticians called the second-order
cybernetics (Heylighen and Joslyn, 2001, p. 3). The first principles from the fifties and
sixties, which were mostly concerned with circular causal processes, e.g., control, negative
feedback, computing, adaptation, then became summarized under the term first-order cy-
bernetics and introduced two topics of cybernetics. The idea of second-order cybernetics
was to take advantage of cybernetical methods and principles by applying them onto the
cybernetical observations themselves, meaning that the observers and cybernetic systems
also form a cybernetic system (Heylighen and Joslyn, 2001, p. 3-4). Von Foester defines
the orders of cybernetics as follows:

“I submit that the cybernetics of observed systems we may consider to be first
order cybernetics; while second order cybernetics is the cybernetics of observing
systems.” (Jackson, 2019, quoted in ch. 6)

This second-order thinking also highlighted the fact that various observer systems, due to
their own properties and behaviors, perceive information differently and therefore judge the
behavior of an observed system in variety. Furthermore, when various observers act with a
system it is important to “pay attention to the circular processes in which observers interact
with what they observe” (Jackson, 2019, ch. 6) by also assume that general objectivity
can not be specified in advance. It is much more important to establish languages that
act as connections between the observers and through these connections disagreements and

28

4 Design Systems for Micro Frontends

agreements can be communicated to evaluate a general consensus between all parties in
regards to the observed system. In relation to Ashby’s law Kruse (2007) shares the idea that
interconnections of different cybernetic systems within a system are leading to disturbances
within the system which then allows the different parties to “become creative” in introducing
solutions that are in general applicable to the system.

4.3.4 Thinking Cybernetical in Micro Frontend Design

In chapter 2 the general concepts of design systems based on various sources have been
introduced, showing that a design system is strongly considered to be a tool for successful
system design handed to the product team. Theoretical design system views can often
neglect cybernetic principles, especially those of the second-order, by focusing more on the
non-living elements of the system than the behaviors that are in existence through human
involvement. While in practice, however, things like circular correction processes or varieties
are present during system design, the human origin of these processes is often not considered
as part of the design system itself. As in section 4.1.1 a stakeholder analysis of design
systems for micro frontends has taken place, introducing various types of persons that are
important to be considered when it comes to establishing such a system, this section aims
to highlight the need for human involvement as an element of the design system itself, based
upon cybernetic principles. Furthermore, in regards to micro frontend design, an advanced
cybernetic approach is modeled that considers the possible disturbances, interconnections,
and interactions between the design system and its influential stakeholders based upon
second-order cybernetics. Interactors are also part of the system and are present in their
own variety. There are designers, developers

The Interactor’s Relative Awareness

Based on the design system model in figure 2.4 and the feedback loop in figure 4.4 it can
be emphasized that a human, normally seen as a user or creator, not only interacts with
the design system but also is an element of the system itself. Figure 4.6 demonstrates this
circumstance by evaluating the negative-feedback loop in the context of design systems,
setting the human interacting with the system into the system’s boundaries.

Especially in micro frontend design, it is important to highlight, that a design system
needs to be capable to be adaptable to every occurring micro frontend environment. This
adaption is on the one hand dependent on the framework-agnostic property but on the other
hand also on many other varieties. Design systems, as presented in chapter 2, themselves
are initially simple sets of rules and pattern collections that cannot perform any task on
their own and certainly cannot adapt themselves to shifting environments. This can be
demonstrated by the negative feedback loop in figure 4.6 that indicates that the interactor
contains all cybernetic properties. There are no strong mechanisms in design systems, be-
sides the human, that are able to sensor, compare and decide to shift systems behaviors and
outputs regarding selected goals. There might be tools, like linters or accessibility checkers,
which can help a human to work more efficiently in for example sensoring and comparing

29

4 Design Systems for Micro Frontends

Activator

Process

SensorComparator

Design system

Output

Desired goal

Input

Interactor

Figure 4.6: The interactor’s roles inside the design system

outputs, but the responsibility of extracting and evaluating new sensoring properties or
decisions would be still onto the human. Next, it is important to note that the interactor
can be any stakeholder highlighted in section 4.1.1, from any possible micro team of the
quantity N, interacting with the design system. This circumstance shows the relevance of
second-order cybernetics (cf. section 4.3.3), as each interactor relies on his own senses and
mind that lead to subjective occurrences inside the design systems.

By considering Ashby’s law of requisite variety the introduction quote from chapter 1 is
represented again:

“As application development becomes increasingly dynamic and complex, it’s a
challenge to achieve the effective delivery of accessible and usable products that
are consistent in style.” (ThoughtWorks, Inc., 2019, p. 8)

This quote has been mentioned by ThoughtWorks, Inc. (2019) with the aim to highlight
the problem field that design systems address to offer solutions to. Furthermore, micro fron-
tends also seem to follow systematic concepts with the aim of reducing the necessary frontend
complexity to the developers of a product, by dividing it into organizational sections. This
approach can be mapped to the self-organizational characteristic of hierarchical systems
(Meadows, 2008, p. 85). In order to create “highly functional systems, hierarchy must bal-
ance welfare, freedoms, and responsibilities of the subsystem and total system”(Meadows,
2008, p. 85). Traditional design systems offer two approaches in getting developed. One
approach is considered as the centralized model, where a specific design system development
team is the main creator of the system, while the other is classified as the distributed model
(Kholmatova, 2017, p. 157), where the creation responsibility is dependent on everyone
within the team. In the world of micro frontends, it also needs to be considered that the
“dynamic complexity” of the whole product increases even more due to the autonomy and
general domain (cf. section 3.2) even further. Therefore, according to Ashby’s law, it is

30

4 Design Systems for Micro Frontends

necessary to establish a design system that is in minimum as complex as the presented
problem field of micro frontend design itself.

Although figure 4.6 shows that the variety of the individual interactors already affects the
global behavior of system design in variety an organizational approach counterfeiting the
problem-variety is still needed, as the variety of the problem environment consists within
black-boxed interconnection (cf. section 4.3.2) while intended design systematic connections
are not yet evaluated. As Kruse (2007) suggests:

“If our world is now becoming more and more complex due to interconnected-
ness, one can say: the only solution we have is complexity through interconnect-
edness;”(Kruse, 2007, translated from the german transcript)

For the scope of this work, the human behavioral interconnections will be continued to be
considered within a black-box system as investigating these interconnections further would
open another field of science. In regards to second-order cybernetics it is already shown that
there is a remarkable influence of each interactor in systems and figure 4.6 also supports this
statement. So the question which gets open up in the following is orientated regarding the
mentioned statement of Kruse (2007): Where and how are connections initiatable in design
systems, to promote consistent and efficient design executed by various humans within micro
frontends?

