
Citation: Neef, C.; Linden, K.;

Richert, A. Exploring the Influencing

Factors on User Experience in

Robot-Assisted Health Monitoring

Systems Combining Subjective and

Objective Health Data. Appl. Sci.

2023, 13, 3537. https://doi.org/

10.3390/app13063537

Academic Editor: Oscar Reinoso

García

Received: 16 December 2022

Revised: 4 March 2023

Accepted: 5 March 2023

Published: 10 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Exploring the Influencing Factors on User Experience in
Robot-Assisted Health Monitoring Systems Combining
Subjective and Objective Health Data
Caterina Neef * , Katharina Linden and Anja Richert *

Cologne Cobots Lab, TH Köln—University of Applied Sciences, 50679 Köln, Germany
* Correspondence: caterina.neef@th-koeln.de (C.N.); anja.richert@th-koeln.de (A.R.);

Tel.: +49-221-8275-2382 (C.N.); +49-221-8275-2756 (A.R.)

Featured Application: A health monitoring system that combines commercially available prod-
ucts, such as sensing devices and apps, with a social robot to conduct health assessments and
collect subjective and objective health data. The study conducted in this work suggests that the
system has a high rating for usability and user experience and that it has the potential to be used
for self-managing users’ health.

Abstract: As the population ages, the demand for care for older adults is increasing. To maintain their
independence and autonomy, even with declining health, assistive technologies such as connected
medical devices or social robots can be useful. In previous work, we introduced a novel health
monitoring system that combines commercially available products with apps designed specifically
for older adults. The system is intended for the long-term collection of subjective and objective health
data. In this work, we present an exploratory user experience (UX) and usability study we conducted
with older adults as the target group of the system and with younger expert users who tested our
system. All participants interacted with a social robot conducting a health assessment and tested
sensing devices and an app for data visualization. The UX and usability of the individual components
of the system were rated highly in questionnaires in all sessions. All participants also said they
would use such a system in their everyday lives, demonstrating the potential of these systems for
self-managing users’ health. Finally, we found factors such as previous experience with social robots
and technological expertise to have an influence on the reported UX of the users.

Keywords: older adults; healthy ageing; health monitoring; health assessment; assistive technologies;
social robotics; chatbots; user experience

1. Introduction and Related Work

Developing and deploying health monitoring systems that older adults can use by
themselves to self-manage their health while also increasing their health literacy remains a
challenge relevant to many societies across the globe [1]. In this regard, it is vital to develop
systems that this target group can and wants to use to ensure that they actually provide
a benefit. Such systems present an opportunity to combat the challenges arising due to
an increase in the number of older adults, with the simultaneously increasing shortage of
healthcare workers [2]. Additionally, many older adults want to age in their own homes
rather than move to long-term care facilities [3]. Assistive technologies can support and
enable this, and many technologies, such as sensing devices or mobile applications, exist
to this end [4]. However, they are often difficult to use for older adults, especially those
in need of care, as they may have impairments that make it harder to interact with such
systems, such as hearing, visual, motor, and cognitive impairments [5]. Therefore, it is
important to design, develop and rigorously test assistive technologies for and with this
intended target group.
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In previous work [6], we introduced a system architecture for a health monitoring
system comprised of a social robot, several connected health devices, and a mobile app for
data visualization. An overview of the system is shown in Figure 1. By using a wearable
for continuous measurement of health data and certified connected health devices for
interval measurements the objective health data, e.g., pulse, activity, blood pressure, or
body temperature, can be measured. Through interactions with a social robot, in the form
of small talk and validated health assessments, such as PROMs, subjective health data
can be acquired. This system was developed for everyday long-term autonomous use by
both older adults in care facilities and community-dwelling older adults. In this work, we
present a first exploratory UX evaluation of our health monitoring system to investigate
factors influencing the reported UX and usability, and their implications for ensuring the
system’s successful long-term use.
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Figure 1. An overview of our health monitoring system, described in detail in [6], is shown. Health
data are acquired with a smartwatch, various connected devices for domestic use, as well as through
interaction with a social robot and its underlying chatbot. The data can be enquired and visualized in
a multi-platform mobile application, shown on the right.

1.1. Assistive Technologies for Health Assessment

A number of assistive technologies for health assessment and monitoring have been
developed. In [7], Durán-Vega et al. present a remote health monitoring system with a
wearable device and a mobile application. The system enables caregivers to make informed
decisions about the health of their patients. The included mobile application is intended for
relatives and caregivers. Dratsiou et al. [8] present a framework of various digital solutions
that can support the well-being of older adults, including applications for physical and
cognitive training. Many wearable technologies for different applications in the healthcare
domain exist [9]. They can add value to a user’s life when motivation, user experience, and
device features suit the users’ needs [10].

Another technology used in many different assistive capacities and environments is
social robots. Among these is the robot iCat, a plastic cat with a face and a body, used for
health self-management of older adults [11]. When behaving in a more social manner, such
as expressing emotions and being attentive, this robot showed higher acceptance among
users. Another example of a social robot used in an assistive context is the humanoid robot
Pepper [12], which has been used to coach persons with dementia to motivate them to
perform stimulating activities [13]. It has also been tested in domestic environments [14],
showing high acceptability among elderly participants. The use of social robots has also
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led to positive outcomes when used in psychosocial health interventions [15]. Additionally,
they have shown high acceptance in terms of perceived enjoyment, ease of use, and trust
with elderly users in their own homes [16], as well as high perceived usefulness and
acceptance in supportive apartment living facilities [17]. Acceptance and interest in using
social robots are higher among older adults than younger adults [18], as they tend to
spend more time at home and have more difficulties with vision, hearing, or dexterity,
areas in which robots can assist. While acceptance and willingness to use social robots for
daily assistance are important factors, long-term motivation to actually use a robot is not
guaranteed. The novelty effect can lead to users interacting with the robot less after it has
been in the home for a certain time [19]. This is an important factor to be considered when
developing robotic applications for long-term use.