Interactors Connections

One key concept of the micro frontend approach is the usage of operational delegation and
specification of the team, which is a characteristic of self-organized systems (see above).
According to Conway (1968) a organizational structure has direct impact on the structure
of the system it designs, which concludes that when the final micro frontend system shall get
designed in a specific aimed structure the team behind its creation needs also get organized
into a similar structure:

“Any organization that designs a system (defined more broadly here than just
information systems) will inevitably produce a design whose structure is a copy
of the organization’s communication structure.” (Conway, 1968)

This statement is also considered and known as Conway’s law and promotes one of the
key manifestations in microservice and micro frontend design (cf. 3.1.2). Furthermore,
as the alignment of team strucutre and system strucutre is crucial to the prevention of
tensionpoints (Newman, 2015, ch. 10) in the final product a design system also needs to be
aligned regarding the very same principle, as it’s primary purpose is to promote the goals
of the final product. In other words the design system and the final product are living in an
almost same organizational enviroment during their creation. By recognizing the connection
between the design system, the product and the team structure, we ensure that the system
we are trying to build makes sense to the organization we are building it for (Newman,
2015, ch. 10).

31

4 Design Systems for Micro Frontends

A
Design system

core

MFEA

DSM

DS DS

FD FD

Others

Others

Design system

Micro team

Micro team

Legend:

DSM: Design system manager

MFEA: Micro frontend architect

DS: Designer

FD: Frontend developer

Others: Other interactors (Tester, Backend, ...)

Connection with the core

Team-internal connection

Cross-team connection

Figure 4.7: Interactors Connections within the Design System

Figure 4.7 shows the organizational influence of the interactors with possible interconnec-
tions to counteract the variety of dynamic design awareness within the design system. The
design system cor in the center of the illustration represents the fundamental design system
model from figure 2.4 of chapter 2 containing the flows and connections between patterns,
principles, values and branding. Furthermore, the design system, illustrated in figure 4.7,
considers the system emerging between the interactor(-systems) and the fundamental design
system presented in figure 4.6 creating a second-order design system in regards to second-
order cybernetics (cf. section 4.3.3). By applying Conway’s law it is possible to structure
the system by structuring the variety of interactors. This structuring is possible through the
presented interconnections, to produce a system behavior that primarily targets a consistent
design awareness between all interacting parties:

32

4 Design Systems for Micro Frontends

“System structure is the source of system behavior. System behavior reveals itself
as a series of events over time.”(Meadows, 2008, p. 89)

The key parameters, that are influenced by humans, within the modeled second-order
design system are the activator, comparator, and sensor, which can be concluded from
4.6. Therefore especially in these areas, a mechanism is needed to ensure more consistent
and right evolving judgment between the different parties. But identifying the modeled
connections is only the first condition that promotes intended behaviors, as the connections
themselves need to be also used by the interactors by flowing different types of information
efficiently and purposive effectively. Efficiently means that the processes operating onto
the connections demand the least possible amount of work to the interactor, as the design
system exists to promote the works of the interactors. Purposive effectively means that the
connections need to serve a goal that has an effect on more consistent awareness within the
activator, comparator, and/or sensor. It is also important to highlight that these connections
are still allowed, even required, to emit disturbances between the connected interactors, as
disturbances are the driving forces of the cybernetic evolvement of a system, as systems that
are not disturbing are stability-oriented and not dynamic (Kruse, 2007) to encounter the
problem-variety. The following describes the elements of the interactors feedback-response
loop, that are most susceptible for variety:

• Activator
In a microarchitecture, it is a far more common activity to make decisions in a pool
of more options compared to a monolithic approach (Newman, 2015, ch. 12). An
interactor also needs to consider his decisions in regards to other interactors as it
might affect them.

• Sensor
Interactors might sense their results differently. But a rapid awareness of broken re-
sults is crucial in a central design system that might affect other frontends and stake-
holders (Mezzalira, 2021, ch. 4). Sensoring mechanisms should promote consistent
awareness.

• Comparator
Depended on the individual standards, interactors might compare the results regard-
ing different levels of intended results. Standardizations, like principles, values, and
patterns are already key essences of design systems. Connections between the inter-
actors could ensure that these elements are applied within every loop-cycle.

With theses descriptions the organization in figure 4.7 can be expanded:

1. Every interactor is connected to the design system core, as everyone is creating its
own awareness of the second-order design system, also influencing the overall design
systems evolution to some degree, as well as evaluating results through the design
systems process.

2. Most interactors live in a cross-functional team environment as this is the most popular
shift within micro frontend architectures (Geers, 2020, sec. 1.1.1), to enable team
scaleability (cf. section 3.1.1). Within these team environments, every stakeholder

33

4 Design Systems for Micro Frontends

is strongly related with the team members in pursuing the micro frontends success.
When some new feature is implemented in the frontend all members need to work
together in close relation.

3. As the micro teams normally follow similar and coupled aimings without inferring each
other they are more isolated to every other design system’s interactor outside their own
micro frontend team. In this general field, every discipline (design, development, ...)
pursues diverse goals. For example, while the designer(-s) of one team agree internally
on pursuing their goal with the most suitable solution for their case, another team
aiming to introduce a similar solution affecting the same part of the design system
might implement it in another variety. Following the pattern of this example in other
disciplines is can be seen that varieties obviously collide on the discipline level in cross-
team interactions. By promoting the principle of delegation and hierarchy (Meadows,
2008, p. 85) a general solution process can be divided into potential levels of variety-
collision, which is abstractly visualized based on the in figure 4.8. These levels show
that the interactor’s variety mostly affects interactors that operate within the same
variety. Therefore the cross-team relations in figure 4.7 are organized radial to their
discipline-colleagues in the global system.

Designer Developer Dev Ops

Designer Developer Dev Ops

Task

Task Implementation

Implementation

X

Figure 4.8: Levels of Cross-Team Relations

Creating a solution starts with the design the designer handsoff to the developer. After the
developer has implemented the design, the development operator deploys it. The top flow

represents one team, while the bottom flow another team. Disciplines might interfere with the
solution they create, but a designer, for example, will rarely influence a developer who is not in the

same micro team.

So as the radial connections between same-disiplinary interactors should be established to
encounter varieties the next section highlights a way for useful cross-team communications.
Before that it also shall be metntioned the behavior of the design system manager(-s) and
micro frontend architect(-s). The design system manager takes the strongest responsibility
role of the design system. Therefore such person needs to be strongly familiar with the
design process of the final product aswell as the design system itself. As designers influence
the behavior of the final product by designing the product and the design system, it makes
sense to connect them at the first state as shown in figure 4.7. Although it would also
make sense to connect the design system manager with other stakeholders like the frontend
developers, the model is limited to the visual connections due to abstract clarity. The

34

4 Design Systems for Micro Frontends

design system manager also needs to take care that the design system is compatible with
the general frontend architecture, therefore the relation to the micro frontend architect is
also relevant and important. Furthermore, the micro frontend architect on the next radial
level is strongly considered with all other frontend developers and creating the architecture
is highly dependent on the micro team goals. Frontend developers are the best interface for
connecting with the architect. Interactors defined as “others” are other interactors modeled
in the stakeholder analysis. They follow the same paradigm of connectedness as designers
and developers, but due to the clarity of the model, they have been summarized.