Social robots have also been used to conduct health assessments using e.g., PROMs [20,21].
They have shown to be a promising approach in this context, as they lead to more positive
interactions when delivering healthcare instructions, including asking health-related questions,
compared to a computer tablet [22]. Boumans et al. [21] additionally found that geriatric
patients find robot-assisted health assessments of equal value to non-robot-assisted assess-
ments, further confirming the feasibility of using a robot for such health data acquisitions.
Additionally, social robots have been tested for clinical screening interviews [23], including
cognitive assessment, fall risk evaluation, and pain rating. They achieved satisfying results
and high confidence and trust ratings from older adults. These findings indicate the suitability
of social robots for conducting health assessments.

1.2. UX of Health Monitoring Systems

When developing applications for socially interactive robots, it is important to ensure
a positive UX for potential target groups of the application [24]. There are several cate-
gories of barriers that can impact the usability and UX of mobile health applications in
older adults, namely cognition, motivation, physical ability, and perception [5]. Different
recommendations, therefore, apply to applications for older adults, such as ensuring a
reduction of complexity, clear structure, consistency, continuous feedback, user support, as
well as optimizing the interface in terms of, e.g., font sizes and making use of multi-modal
interaction modes [25].

The most common methods to assess user experience are questionnaires and inter-
views, and it is crucial to perform such assessments early in the development process [26].
Questionnaires used include the UEQ [27], which has been used, e.g., to assess the perceived
attractiveness and usability of a robot for older adults with memory impairments [28]. The
UEQ also exists in a modular version, called the UEQ+ [29], which includes a variety of
short questionnaires that can be selected as needed. This includes questions for assessing,
e.g., perspicuity, dependability, usefulness, or intuitive use, among others. A question-
naire suitable specifically to assess the usability of technologies is the SUS [30]. Several
sources [31,32] concluded that the SUS is a valuable, reliable tool for usability evaluations.
The SUS has also been used to assess the usability of robotic systems for older adults [33]
and cognitive testing with social robots [34].

In the following, we present the usability and UX study of our developed health
monitoring system, including all used system components, a detailed description of the
study design, the results and a discussion of the resulting implications for the future.
We took the learnings from the presented works into account for the development and
evaluation of our health monitoring system. While many different health monitoring
systems exist, ours is, to the best of our knowledge, the first to combine subjective and
objective health data, as this provides a more complete overview of a person’s overall
health status. This is described in more detail in [6].
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2. Materials and Methods

The tested health monitoring system comprises a health assessment administered
by a social robot, the use of connected health devices, as well as a mobile app for data
visualization, all of which are described in the following.

2.1. Social Robot

The robotic platform chosen for this project was the social robot Pepper, introduced
in [12]. The humanoid robot is manufactured by Aldebaran (Paris, France), is 1.21 m
tall, and weighs 28 kg. While the focus on interactions with Pepper lies in the verbal
interactions with users, the 10” Android tablet on the robot’s chest serves as a UI, used
to display supporting text or images. Pepper’s childlike, androgynous appearance was
designed to avoid bias and unrealistic expectations [12]. It is also already widely used and
receives a generally high acceptance, specifically also among older users [13,14,35]. We,
therefore, chose to employ Pepper in this study, with the expectation that this appearance
would help ensure that users are not intimidated or frightened by the robot.

We used Pepper’s NAOqi SDK, and applications for the robot were developed as an
Android app. The programming language used was Kotlin. We developed our robotic appli-
cation for the project in accordance with the interaction principles described in DIN EN ISO
9241-110 [36]: In an interactive introduction, the robot itself provides instructions for how
to interact with it, thus adhering to the principles of learnability and self-descriptiveness of
a system. The introduction was scripted in QiChat, a dialogue framework developed by
Aldebaran for the robot Pepper. After the introduction is complete, the robot begins the
actual health assessment.

2.1.1. Health Assessment

The health assessment used in the study includes a total of 31 standard questions
(items), along with two conditional items, and is listed in Appendix A. We created the
questionnaire ourselves and designed it specifically for daily use. In an interview with a
healthcare professional, we first identified parameters with both medical relevance and
variability within short periods of time, for which a daily assessment would prove beneficial.
Based on these parameters, we created individual questions, that can be divided into five
sub-categories: (1) general condition, (2) balanced nutrition and hydration level, (3) sleep
quality, (4) cognitive issues, and (5) common symptoms for specific health impairments
that are prevalent in older adults. To create these items, we considered a specific disease
pattern, e.g., hypertension, and the respective symptoms, such as headaches or vertigo. An
example of a symptom-derived question is, as shown in Figure 2: “Do you have or have
you had a headache, today?”

Each item of our questionnaire has predetermined answer options, which are displayed
on the tablet to assist users in answering the robot’s questions (see Figure 2). For two of the
items, users are prompted to rate their condition based on a scale from 0 to 10. To make
these rating scales more accessible to persons with cognitive impairments [37], the SAS
is displayed in addition. Additionally, the font Atkinson Hyperlegible, designed by the
Braille Institute (Los Angeles, CA, USA) for low-vision readers, was used for all interfaces
of the health assessment app.