Commons with Technology

In the previous section, the interconnections within second-order design systems have been
introduced. As the organization of cross-team connections has been modeled the next
important step is defining and describing these connections further. Connected elements
need to interact with each other, otherwise, the connections themselves are dead and do
not promote any dynamic complex system behavior that works against the problem-variety
within the system. Although one primary aim of micro frontends is to reduce the coupling of
frontends as well as possible, to promote autonomy within each micro frontend, this section
shows the need for establishing commons between teams. Commons, are properties that
are assigned globally to disciplines within the design system. Without common procedures,
common goals, and common thinking most cross-team connections won’t be able to exist.
Commons also enable the flow of knowledge between various interactors (Geers, 2020, sec.
1.4.3), which also leads to feedback orientated behavior in cybernetics. One general trap
that occurs with commons is the chance of abuse by other users. on the one hand, if one
user breaks something, the others might suffer that from that abuse. On the other hand,
the success of one common directly and positively affects everyone relying on that common
(Meadows, 2008, p. 191).

To achieve effective commons between teams that connect each member with its dis-
ciplinary colleagues in other teams a good way is to first rely on shared design system
principles as well as shared technologies. Shared technologies might first appear to counter
the autonomy and framework-agnosticism of the micro frontends itself. But as section 4.2
already highlighted framework-agnostic components can be based upon frameworks and still
be characterized as framework-agnostic aslong as they are able to live in diverse ecosystems
without introducing significant overheads. The argument behind using common frameworks
when it comes to global actions, like creating components for the design systems pattern
library is the chance to connect disciplines across various teams and by that pursuing a
shared goal that adapts into each indivdual frontend context. The technology becomes the
language and enviroment of discussion to create sultions for highly complex and dynamic
problem fields in micro frontend design. How such technologies can be used therefore will
be demonstrated and evaluated in the next upcoming chapter by using Svelte, as the global
technology to create components and Tailwind CSS based Utility-First CSS classes as a
global approach of styling.

35

5 Evaluation with Svelte and Tailwind CSS

This forthcoming chapter evaluates the properties of design systems in micro frontend archi-
tectures described in the previous chapter. Based on the second-order design system model
from figure 4.7, the chapter examines the extent to which technological connections between
cross-team designers and developers can be implemented. Technological choices for these
evaluations are the compiler Svelte, for JavaScript component-pattern generation, and the
framework Tailwind CSS, for systematic CSS design. The goal of the evaluation is to test
the practical feasibility of implementing cross-team discipline connections in framework-
agnostic characteristics in the environment of micro frontends. The chapter first starts by
introducing the utility-first approach on that Tailwind CSS relies on. Subsequently, an in-
troduction to Svelte components is given. The chapter ends by using both technologies to
offer a framework-agnostic approach that enables connections between the micro frontend
teams.

5.1 Utility-First CSS with Tailwind CSS

There are various CSS methodologies web developers apply as a relational philosophy be-
tween CSS and HTML today (Godbolt, 2016, p. 27-28). Oftentimes these methodologies
need to get applied correctly by developers to stay consistent within the codebase. In com-
parison to methodologies, CSS frameworks deliver preset CSS classes to the code-base to
deliver consistent UI design, but still, to advance and use the framework design a consistent
CSS methodology oftentimes needs to be executed to handle common challenges of CSS.
This section introduces the CSS framework Tailwind CSS which introduces its own utility-
first methodology with predefined utility classes. First, the variety of common challenges
in CSS creation is presented. Then the structuring potential of the Tailwind CSS approach
gets discussed in conjunction with the previously presented challenges.

5.1.1 The Variety of CSS Styling

Based on the presented CSS issues of Godbolt (2016) the following challenges frequently
occur in CSS design (Godbolt, 2016, p. 38):

• Specificity
Dealing with different manifestations of specificity increases the complexity of the CSS
code.

36

5 Evaluation with Svelte and Tailwind CSS

• Resetting Styles
Switching between various overwriting within nested definitions duplicates and pol-
lutes the CSS code.

• Location Dependence
If styles are nested or scoped into a parent class, shifting markup elements without
this parent is not possible.

• Multiple Inheritance
It can happen that one markup-section is styled by various sources of inherited parent
styles, which may lead to resetting styles or location dependence

• Further Nesting
To overwrite inherited styles another nested selector may need to get introduced, only
to ensure the needed specificity

Other styling related challenges that occur in larger modularized web applications are
exemplified by Klimm (2020) as follows (Klimm, 2020, p. 24-26):

• Redundant CSS Definitions with Scoped Styling
When component styles are created often times a scoped CSS approach is used, where
each component scopes its style definitions with a specific parent selector.

• Component Post-Modularization
When components need to get split up into smaller pieces, the markup, the logic,
and the CSS need to get extracted and shifted. The more complex the styles are the
harder it is to identify the necessary CSS declarations in the codebase.

• Unused CSS Classes
As web applications evolve overtime to do the stylings and CSS too. By removing or
editing the markup it can happen, the more complex the CSS is, that unnecessary
declarations remain in the codebase. This also reinforces the whole CSS complexity
over time by influencing further CSS challenges.

• Property Hell - Component Style Attributes
When it comes to the development of components there can be observed that smaller
style adjustments, for example, colors, lead to the introduction of specific attributes,
which then make the codebase in the logic section as well as style section bigger and
more complex.

As it has already appeared in the previous listings, many of the aspects presented are
connected to each other. This means that the complexity of one aspect influences also the
complexity of other aspects, which in turn all together lead to increasingly dynamic com-
plexity in the CSS creation of web applications, as it is modeled in figure 5.1. In conjunction
with the variety that has been presented in section 4.3, the creation and maintenance of CSS
in the design system of a micro frontend architecture can prove itself as highly complex. To
solve the challenge of CSS creation and maintenance within an approach that can be used
and discussed globally by the design system interactors, while also being framework-agnostic

37

5 Evaluation with Svelte and Tailwind CSS

Various
specificities

Location
dependence

Multiple
inheritance

Further
nesting

Redundant
CSS

Post
modular-
ization

Unused
CSS

Property
hell

Figure 5.1: The Variety of CSS Styling

to the micro frontends where it gets applied, utility-first CSS might be a methodology that
is worth to consider in managing styling.