2.1.2. Dialogue Management

As a dialogue manager and underlying chatbot, we use the conversational AI frame-
work Rasa (San Francisco, CA, USA). The health assessment is structured using stories,
which include the user intent, as well as appropriate responses from the bot, which vary
depending on the user’s answers. Additionally, parts of the conversation are structured
using custom actions, which can be defined in Python scripts, as well as forms, which are
provided by Rasa for rule-based information gathering [38]. The default configuration for
the components and policies of the machine learning model was used. The application
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running on the social robot connects to the Rasa dialogue manager via a REST API, further
details are described in [6].

Figure 2. Two screenshots of the health assessment app are shown: One question enquiring about the
user’s sleep, the other about possible headaches. To ensure users with visual or hearing impairments
correctly understand Pepper’s questions, the robot not only asks the questions verbally but they
are also printed on its tablet. The screenshots were translated into English, the app was developed
in German.

2.2. Connected Health Devices

To complement the subjective data from the assessment, we used various connected
health devices to collect objective health data, such as vital parameters and activity data.
We chose devices by manufacturer Withings France SA (Issy-les-Moulineaux, France),
who offer medical-grade sensors that have been used and validated in various studies,
e.g., [39–41]. Moreover, Withings offers an open API that allows the integration of the
devices into third-party applications [42]. Within the course of our study, the participants
tested a wearable (ScanWatch), a smart thermometer (Thermo), as well as a blood pressure
monitor (BPM core).

The ScanWatch is a hybrid smartwatch with a range of features and functions. In
addition to the continuous monitoring of vital parameters and activity detection, it also
serves as an oximeter and performs a medical-grade EKG [40,43]. The smart thermometer
Thermo is a no-contact device for measuring core body temperature from the temporal
artery. The result of a measurement is equivalent to the rectal temperature with a clinical
accuracy of 0.2 °C [43]. The blood pressure monitor BPM core measures systolic and
diastolic blood pressure with an accuracy of 2% of the reading. It can also perform a full
EKG and record heart sounds. A detailed overview of the system architecture and the
explanations for the chosen devices and their measurable parameters can be found in [6].

2.3. Mobile Application

All collected health data can be visualized in a multi-platform mobile app we devel-
oped using the framework Flutter, created by Google (Mountain View, CA, USA). The app
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can be used on mobile, desktop and web clients. For this study, we chose an Android app
on an 11” tablet. The health data from the connected devices are stored in MySQL databases.
Subsequently, they are imported via REST API into our mobile app for visualization. A
detailed description of the system architecture including all interfaces can be found in [6].
The app’s UI were designed specifically considering the needs of older users. Thus, the
structure of the layouts was kept consistent, we used clearly recognizable clickable items
and icons, and made a choice of colors taking into account good visibility and high-contrast
gradation. Again, the font Atkinson Hyperlegible was used for all interfaces of the app.
Furthermore, to have the app adapt to the user’s needs, the font size of the text items on
the screen automatically adapts based on the system’s default font size setting. Screenshots
of the app are shown in Figure 3.

Figure 3. Screenshots of the mobile app are shown, including the category heart and its sub-category
blood pressure, where both the current blood pressure value and the history of the measurements are
displayed. The screenshots were translated into English, the app was developed in German.

From the app’s main menu, users can select the data they wish to view from the
following main categories: activity, heart, body, sleep, and health assessment. Selecting one
of the main categories routes the user to another UI, where corresponding sub-categories
can be selected for viewing. With “heart” being an example of one of the main categories,
examples of the corresponding sub-categories are “blood pressure” and “oxygen satura-
tion”. Comprehensive specific reports and visualizations of the individual health parameter
progressions are available in each of the sub-categories. Furthermore, a summary report is
available that combines the objective data from the devices with the subjective results from
the health assessment.

2.4. Study Design and Participants

We designed our study as a UX and usability test with a total of three sessions,
as shown in Figure 4. We followed the recommendation for UX testing according to
Nielsen [44], which recommends testing repeatedly with smaller groups of users. Over
the course of the study, the system was tested with three different user groups. There was
no predefined time limit for the tests. In all user groups, the tests lasted between 30 and
60 min with each participant. As the study was conducted in the German language, the
participants in all groups were required to have native-level language proficiency. The study
was reviewed and approved by the Ethics Research Committee of the TH Köln—University
of Applied Sciences, and informed consent was obtained from all participants.
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User group A consisted of eight participants from the target group, whose ages ranged
from approximately 50 to 90 years. Five of the eight participants were between the ages
of 60 and 79, two were between 80 and 89, and one participant was aged between 50 and
59. They all lived in the same care facility in Germany and were recruited by facility staff,
who were instructed to select participants interested in testing assistive technologies in the
context of health monitoring. The use of our system might prove beneficial for this user
group, as it may increase their independence from care professionals and support them
in retaining autonomy over their health care. Five of the eight participants took part in
one of our previous studies with Pepper and therefore had some experience with the robot.
Due to various physical and/or cognitive impairments, these participants are seen as a
cross-section of adults living in residential care. Additionally, to gain insight into the user
experience of the system from the point of view of care personnel, a caregiver of the older
adults also tested and evaluated the system in session 1. They also had previous experience
with the robot.
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Figure 4. The design of our study, including three sessions with three different user groups, is
visualized. Group A included older adults in a care facility, some with prior Pepper experience. Group
B consisted of expert users with extensive chatbot or robot experience, while group C included older
adults in assisted living with extensive Pepper experience. In each session, the health devices, the
robot-assisted health assessment, and the visualization app were tested. We observed the system test
and took notes. Additionally, the robot interaction was audio-recorded. Afterward, the questionnaire
was filled out by participants. Minor system optimizations were performed after session 1.
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Figure 4. The design of our study, including three sessions with three different user groups, is
visualized. Group A included older adults in a care facility, some with prior Pepper experience. Group
B consisted of expert users with extensive chatbot or robot experience, while group C included older
adults in assisted living with extensive Pepper experience. In each session, the health devices, the
robot-assisted health assessment, and the visualization app were tested. We observed the system test
and took notes. Additionally, the robot interaction was audio-recorded. Afterward, the questionnaire
was filled out by participants. Minor system optimizations were performed after session 1.