5.1.2 The Potential of Tailwind CSS in Micro Frontend Design

In the last years, the framework Tailwind CSS has gained significant popularity within the
web community (Greif and Benitte, 2020a) and now leads according to the latest study of
Greif and Benitte (2020a) the charts in types of developer satisfaction and interest. Unlike
traditional CSS frameworks, like Bootstrap or Bulma, Tailwind CSS follows a constraint-
based approach (Tailwind CSS, 2021, /#constraint-based), where utility classes represent
elementary CSS style definitions. The design of the UI then gets defined by the developer by
not predominantly creating new semantic classes, or using such and overwriting properties
through specifities, but by using multiple atomic utility classes directly in the markup.
With this approach Tailwind CSS aims up to support custom and consistent UI design by
introducing an organization and setup of utilities that promote systematic design (Tailwind
CSS, 2021, /#constraint-based).

38

5 Evaluation with Svelte and Tailwind CSS

Cybernetic Benefits

“When a constraint exists advantage can usually be taken of it.” (Ashby, 1957,
par. 7/14)

According to Ashby (1957) especially in environments of high variety, constraints are
important to estimate occurrences better. Constraints can be manifested in different vari-
ants, like natural laws, objective properties, or predictive behaviors. Another type is the
“machine as constraint” (Ashby, 1957, par. 7/19), where an observer is able to observe
a sequence of information through something like a protocol that enables the observer to
“recode” the whole into two simple statements:

1. A statement of transformation

2. A statement of the actual input given

This means that the protocol establishes constraints that structure the view of the pro-
cesses inside the machine to the observer in a more comprehensible approach. In section
4.3.4 the aim to use technology to establish commons had been addressed, from where it can
be concluded that creating commons with technology also means to establish technologic
constraints inside the design system. With Tailwind CSS a type of utility-class protocol can
be introduced to the design system, meaning that through Tailwind CSS an advanced low-
level CSS methodlogy with its reinforcing behaviors can be used to manage the variety of
CSS (see above) and the connecting of cross-team discipline layers (cf. section 4.3.4). From
a cybernetic perspective Tailwind CSS is due to various properties a beneficial technology
that adapts to cross-team system design:

• Customizability and Traceability
The utility-classes are generated based on a JavaScript configuration file. This allows
to set up specific and consistent properties. The usage of these generated classes is,
due to the good documentation, easy to learn (Dayan, 2019).

• Consistent Usage is Forced
Tailwind CSS requires the developers to use the exact utilities to achieve style goals.
Unlike other methodologies, like BEM1, the developer can not deviate from the speci-
fications, as then no effect would be sesnored. With BEM an inexperienced developer
has a higher chance to deviate from the naming conventions. This forces developers
to deal with learning Tailwind CSS conventions on a regular basis, which leads to
stronger cross-team connections inside the design system.

• Developer Expierence
Tailwind CSS has a high level of satisfaction for developers (Greif and Benitte, 2020a),
which promotes the activity of the interconnections between micro teams.

Another cicumstance that can be handeled well with Tailwind CSS can be elaborated
from Conway’s law:

1BEM: Block-Element Modifier, is a popular CSS methology

39

5 Evaluation with Svelte and Tailwind CSS

“Because the design which occurs first is almost never the best possible, the pre-
vailing system concept may need to change. Therefore, flexibility of organization
is important to effective design.” (Conway, 1968, p. 31)

When it comes to style the UI over time evaluations happen, but as also show by Klimm
(2020) and Godbolt (2016) it can be difficult for developers to be confident in changing or
removing old styles. Therefore unused CSS remains in the markup or more CSS selectors
with higher specifities, as a predictability of the side effects in the complex connectedness
(cf. figure 5.1) is less available the larger the codebase is. Since Tailwind CSS is used
directly within the markup due to its atomic approach, evaluations can get are very good
assessed in regards to their impact. This is because changes are implemented directly in
the markup and not in the general CSS classes, so developers do not to investigate further
beside the section they are editing. With normal CSS classes they would need to check if a
change of the class leads to undiesired changes in other parts of the frontend.

The Possibility of Framework-Agnosticism

One challenge that comes with every CSS framework that developers might want to intro-
duce globally inside the micro frontend architecture is the question regarding the framework-
agnosticism. In the chapter 4 it has been highlighted how the autonomy of each micro
frontend is dependent on the technologies it is required to use. Therefore the important
requirement of framework-agnosticism should also not suffer from the goal of establishing
cross-team connections. As section 4.2 already has highlighted a design system itself can be
considered as a framework to the developer and designer, while also framework-agnosticism
does not mean to renounce the use of frameworks, but the aim that the final implementations
can work in various environments, where other frameworks are dominating the frontend de-
velopment. This means, when it comes to the introduction of Tailwind CSS, inside the
design system for micro frontends, developers need to be able to integrate the design system
into their own autonomous frontend, without limitations. Furthermore, the developers need
only be required to use Tailwind CSS, when it comes to creating patterns. This does not
mean that developers should not be able to use Tailwind CSS for everything else inside their
frontend, but they should not be required to.

To establish Tailwind CSS in a framework-agnostic manner, the configuration needs to
live inside the design system and with every update of the system, it needs to get deployed
through a mechanism that generates the used utility classes inside a general CSS file the
frontends can import. With such an approach, the frontends do not need to set up Tailwind
CSS by themselves to make patterns work, but to just ensure that the global CSS file is
available. Furthermore, depending on the micro frontend architecture this can get simplified
even further, by introducing the design systems CSS file directly into the application shell
(the middleware of micro frontends)

40

5 Evaluation with Svelte and Tailwind CSS

5.2 Designing Svelte Components with Tailwind CSS

“As usual React and Vue lead the pack, but Svelte is quickly establishing itself as
a very serious contender for the front-end crown.” (Greif and Benitte, 2020b)

Recently, Svelte has gained more and more attention within the web community and
currently also leads the satisfaction ratio close before the popular frameworks Vue.js and
React.js (Greif and Benitte, 2020b). Svelte is not another single-page application framework
that relies on familiar approaches like Vue.js or React.js, as it can be more considered as a
compiler that creates components based on vanilla JavaScript instructions. With this ad-
vantage, Svelte can be an efficient framework-agnostic solution to create components that
are able to live in any environment without introducing significant overhead. On the web,
the bundle size of a framework usually has to be taken into account, so some specific func-
tions cannot be brought into the framework (because they are too rarely used) in order to
not pollute the size unnecessarily. With Svelte the deployed tools are compiled in the build
to performant javascript instructions, which allows much more features, because each time
only the part is deployed, which is also used and nothing more. For example, svelte has
been able to create a powerful tool for transitions that generate transitions individually,
which would not have been possible in a normal framework. Besides the compiled svelte
component format, svelte can alternatively be compiled to standardized web components.
The advantage of this approach would be the already more frequent use of such components
in web apps, but some features of svelte are also lost and so svelte components themselves
offer the greatest degree of possibilities. Svelte has mechanisms for reactivity, state man-
agement, and event management, which provides common features that you are used to
from Vue or React in a framework-agnostic way. Since there is already some work on the
use of web components, this evaluation will focus on Svelte’s own component format in the
following.