To ensure that bugs and errors did not have a negative effect on the reported UX of
the users, after session 1, we optimized the system based on the participants’ feedback and
our own findings. The optimizations include bug fixes, using a longer questionnaire for
the health assessment, as well as using the Rasa feature forms, to enable more successful
interactions with the robot. With the optimized system, we conducted test session 2 in our
lab with user group B. We recruited participants for this group by asking for interested
volunteers within our lab. These five participants were all men between the ages of 25 and
35 with a technical occupational orientation, and all worked with chatbots or robots. While
they are not part of the intended target group of the system, this group was included to
provide the perspective of expert users. The goal of session 2 was to further improve the
optimized system, based on the UX and the opinions of these expert participants, as well
as making sure everything worked error-free.
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Finally, in session 3, we conducted a test of the optimized system with user group
C. Unfortunately, due to the effects of the pandemic, we were only able to recruit three
participants for this session. Group C consisted of three older adults, aged approximately
60 to 95 years, living in an assisted living community, thus providing the viewpoint of
persons in a different care setting than in session 1. For active and largely autonomous users
such as those of group C, our system may prove advantageous, as its goal is to promote
health literacy and support their healthy aging. As opposed to group A, group C showed
fewer and less pronounced health impairments. In addition, group C already had extensive
experience with the social robot Pepper, as one is permanently deployed in their assisted
living community in the framework of a research project. We recruited group C by asking
for volunteers in this project who were interested in testing assistive technologies in the
context of health monitoring.

In the study scenario, a participant was led into a room, where the testing took place
and the research team was present. A member of the research team demonstrated the use
of each of the connected health devices and prompted the participant to try it themselves.
Upon testing the smartwatch, the thermometer, and the blood pressure monitor, the health
assessment with the robot Pepper was conducted. The interaction with the social robot was
audio-recorded for later comparison with the system logs. We deliberately refrained from
recording videos of the interactions, to avoid possible bias. With the goal of assessing menu
navigation and usability of the mobile app, the participants were given the task to find
their previously recorded body temperature and blood pressure measurements in the app.
The study scenario remained the same for all three sessions. The study setup, including all
tested devices, is shown in Figure 5.
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Figure 5. The study setup is shown. (a) All tested system components, including the connected
health devices, the robot, and the app, are shown. (b) The interaction with the robot is demonstrated
by one of the members of the research team in the room session 1 took place in.

2.5. UX Questionnaires

At the end of each session, the participants completed a questionnaire, rating their
experience with the system. As the questionnaire for session 1, we chose the validated
UEQ+ modular kit of UX items. This kit includes a wide range of scales, targeting various
characteristics of UX. Each scale can be used and evaluated individually and consists of four
to six items, each stating terms of opposite meaning, e.g., “useless/useful”. Participants rate
their own experience on a 7-point Likert scale, which represents the difference between the
terms [29]. A final item prompts participants to rate the relevance of the scale characteristics.
For our questionnaire, we chose the scale “perspicuity”, targeting the participants’ overall
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impression of handling and usage of the system. With this scale, the characteristics rated
by participants are “understandable”, “easy to learn”, “easy” and “clear”. This scale was
queried once for each individual component of our system - the health assessment, the use
of the connected health devices, and the retrieval of health data in the mobile app.

In an additional item, we queried previous experience with the robot Pepper. Fur-
thermore, we added questions on demographics and previous occupational orientation,
to determine whether those factors had an effect on the UX results, and provided a text
field for additional comments. For use in sessions 2 and 3, we expanded the questionnaires.
We included the previously used UEQ+ scale for an evaluation of each of the system com-
ponents, along with the system usability scale (SUS) [30] questionnaire for an evaluation
of the entire system. The SUS consists of a total of 10 statements on different aspects of
usability, such as “I think that I would like to use the system frequently” or “I found the
system unnecessarily complex”. Each statement is to be rated on a 5-point Likert scale. The
output of SUS is an easy-to-interpret score from 0 to 100 [30].

Furthermore, we added an item to determine to what extent the text display on
Pepper’s tablet was used and perceived as helpful. Additionally, we queried the same
additional items as in the first questionnaire. Due to various health-related impairments, all
participants in sessions 1 and 3 received support from a member of the research team while
completing the questionnaires. The help was provided by a member of the research team
and consisted of reading the questions out loud, explaining answer options, and partially
ticking the checkboxes on the survey form. The caregiver in session 1 and the participants
in session 2 did not receive support.

2.6. Data Analysis

The data analysis for both the UEQ+ and SUS questionnaires was performed using
available templates. For the UEQ+, this includes the calculation of the KPI of each indi-
vidual component as well as the overall system KPI. The KPI for the UEQ+ are calculated
similarly to the KPI for the UEQ questionnaire, from which it is derived. This calculation is
described in [45]. The individual KPIj for each participant j can be calculated as follows:

KPIj = (
3

∑
i=1

Mi,j ∗ I rel
i ,j)− 4. (1)

Here, i corresponds to the UEQ+ parameter of the specific component, namely the
robot-assisted assessment, the health devices and the app. M is the mean of each UX scale
per participant, i.e., the perspicuity scale in this study, while I rel

i ,j refers to the relative
importance of the specific characteristic of this scale. This number is then subtracted by 4
to normalize the 7-point Likert scale around zero, resulting in values between −3 and 3.
The overall system KPI can then be calculated as the mean of all individual participant KPI
using the following equation, with n being the number of all participants:

KPI =
1
n

n

∑
j=1

KPIj. (2)

For the scoring of the SUS, we use the following equation, as described in [30], where
X represents the sum of the points for all odd-numbered questions subtracted by 5, while Y
is calculated by substracting the sum of the points for all even-numbered questions from 25:

SUS Score = (X + Y) ∗ 2.5. (3)

In addition to the UEQ+ and SUS, we evaluated the success and completion rates
of the health assessments. We define the success rate as the rate at which both Pepper’s
speech recognition and the Rasa dialogue manager correctly identify the user’s intent. The
completion rate is the rate at which the entire health assessment, including all questions,
is completed. To determine both the success and completion rates, we compared the
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Rasa conversation logs with the transcripts we created from the audio recordings of the
robot interactions.

3. Results

The results of the UX and usability tests of our health monitoring system are described
in the following. An overview of the overall questionnaire results is shown in Table 1. For
each of the system components, the perspicuity was rated using the UEQ+ questionnaire,
for sessions 2 and 3 the SUS questionnaire was additionally used for evaluations. We
calculated the means of the UEQ+ ratings and their corresponding rated importances,
along with the component and overall system KPI, as well as the overall SUS scores.

Table 1. The overall results of the UEQ+ and SUS questionnaires are displayed.

Session 1—Group A in residential care, N=8 + 1, 5 + 1 with previous Pepper experience

Perspicuity Mean (SD) Median Importance (SD) KPI (SD) Range
Pepper 2.88 (0.48) 3 2.00 (1.41) 2.88 (0.33) 2–3
Sensors 2.25 (1.64) 3 2.00 (1.41) 2.25 (1.54) 1.75–3
App 2.71 (1.13) 3 2.00 (1.77) 2.71 (0.60) 0–3

KPI Overall (SD) 2.51 (0.94) 0.13–3

Session 2—Group B in lab, N = 5, 4 with previous Pepper experience

Perspicuity Mean (SD) Median Importance (SD) KPI (SD) Range
Pepper 2.45 (0.59) 2.5 2 (0.63) 2.45 (0.48) −1.75–3
Sensors 1.55 (1.28) 1.5 2.67 (0.49) 1.55 (0.66) 0.75–2.75
App 2.35 (1.35) 3 2.2 (0.75) 2.35 (1.3) 0–2.5

KPI Overall (SD) 2.1 (0.64) 0.83–2.54
SUS Overall (SD) 85 (4.18) 80–90

Session 3—Group C in assisted living, N = 3, 3 with previous Pepper experience

Perspicuity Mean (SD) Median Importance (SD) KPI (SD) Range
Pepper 1.33 (1.97) 2 1.33 (1.25) 1.33 (1.25) 1.25–3
Sensors 1.42 (1.61) 2 0.75 (1.41) 1.42 (1.05) −0.25–3
App 1.92 (0.86) 2 0.33 (2.05) 1.92 (0.51) 1.25–2.5

KPI Overall (SD) 1.45 (0.94) 0.36–2.67
SUS Overall (SD) 67.5 (16.20) 45–82.5

3.1. Session 1: User Group A in Residential Care

In session 1, we tested our system with user group A, which consisted of eight residents
of a nursing home. Additionally, one of their caregivers also participated in the study in
this session. The results in Table 1 include only the eight older participants, as they belong
to the target group of older adults. Overall, the user experience of the health monitoring
system was rated highly in session 1. The KPIs, with a possible value between −3 and 3,
are all above 2, with the interaction with the robot Pepper being rated the highest (2.88) and
the connected health devices rated the lowest (2.25), and the app in between at 2.71. This
results in an overall system KPI of 2.51. In addition, the caregiver also gave high ratings,
with an overall system KPI of 2.50, indicating high UX from the care perspective, also.

Regarding the use of health devices for measurements, we observed that some of the
participants struggled to put on the wearable and the blood pressure monitor by themselves.
All participants were able to correctly carry out the body temperature measurement, while
some had problems with sending the measured value to the server. This was performed
using a button on the thermometer. After another explanation and/or demonstration,
most of the participants managed to both measure and send the measured value to the
server correctly.
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When using the data visualization app, some participants tapped the buttons in such
a manner, that the app did not respond, e.g., due to tapping the button for too long. They,
therefore, had to repeatedly tap the button for it to lead to its corresponding action or page.
Overall, most of the participants were able to find the values we asked them to look for,
i.e., their body temperature and blood pressure. One participant stated that they would
prefer to use the app on a computer. This is also possible with this application, as it was
developed using a multi-platform framework. Additionally, almost all participants also
stated that they had a positive impression of both the devices and the app.

In the context of a health assessment, which is intended to relieve care professionals of
documentation tasks, both data accuracy and data completeness are crucial. We evaluated
data accuracy by calculating the success rate, which we define as the number of error-free
interaction turns in relation to the total number of turns in a session. In this evaluation, we
considered the actual health assessment, only, and excluded the introduction. We defined a
turn as the complete sequence of a robot question, the user response, and the subsequent
robot feedback.