5.2.1 Set Up Approach for the Framework-Agnostic Pattern Library

In the following, an approach of creating a framework-agnostic Svelte pattern library with
Tailwind CSS is elaborated. The goal of this section is to evaluate the feasibility of using
Svelte and Tailwind CSS within a design system for micro frontends. While there are code
examples presented the final repository also has been published to GitHub 2.

Introduction

A common Svelte environment can get generated by using the official Svelte template by
using the degit npx degit sveltejs/template name. When has been executed some things need
to get changed, as the template in general addresses more an app implementation than a

2https://github.com/netzfluencer/svelte-tailwind

41

https://github.com/netzfluencer/svelte-tailwind

5 Evaluation with Svelte and Tailwind CSS

library implementation. While there are serval guides on how to build components, compile
and register them to the browsers window object in another web application3.

This means, that the registration happens in the Library-owned main.js file, which then
gets compiled and referenced in the micro frontends HTML by using script tags. With this
approach, all components are getting registered to the micro frontends window object (by
the compiled main.js file of the svelte pattern library). Although using the window object
has relevance due to the possibility of including a cached JavaScript file to the frontend, im-
porting only the required components before transpilation into the micro frontends codebase
has also relevance, depending on use cases. Therefore the following implementation aims
up to validate how compiled Svelte components are usable as ES modules to support mod-
ule tree-shaking and deliver another approach of injecting Svelte components into common
applications.

Installing Dependencies and Adjusting the Rollup

Based on the guide of Dhanaraj (2020) Tailwind CSS can get introduced to the Svelte
template environment. But as this is not an app but a library there is one difference: Here
the Tailwind styles are not declared in App.svelte, but in an own Tailwind.svelte file, which
is only responsible for the tailwind styles and nothing else:

Code Example 5.1: Tailwind.svelte

1 <style global>

2 /* purgecss start ignore */

3 @tailwind base;

4 @tailwind components;

5 /* purgecss end ignore */

6 @tailwind utilities;

7 </style>

Also worth mentioning is, that Tailwind CSS uses a PostCSS Plugin called PurgeCSS4,
which in the build process removes all utility classes that have been generated by Tailwind
but have not been used anywhere in the codebase. After importing the Svelte file in main.js
(cf. code example 5.4) the compiler will extract the used utilities into the svelte-common
bundle.css file.

Another change that needs to get done is switching the JavaScript format to ESM (EC-
MAScript modules), so desired components are after compilation importable for other ap-
plications/micro frontends (cf. code example 5.2, line 6).

Code Example 5.2: rollup.config.js

1 /* ... */

2 export default {

3 input: 'src/main.js ',

3https://github.com/lingtalfi/TheBar/blob/master/discussions/inject-svelte-in-existing-app.

md (Last accessed 31 January 2021)
4https://purgecss.com/

42

https://github.com/lingtalfi/TheBar/blob/master/discussions/inject-svelte-in-existing-app.md
https://github.com/lingtalfi/TheBar/blob/master/discussions/inject-svelte-in-existing-app.md
https://purgecss.com/

5 Evaluation with Svelte and Tailwind CSS

4 output: {

5 sourcemap: true ,

6 format: 'esm',
7 name: 'app',
8 file: 'public/build/bundle.js '
9 },

10 /* ... */

11 }

Creating a Component

Next, a button component gets created, which can receive and display a label-property,
dispatches a click event when clicked, and uses utility classes for styling.

Code Example 5.3: Btn.svelte

1 <script>

2 import { createEventDispatcher } from 'svelte '
3 const dispatch = createEventDispatcher ()

4 export let label

5 </script>

6
7 <button class="bg-gray-800 rounded-lg text-gray-100" on:click= {()

=> dispatch('click ')}>{label }(Svelte)</button>

Furthermore, the component needs to get imported and exported in the main.js file:

Code Example 5.4: main.js

1 import Tailwind from './ Tailwind.svelte ';
2 import Btn from './ components/Btn.svelte ';
3
4 export { Btn }

5.2.2 Using a Compiled Svelte Component in a Vue-Based Frontend

After executing the command yarn build within the svelte-tailwindcss repository the bun-
dle.js and the bundle.css files are getting generated, which can be used in a micro frontend.
In this case, a Vue 3 single-page application with Vite is used for demonstration purposes.
Furthermore, an efficient Vue wrapper is build to more easily use svelte components in Vue.
The Vue app itself has been generated based on the official Vue documentation5. The full
repository of the upcoming implementation is also published to GitHub6.

To display the svelte components the bundle.css needs to be referenced inside index.html.
It would also be possible to import the CSS file directly into main.js of the Vite project,
but the advantage of referencing the file in the index.html is the cross-sharing of the same

5https://v3.vuejs.org/guide/installation.html
6https://github.com/netzfluencer/vue-vite-svelte

43

https://v3.vuejs.org/guide/installation.html
https://github.com/netzfluencer/vue-vite-svelte

5 Evaluation with Svelte and Tailwind CSS

code in various micro frontends when the file is hosted on a globally accessible provider
(like a CDN). In the following the file is referenced in index.html to prove the possibility of
referencing a globally accessible and cacheable file, while the file itself is currently manually
moved into the Vite project itself. This circumstance is just existent to promote rapid
prototyping and proofing the general concept. In the real world, solid deployment pipelines
should get configured. Furthermore, a deeper discussion regarding the sense of using a
cached bundle.css will be opened in the next section 5.2.3.

Code Example 5.5: index.html

1 <!-- ... -->

2 <head>

3 <!-- ... -->

4 <link rel="stylesheet" href="/bundle.css">

5 <!-- ... -->

6 </head>

7 <!-- ... -->

After referencing the bundle.css the created button component is usable within the Vite
project.

Code Example 5.6: HelloWorld.vue

1 <template>

2 <h1>{{ msg }}</h1>

3 <button @click="count++">count is: {{ count }}</button>

4 <div ref="svelteComponent" />

5 </template>

6
7 <script setup>

8 import { defineProps , ref , onMounted , watch } from 'vue'
9 import { Btn } from '../../ bundle '

10
11 defineProps ({

12 msg: String

13 })

14
15 const svelteComponent = ref(null)

16 const count = ref(0)

17 let Button = null

18
19 onMounted (() => {

20 Button = new Btn({

21 target: svelteComponent.value ,

22 props: {

23 name: count.value

24 }

25 })

26 })

27
28 watch(count , (n) => {

29 Button.$set ({name: n})

44

5 Evaluation with Svelte and Tailwind CSS

30 })

31 </script>

The lines in code example 5.6, that are relevant for injecting the Svelte component are:

• Line 4: The DOM element where the Svelte component shall get mounted in.

• Line 9: The import of the compiled button, in the real world the file could come from
the library itself as a NPM dependency.

• Line 15: The Vue reference initialization.