In session 1, over the course of all assessments of the eight older users, we recorded a
total of 148 turns, of which 114 were error-free. This results in an overall success rate of
77.03%. The number of total turns includes 24 items that were queried more than once in
the same assessment due to faulty system routing. In three cases, an assessment had to
be aborted and restarted. In each of these cases, the participants had directed questions
at the research team. The system logs show that these off-topic remarks were picked up
by the system, interpreted wrongfully, and caused faulty routing. When the evaluation is
cleansed of these aborted assessments, a success rate of 80.01% is calculated from a total
of 136 turns and 109 error-free turns. Furthermore, the logs show that participants using
non-valid answer options is the most common source of error in session 1. This occurred
a total of 15 times and is thus the cause for approximately 44% of the off-script events.
We categorized the detected off-script events, and present them along with their absolute
frequency, in Table 2.

Table 2. The error sources of the robot-assisted health assessments are shown.

Error Categories Session 1 w/
Aborted Tries

Session 1 w/out
Aborted Tries

Session 2 Session 3

No. of questions repeated (for whatever reason) 24 22 0 0
Overall off-script-events 34 27 23 19
Not a valid answer option 15 11 7 3
Off-topic remark/remark directed at researcher 8 6 0 2
System error (correct input matched wrong) 4 4 1 0
User uttering spoken too softly/no speech recognized 3 3 7 10
STT error (system understood correct input wrong) 3 2 2 4
Training data error 1 1 6 0

In terms of the completion rate, an assessment is considered complete, if the required
data on all items were collected. Based on the system logs, we found that four of the
eight valid assessments in session 1 were completed, resulting in a completion rate of
50.0%. The success and completion rates for all sessions are listed in Table 3. As five of the
eight older participants in session 1 had previous experience with the robot Pepper, we also
calculated the success and completion rates separately for the experienced (group A1) and
the inexperienced (group A2) users, as listed in Table 4. Group A1 achieves 79 successful
turns, in relation to a total of 95 turns, resulting in a success rate of 83.16%. Out of the
five interactions conducted, three were completed in full, thus bringing the completion
rate to 60.00%. Group A2, the users without any previous experience with the robot
score a lower success rate of 66.04% from a total of 53 turns with 35 successful ones. One
out of these three interactions was completed, resulting in a completion rate of 33.33%.
Additionally, the caregiver—not included in this calculation as they are outside of the user
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group of older adults—achieved a success rate of 93.75% and were able to complete the
health assessment.

Table 3. Success and completion rates of all sessions are shown.

Session 1 w/ Aborted
Attempts

Session 1 w/out Aborted
Attempts

Session 2 Session 3

Total turns taken (incl. aborted attempts) 148 136 167 103
Successful turns (incl. aborted attempts) 114 109 144 84
Success rate 77.03% 80.01% 86.23% 81.55%

No. of aborted queries 3 - 0 0
Total no. of queries (w/out aborted attempts) 8 5 3
Total no. of completed queries 4 5 3
Completion rate 50% 100% 100%

Table 4. The comparison of the success and completion rates of the session 1 robot interactions of the
participants with and without prior experience with Pepper are shown.

Session 1 Participants Session 1 Participants
with Experience (N = 5) without Experience (N = 3)

Total turns (w/aborted attempts) 95 53
Successful turns 79 35
Success rate 83.16% 66.04%
Completion rate 60.00% 33.33%

3.1.1. Evaluation 1: Conclusions

Overall in session 1, user experience was rated highly. Some participants struggled
with the use of the devices and the handling of the tablet when using the app. Additionally,
while the success rate of the interactions with the social robot was 77.03%, the completion
rate of the health assessment was only 50.00%. We, therefore, introduced the following
optimizations into the system, hoping to increase the completion rate in the subsequent
test sessions.

3.1.2. Optimizations

Following an iterative development model in the UX design process, we implemented
the optimizations before expert users were confronted with the system in session 2. The
main factor influencing the completion rate of the health assessment was the number of
overall off-script-events at 34, which led to wrong turns taken in the conversation with the
robot, and then subsequent abortions to the interaction. To improve this, we implemented
the health assessment questionnaire using the Rasa feature forms, as well as custom actions,
for test sessions 2 and 3. If during an interaction with the robot Pepper, the user’s verbal
input can not be recognized or matched with an intent, a question mark is displayed on
the robot’s tablet, to prompt the user to repeat and/or rephrase their input. As part of
the optimization, we added this information to the introduction of the health assessment.
Furthermore, we observed that participants frequently gave premature voice commands,
while the robot was transitioning from the introduction to the assessment. As a result,
only a part of the input was captured by the robot, leading to false routing between items.
To prevent this and improve the success rate of the interactions, we implemented a robot
prompt that asked the user to wait two seconds while the robot switches to the health
assessment. In session 1 we included only 14 questions plus one conditional question of
the health assessment questions in order to first test a simplified version of the assessment.
After session 1, we implemented the full 31 questions for the subsequent tests, which are
listed in Appendix A.

We also made several design adjustments to the mobile app. These include an in-
troduction with explanations of how to use the app and visual support to use the app
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in both portrait and landscape mode. Finally, we implemented stronger haptic feedback
when tapping buttons to increase the awareness of users if they had actually tapped the
button correctly.

3.2. Session 2: User Group B in Lab Tests

In session 2, we conducted lab tests with five expert users who have previous experi-
ence not only with using but also developing chatbots or robots. The user experience was
also rated highly for all system components by this group. The KPI for the health assess-
ment (2.45) and the app (2.35) were rated higher than for the sensors (1.55), resulting in an
overall system KPI of 2.1. The system usability, evaluated with the SUS, was rated highly
at 85, indicating very good usability at a maximum possible value of 100. Additionally,
based on our observations the participants had only very minor difficulties using the health
devices, and all of them were able to find their measured body temperature and blood
pressure in the app. Some of the participants also stated that the app had a clear layout,
and was intuitive to use.