• Line 17: A global variable where the component instance get referenced, to access
properties globally inside the setup (eg. line 29).

• Lines 20-25: The component instantiation, property assignment, and mounting

• Line 29: Binding changes of count to the component.

As already mentioned, it makes sense to build a wrapper component inside Vue, that is
able to reproduce the mentioned behaviors of the list above for every other Svelte component.
Such wrapper component can get approached as follows:

Code Example 5.7: SvelteWrapper.vue

1 <template>

2 <div ref="sc" />

3 </template>

4
5 <script>

6 let C = null

7
8 export default {

9 props: {

10 module: {

11 type: Function ,

12 required: true

13 },

14 props: {

15 type: Object ,

16 default: null

17 },

18 handlers: {

19 type: Object ,

20 default: null

21 }

22 },

23 mounted () {

24 const M = this.module

25 C = new M ({

26 target: this.$refs.sc ,
27 props: this.props

28 })

45

5 Evaluation with Svelte and Tailwind CSS

29 if (this.handlers) {

30 Object.entries(this.handlers).forEach(h => {

31 C.$on(h[0], h[1])

32 });

33 }

34 },

35 watch: {

36 props: {

37 deep: true ,

38 handler: (n) => C.$set(n)
39 }

40 },

41 beforeUnmount () {

42 C.$destroy ()
43 }

44 }

45 </script>

The principles are similar to code example 5.6, but this time properties are mapped
automatically by their occurring. Also, a mechanism for handling the events has been
introduced and when the wrapper gets unmounted, it also automatically unmounts the
Svelte component. Variable names have been shorted to characters representing:

• C: component

• M: Module/Class constructor

• h: handler

Using the wrapper with a Svelte component can be achieved like shown in the following:

Code Example 5.8: HelloWorld.vue with SvelteWrapper

1 <template>

2 <h1>{{ msg }}</h1>

3 <button class="bg-gray-800 text-yellow-500" @click="count++"

>count is: {{ count }}</button>

4
5 <SvelteWrapper :module="BtnClass" :props="{label: count}" :

handlers="{click: () => count ++}" />

6 </template>

7
8 <script setup>

9 import { defineProps , ref } from 'vue'
10 import { Btn } from '../../ bundle '
11 import SvelteWrapper from './ SvelteWrapper.vue '
12 const BtnClass = Btn

13 defineProps ({

14 msg: String

15 })

16 const count = ref(0)

17 </script>

46

5 Evaluation with Svelte and Tailwind CSS

5.2.3 Managing Tailwind CSS

The more components are available inside the design system, the larger is the number of
utilities required by the design system. This might be challenging, as not every frontend
needs every component and therefore, on the one hand, it would be more performant to not
include the code of unused components. On the other hand, having one file that can be
cached and shared among all frontends is an advantage, as using the same components in
multiple micro frontends wouldn’t require loading the same CSS multiple times. Further-
more, setting all frontends to the same base of browser resettings (removing default browser
styles) and general adjustments is a required benefit when it comes to sharing components in
micro frontends. Nonetheless, it is important to keep the autonomy of each frontend as high
as possible while also preventing issues that might be produced by a non-micro-frontend
specific element. As the autonomy of micro frontends also enables the teams to schedule
their own deployments a mechanism is needed to ensure that once a frontend is deployed
its required resources also do not change anymore while in production. One common way
within web applications is the usage of cache busting, where module bundlers assigning for
each version a unique hash id to the filename, which could be in the case of bundle.css look
like bundle.a73b90.css. This on the one hand allows browsers to use only as a long cached
version of the file until references change to a new file with a new id. Depending on the
regularity and diversity of the autonomously managed deployments it can therefore lead to
the circumstance that a significant amount of frontends use diverse versions of the pattern
libraries bundle.css relativizing the advantage of central cached files that a shared among
multiple frontends. By considering this behavior, it therefore can be as efficient to directly
handle the CSS within each frontend itself, where the CSS management can get based on
two types of approaches, as presented in the following.

Importing the Bundle

By importing the bundle.css directly into the codebase of a micro frontend the module
bundler can insert the required utility classes into the final deployable CSS. This approach
ensures that Tailwind CSS is not required to be installed in the micro frontend itself. But
if Tailwind CSS is installed and also used inside the frontend, then chances are high that
utilities are declared multiple times inside the final CSS file outputs: One declaration from
the bundle.css and one from the frontend.

Code Example 5.9: main.js of the Vite project

1 // ...

2 import './ bundle.css '
3 // ...

Nonetheless, even if Tailwind CSS is used in a frontend itself, it can still be an efficient
and less complex approach to start the development with the import of the bundle.css (cf.
quote of Godbolt (2016)), to later on improve the CSS management according to the next
presented approach.

47

5 Evaluation with Svelte and Tailwind CSS

“Instead of starting off your project with a large suite of tools and a sizable
starting page weight, consider simplicity and leanness as an asset. Don’t give
that asset up unless the benefits outweigh the added complexity and weight.”
(Godbolt, 2016, p. 46)

Custom Tailwind CSS Setup

Another approach, that is not framework-agnostic but relevant when a frontend also decides
to use Tailwind CSS is using a Tailwind configuration that is based on the configuration of
the design system. Following such an approach means to include the Svelte components of
the design systems repository, which should be available in node modules, to the scope of
the PurgeCSS configuration. Furthermore, the CSS deployment of the svelte library needs
to get adjusted, so it does not bundle the tailwind classes within a deployment (cf. code
example 5.10)

Code Example 5.10: tailwind.config.js in Svelte Library

1 module.exports = {

2 // ...

3 ...! process.env.ROLLUP_WATCH ? { prefix: 'twignore- ' } : {},

4 // ...

5 }

This ensures that the built bundle.css does not hold any Tailwind related declarations
anymore, but other selectors like possible custom classes of components. The bundle.css
then can get imported like shown in the code example 5.9 and the missing utilities will be
handled by the local Tailwind installation, so no utility class occurs twice.

48

6 Conclusion

This work has developed a basis for the systematic design of micro frontends and shown
how system behaviors behave in the design process in their interconnectedness to the system
essences. Furthermore, it was shown that the different micro frontend stakeholders influence
the dynamics and complexity of the design system, leading to variety in the created design
solutions. Based on cybernetic insights and the research into the general characteristics
of micro frontends a second-order design system has been introduced, which considers the
cybernetic system that is formed by the common design system, the micro teams, and the
interacting stakeholders and their relations. This second-order design system is an essential
insight, as the interactors of the design system are not only interacting with the system but
also part of the system itself. To consolidate this property with the aim of introducing new
advantages for consistent frontend design Conway’s law has been considered to introduce
an advanced organizational structure of the second-order design system to counteract the
problem variability and thus, according to Ashby’s law, support the implementation of
a dynamic solution system. However, these cross-organizational team connections must
exist for higher purposes than simple undefined theoretical connections, so it is important
to introduce common topics across all teams without limiting the local autonomy of the
individual teams. Since the commons initially imply a form of coupling, it was therefore
considered how appropriate commons can be established for the development of the design
system itself. In this regard, technology was considered as a way to establish a common
dependency among design system creators from different teams and to create a kind of
cross-team language within disciplines. However, if technologies such as frameworks or
compilers are to be used for the cross-team creation of the design system, the subsequent
deployment must have a framework-agnostic property in order not to interfere with the
individual micro frontends and to provide a high degree of compatibility and flexibility. A
framework-agnostic design system may rely on frameworks and other technologies but may
not require a particular setup of these technologies in the respective frontends after its own
deployment.