In session 2, we recorded a total of 167 turns over the course of five assessments. Based
on logs and transcripts, 144 turns can be considered error-free, resulting in a success rate
of 86.2%. The most common reasons for errors were (1) participants deviating from the
predefined answer options and (2) the system registering no speech input, each occurring
seven times over the course of this session. There was no need to abort any assessments,
on the contrary, each of the five assessments conducted was completed in full, so the
completion rate was 100%. A number of participants stated that the health assessment was
too long and sometimes lacked variety in terms of the robot’s replies. We also observed
that some of the participants tried to test the robot, by giving more complex answers than
the predefined answers. When this approach was unsuccessful, they went back to using
short answers. Additionally, in session 2, we identified several errors in the training data,
which we subsequently resolved before session 3.

3.3. Session 3: User Group C in Assisted Living

In session 3, we tested our system with user group C, who are residents of assisted
living communities and have extensive previous experience with the social robot Pepper, as
one lives in their community. Again, the KPI of the robot (1.33), the devices (1.42), and the
app (1.92) were rated highly, albeit lower than in sessions 1 and 2. The app was rated best,
with the devices rated only slightly higher than the robot. The overall system KPI is rated
well at 1.45, while the overall system usability is rated at 67.5 of 100, indicating average
usability. Regarding the health devices, the participants had difficulties on the first try of the
measurements. However, when attempting a second measurement, all participants were
able to conduct the measurements by themselves. Some of the participants also mentioned
their interest in using the devices and liked their modern design. When using the mobile
app, we observed that the participants were unsure which category to find the measured
values in. However, after finding the first value we asked them to find (body temperature),
they were quick to also find the other values.

Session 3 was conducted with three participants so that a lower number of 103 turns
was recorded. In relation to the number of 84 error-free turns, a success rate of 81.6%
results. Based on transcripts and system logs, we identified the most common cause of
error to be deviating from the ones of the previous sessions. In session 3, the system not
recognizing speech input is the most prevalent issue, occurring 10 times and thus causing
over 52% of the errors. The main consequence is that users have to repeat themselves.
However, two turns were identified, in which the system did not register any user input in
the logs, yet triggered a robot uttering. In session 3, again all assessments were completed
in full, resulting in a completion rate of 100%. Additionally, we occasionally observed slow
responses in the robot, which can be indicative of a slow internet connection, and also has
an impact on how well or fast the robot’s speech recognition functions.
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3.4. Overall Results

The overall results of the study are visualized in Figure 6. The participants of session 1
rated the user experience of each individual component and the overall system the highest.
The UX evaluation of session 2 was lower, with the lowest values for session 3. Especially
the rating of the robot-assisted health assessment was noticeably lower in session 3 than
in sessions 1 and 2. Additionally, the system usability was rated as high in session 2 and
average in session 3.
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Figure 6. The overall results of the study, including the individual values, means, and standard
deviations for the KPIs of the individual components and the whole system, the system usability
score, and the success (SR) and completion rates (CR), are visualized.
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Regarding the success rates of the conversation turns in the interaction with the social
robot for the health assessment, small differences can be seen. The success rates in sessions
1 and 3 are similar at around 80%. The success rate in session 2 with the expert users is
slightly higher at 86.23%. Large differences can be seen in the completion rates of the health
assessment after the first session. While only five of nine assessments could be completed in
session 1, all assessments were completed in sessions 2 and 3. Overall, the results indicate
good user experience and usability of our health monitoring system.

Additionally, the combined results of sessions 1 and 3 are shown in Figure 7. Minor
changes, mostly of technical nature, were introduced into the system after session 1, as
described in Section 2.4. Both sessions 1 and 3 were conducted with the target group of
older adults; however, giving good indications of the rated UX of the system for this group.
The combined KPIs of all system components, as well as the overall system, are rated very
highly in sessions 1 and 3, with all values above 2.
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Figure 7. The combined KPI results (N = 11) of the sessions with older adults, namely session 1 in
residential care (N = 8) and session 3 in assisted living (N=3), are visualized. All combined KPIs are
rated highly with values above 2, indicating an excellent UX of our health monitoring system among
older adults.

4. Discussion

The overall UX of our health monitoring system was rated highly, both by older adults
and younger expert users. However, there were differences in the ratings between the three
sessions, which are discussed in the following.

4.1. Influence of Prior Experience with Robots

The rating of the system declined with each of the test sessions. This difference was
the most pronounced with the robot-assisted health assessment. A possible explanation for
this result is the novelty effect [19], as described in Section 1.1. The participants in session
3 regularly interact with a Pepper robot and are therefore much more experienced with
the robot than the participants in the other sessions. The novelty of the robot may have
worn off, leading to less excitement in interacting with it, thus also resulting in slightly
lower UX evaluations. It needs to be considered, however, that session 3 had only three
participants. The results are, therefore, not statistically significant, but rather exploratory
in nature. Additionally, the KPI were very high in session 1, where the participants had
greater difficulties with the devices and the completion rates of the health assessment were
much lower. This also supports the explanation that the novelty effect may have led to
more favorable results in sessions 1 and 2.

In session 1, a total of five older users with previous experience with the robot Pepper
and three without tested the system. The overall success rate of participants with experience
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is at 83.2% considerably higher than the 66.0% achieved by inexperienced users. The
difference between these user groups becomes even more apparent when considering the
completion rates. Three out of five assessments were successfully completed by experienced
users, while the same applies to only one assessment with an inexperienced user. It must
be considered, that the users from session 1 have only interacted with the robot on very
few occasions, therefore, the experience can not be seen as extensive. With the success rate
increasing noticeably with only little prior experience, we conclude that it is easy for older
adults to learn how to interact with the robot.