With these findings, an evaluation of the developed concepts and models was carried out in
conjunction with Tailwind CSS and Svelte. Tailwind CSS was chosen due to its utility-first
CSS approach to investigate the use of atomic CSS classes in a design system. Since Svelte
components act independently without a framework, after compilation (based on JavaScript
instructions), the use of this technology in the context of framework-agnostic design systems
was also examined. With the creation of Svelte components based on Tailwind CSS, different
approaches to integration became apparent. Overall, it could be shown that the creation of
framework-agnostic components with Svelte and Tailwind CSS is feasible, although several
particularities have to be considered. For example, Svelte components should be wrapped

49

6 Conclusion

by wrappers of the local technology stack in the frontend in which they are regularly used
to enable efficient handling.

Tailwind CSS can be integrated into frontends in a different ways, these options should
be considered in relation to individual contexts. On the one hand, a static bundle CSS
file can be generated by the Svelte compiler, which contains the used utilities of the design
system. This file can then be referenced by the frontends. However, the disadvantage here
is that the different frontends may use different versions of the library at different times.
This means that central hosting of such a file can lead to conflicts that can only be managed
suboptimally by cache busting. An alternative option, which is also framework-agnostic, is
to import the CSS directly into the frontend and integrate it into the micro frontend using
a local bundler like webpack or rollup. However, there is another possibility of integration,
which can not considered as longer framework-agnostic, where Tailwind CSS is installed in
the frontend itself and the setup is chosen to include the design system components in the
consideration of the utility classes and not to receive them from the bundle of the design
system. This approach makes sense if a frontend also needs to frequently use Tailwind CSS
for its own frontend design prevents the multiple declaration utility classes.

Based on this work, fundamental conclusions can be drawn about design systems in the
context of micro frontends. As a result, further properties of other facets can now be
investigated and processed. Thus, based on the cybernetic insights, frameworks for more
specific procedural models for the implementation of design systems could be developed,
or other framework-agnostic technology approaches could be elaborated. Another potential
possibility for further investigations is to evaluate the use of the presented approaches with
Svelte and Tailwind CSS and to apply them to real projects. In addition, a further evaluation
of the cross-team connections would be relevant, in which other disciplines such as backend or
dev ops could also be taken into account. With increasing attention to the topics referenced
in this thesis, there are numerous opportunities to expand on the results presented.

50

List of Code

5.1 Tailwind.svelte . 42
5.2 rollup.config.js . 42
5.3 Btn.svelte . 43
5.4 main.js . 43
5.5 index.html . 44
5.6 HelloWorld.vue . 44
5.7 SvelteWrapper.vue . 45
5.8 HelloWorld.vue with SvelteWrapper . 46
5.9 main.js of the Vite project . 47
5.10 tailwind.config.js in Svelte Library . 48

51

List of Figures

2.1 The Foundations Model (Couldwell, 2020, p. 84) 9
2.2 Design System First - Mentality (Frost, 2016, Changing minds, once again) . 10
2.3 Flows in Design Systems . 10
2.4 Flows and Connections in Design Systems . 11

4.1 Rough Stakeholder Analysis . 18
4.2 Refined Stakeholder Analysis . 21
4.3 Frameworks and Design Systems Relation . 24
4.4 A Closed-Loop Feedback System by Jackson (2019) 26
4.5 Black-Box System and Experimenter System (Ashby, 1957, p. 87) 27
4.6 The interactor’s roles inside the design system 30
4.7 Interactors Connections within the Design System 32
4.8 Levels of Cross-Team Relations . 34

5.1 The Variety of CSS Styling . 38

52

Bibliography

Ashby, W. R. (1957), An Introduction to Cybernetics, Chapman Hall
Ltd, London. PDF Version (1999) last accessed on 10 January 2021 -
http://pespmc1.vub.ac.be/books/IntroCyb.pdf.

Bertalanffy, L. (1968), General System Theory: Foundations, Development, Applications,
George Braziller, New York. ISBN 9780807604533.

Clark, J. (2019), ‘Elevating the experience of your design system’. Talk - Last accessed 22
December 2020.
URL: https://www.rethinkhq.com/videos/elevating-the-experience-of-your-design-
system-jess-clark

Conway, M. (1968), ‘How do committees invent?’. Last accessed 4 January 2021.
URL: http://www.melconway.com/Home/pdf/committees.pdf

Couldwell, A. (2020), Laying the Foundations, black & white edn. ISBN 9798633126808.

Dayan, S. (2019), ‘Redesigning our docs – part 4 – building a scalable css architecture’. Last
accessed 29 January 2021.
URL: https://www.algolia.com/blog/engineering/redesigning-our-docs-part-4-building-a-
scalable-css-architecture/

Dhanaraj, C. (2020), ‘Tailwind / svelte demo integration’. Last accessed 31 January 2021.
URL: https://github.com/chrisdhanaraj/svelte-tailwind-integration

DIN 69901-5:2009-01 (2009), ‘Project management - project management systems - part 5:
Concepts’.

Fowler, M. and Lewis, J. (2014), ‘Microservices’. Last accessed 22 December 2020.
URL: https://martinfowler.com/articles/microservices.html

Friis, J. K. B. O., Hendricks, V. F. and Pedersen, S. A. (2009), A Companion to the
Philosophy of Technology, Wiley-Blackwell, White River Junction, VT 05001. ISBN
9781405146012.

Frost, B. (2016), Atomic Design, Frost, Brad, Pittsburgh, Pennsylvania. ISBN
9780998296616 - ePub.

Geers, M. (2020), Micro Frontends in Action, Manning Publications Co., Shelter Island,
NY 11964. ISBN 9781617296871 - ePub.

Github (2020), ‘Github star filtering search’. Last accessed 23 December 2020.
URL: https://github.com/search?q=stars%3A%3E100&type=repositories

53

Bibliography

Godbolt, M. (2016), Frontend Architecture for Design Systems, 1 edn, O’Reilly Media, Inc.,
1005 Gravenstein Highway North, Sebastopol, CA. ISBN 9781491926789.

Greif, S. and Benitte, R. (2020a), ‘The state of css 2020 - css frameworks’. Last accessed
24 December 2020.
URL: https://2020.stateofcss.com/en-US/technologies/css-frameworks/

Greif, S. and Benitte, R. (2020b), ‘The state of js 2020 - frontend frameworks’. Last accessed
29 January 2021.
URL: https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/

Harris, R. (2019), ‘Rethinking reactivity’. Talk - Last accessed 29 December 2020.
URL: https://www.youtube.com/watch?v=AdNJ3fydeao

Herrington, J. (2020), ‘Micro-frontends: What, why (and why not) and how’. Last accessed
4 January 2021.
URL: https://jherr2020.medium.com/micro-frontends-what-why-and-why-not-and-how-
997acb2bd674

Heylighen, F. and Joslyn, C. (2001), ‘Cybernetics and second-order cybernetics’. Last
accessed 15 January 2021.
URL: http://pespmc1.vub.ac.be/Papers/Cybernetics-EPST.pdf

Immich, T. (2019), ‘Viel system, aber wenig design? wie design systeme adaptiver werden
können, um guter ux nicht eher im weg zu stehen’. Last accessed 22 December 2020.
URL: https://dl.gi.de/handle/20.500.12116/24470

ISO 9241-210:2019-07(en) (2019), ‘Ergonomics of human-system interaction - part 210:
Human-centred design for interactive systems’.

ISO/IEC/IEEE 15026-1:2019(en) (2019), ‘Systems and software engineering - system life
cycle processes’.

ISO/IEC/IEEE 9241-11:2018(en) (2018), ‘Ergonomics of human-system interaction - part
11: Usability: Definitions and concepts’.

Jackson, M. C. (2019), Critical Systems Thinking and the Management of Complexity, Wi-
ley, Hoboken, New Jersey. ISBN 9781119118374 - Ebook.

Kholmatova, A. (2017), Design Systems, Smashing Media AG, Freiburg, Germany. ISBN
9783945749586.

Klimm, M. (2020), ‘Erstellung einer isolierten vue-komponenten bibliothek im zusammen-
spiel mit dem utility-first-framework tailwind css’. A project documentation submitted
to the TH Köln - University of applied science, URL last accessed 27 January 2021.
URL: https://raw.githubusercontent.com/netzfluencer/SCIV ue − Components −
Library−Tailwindcss/master/02Dokumentation/PP2020K limm−V ue−Component−
Lib.pdf

Krishnamurthy, N. and Saran, A. (2007), Building software, Auerbach Publications, New
York. ISBN 9781000654462.

54

Bibliography

Kruse, P. (2007), ‘Transcript of an interview with prof. peter kruse’. Transcript - Last
accessed 14 January 2021.
URL: https://gist.github.com/wolfhesse/c935bba4ae25667f51e7

Lobacher, P. (2015), ‘Kanban grundlagen - stakeholder workshop’. Course - Last accessed
6 January 2020.
URL: https://www.linkedin.com/learning/kanban-grundlagen/stakeholder-workshop

Meadows, D. H. (2008), Thinking in Systems, 1 edn, Chelsea Green Publishing, White River
Junction, VT 05001. ISBN 9781603580557.

Mezzalira, L. (2021), Building Micro Frontends, 1 edn, O’Reilly Media, Inc., 1005 Graven-
stein Highway North, Sebastopol, CA 95472. ISBN 9781492082996 - Early Access Ebook.

Newman, S. (2015), Building Microservices, 1 edn, O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472. ISBN 9781491950357 - Ebook.

Oxford University Press (2020), ‘Oxford dictionary’. Last accessed 1 January 2021.
URL: https://www.lexico.com/en/

Scheithauer, A. (2017), ‘Was ist kein system?’. Last accessed 22 December 2020.
URL: https://www.oose.de/blogpost/was-ist-kein-system/

Suarez, M., Anne, J., Sylor-Miller, K., Mounter, D. and Stanfield, R. (n.d.), Design Systems
Handbook, Invision. PDF Download - Last accessed 04 December 2020.
URL: https://www.designbetter.co/design-systems-handbook

Tailwind CSS (2021), ‘Website of tailwind css’. Last accessed 28 January 2021.
URL: https://tailwindcss.com

ThoughtWorks, Inc. (2019), ‘Technology radar vol. 21’. Last accessed 22 December 2020.
URL: https://assets.thoughtworks.com/assets/technology-radar-vol-21-en.pdf

ThoughtWorks, Inc. (2020a), ‘Technology radar vol. 22’. Last accessed 22 December 2020.
URL: https://assets.thoughtworks.com/assets/technology-radar-vol-22-en.pdf

ThoughtWorks, Inc. (2020b), ‘Technology radar vol. 23’. Last accessed 22 December 2020.
URL: https://assets.thoughtworks.com/assets/technology-radar-vol-22-en.pdf

WHATWG (2020), ‘Custom elements’. Last accessed 24 December 2020.
URL: https://html.spec.whatwg.org/multipage/custom-elements.html

Wiener, N. (1948), Cybernetics; or, Control and Communication in the Animal and the
Machine, 2 edn, The MIT Press, Cambridge, Massachusetts. ISBN 0262230070.

Wittmann, K. (2015), ‘Entwicklung eines vorgehensmodells für die imagefilmproduktion auf
der basis agiler vorgehensmodelle und techniken in der softwareentwicklung’. Bachelor
Thesis submitted to the TH Köln - University of applied science.

55

	Introduction
	Context
	Scope of the Thesis

	Fundamentals of Design Systems
	Describing Design Systems
	Determining a Systematic Approach
	Purpose and Goals of Design Systems
	The Essence of Design Systems
	Qualities of Design Principles

	Modeling Design Systems
	The Foundations Model
	Model of Systematic Design

	Characteristics of Micro Frontends
	General Characteristics of Micro Frontends
	Team Scalability
	Strategical and Tactical Focus
	Reusability
	Technology-Agnosticism
	Complexity
	No Standards

	General Domain of Micro Frontends

	Design Systems for Micro Frontends
	An Investigation into the Context
	Stakeholder Analysis
	Environmental Constraints

	About Framework-Agnosticism
	The Relation between Design Systems and Frameworks
	From Frameworks to Compilers

	Cybernetically Enhanced Design Systems
	Introduction to Cybernetics
	Ashby's Law
	Second-Order Cybernetics
	Thinking Cybernetical in Micro Frontend Design

	Evaluation with Svelte and Tailwind CSS
	Utility-First CSS with Tailwind CSS
	The Variety of CSS Styling
	The Potential of Tailwind CSS in Micro Frontend Design

	Designing Svelte Components with Tailwind CSS
	Set Up Approach for the Framework-Agnostic Pattern Library
	Using a Compiled Svelte Component in a Vue-Based Frontend
	Managing Tailwind CSS

	Conclusion
	List of Code Examples
	List of Figures
	Bibliography