Out of the participants in this study, group C had by far the most previous experience
with the robot Pepper. Nevertheless, the success rate of session 3 differs only slightly from
that in session 1—especially when considering the success rate, cleansed from the failed
attempts. On the testing day, however, we repeatedly observed difficulties and delays in
the robot’s speech recognition, possibly caused by a slow internet connection. This is also
reflected in the comparison of the system logs with the transcripts. The speech recognition
seemed to fail more frequently, resulting in users having to repeat their input, false routing,
and a reduced success rate. It is therefore likely that the success rate in session 3 would
have been higher with a better connection. Finally, despite the described internet issues, the
success and completion rates for session 3 with older adults were only slightly lower than
in session 2 with younger expert users. This again indicates that older adults, especially
those with prior experience with the robot, perform well when interacting with the robot.

4.2. Influence of Care Setting

Another factor to be taken into account leading to possible differences between sessions
1 and 3 are the different care settings. Both user groups include older adults. Session 1
was conducted in a residential care facility with users with overall more significant health
impairments. Therefore, for the regular checks of the health status of many of these users,
the assistance of caregivers is required. Using our health monitoring system may promote
the independence of this user group, as they do not have to wait for the caregiver and
can work with the system on their own time. This may have an effect on the perceived
usefulness and thus the reported UX of this user group.

Session 3 was conducted in an assisted living facility where participants are not in
need of full-time care. The participants in this facility also tend to lead more active social
lives and are more mobile, which may also influence the overall perception of the need for
such a health monitoring system, as opposed to participants in full-time care. This is an
important factor that needs to be further investigated in future work.

4.3. Influence of Technological Expertise

Testing the system with younger users in session 2, the health assessment achieved its
highest success rate at 86.23%. The participants all have a technical career orientation and
can thus be described as tech-savvy, and four out of five had previous experience with the
robot Pepper. Out of twenty-three off-script-events recorded in this session, seven pertained
to participants responding with something other than the displayed answer options. It
should be noted that some of the participants stated afterwards that they intentionally
deviated from the answer options, to test the limits of the dialogue system. Hence, the
actual success rate might have been in fact higher than the calculated one. Overall, the high
UX and SUS ratings indicate a very good UX and usability for this group of expert users.

The caregiver’s results in terms of UX were quite similar to the other participants’
results from session 1. However, as a younger and more tech-savvy person, with additional
experience with the robot Pepper, they were excluded from our calculations for session 1
and viewed separately, instead. Additionally, they achieved a high success rate of 93.75%
in their interaction. Furthermore, the system usability scores were lower in session 3 than
in session 2. A factor that may have influenced this is that the participants in session 2
had fewer difficulties using the health devices and the tablet app, as they were a younger
user group with professional backgrounds in technology and engineering fields. Overall,
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this indicates that prior technological experience, which is often correlated with the age or
respective generation of the user, has an effect on the UX of our system.

4.4. Influence of Optimizations

Aside from participants using answer options deviating from the predefined ones, one
main cause of error in session 1 was off-topic-remarks. A total of eight times, participants
directed questions about the interaction with the robot at the research team. This led
us to the task of further optimizing the health assessment after session 1, by means of
participatory methods, so it can be used more intuitively by members of the target group.
When comparing the completion rates over all sessions, it becomes apparent that incomplete
health assessments occurred in session 1—before the optimizations—only. The same is valid
for the unwanted repetition of individual items or even complete parts of the assessment.
This indicates that optimizing the dialogue system, by using Rasa forms with custom
actions, was a successful approach to avoiding false routing between items as well as to
ensuring data completion.

After the introduction of the optimizations between sessions 1 and 2, the UX rating
was lower in sessions 2 and 3. We assume, however, that this is related to the influence of
the prior experience with the robot, the care setting, and the technological expertise, rather
than the optimizations themselves, as they had the intended effect of higher success and
completion rates for the robot interactions.

4.5. Limitations

While we assume that our study provides promising insights about the UX of our
system, it does have several limitations, which are discussed in the following. The younger
participants of session 2 completed the questionnaires mostly by themselves. Only one
question was raised about the interpretation of an SUS item; a research team member
answered it neutrally. However, all participants of sessions 1 and 3 received help with
the questionnaires. Care was taken to use neutral language when explaining questions
and answer options, so as not to create a bias among the participants. Nevertheless, this
approach may have had an impact on the results—for example, as a result of sympathy or
antipathy towards the researchers. In addition, social desirability bias might have played a
role. Bogner and Landrock describe in [46] that participants often show a tendency towards
better ratings, as they assume these are desired by the interviewer. Additionally, in session
3, we noted that completing the SUS items of our questionnaire seemed challenging to the
participants. For several items, the participants seemed unsure how to answer and required
an explanation. While completing the SUS items, one participant even commented on their
tendency to select the neutral option.

After session 1, we optimized the system and implemented various changes, which
were only tested with experienced chatbot and/or robot users in sessions 2 and 3. In the
future, we will also test the optimized version with users who have none or only a little
experience with robots. Additionally, the internet connection in session 3 may have had
an impact on the reported UX of the participants, as it led to difficulties and delays in the
robot’s speech recognition. In the future, we will conduct this test again with a user group
with extensive Pepper experience and an optimally working internet connection.

In this study, we conducted single tests, so each participant used the system only
once. Such a limited test duration does not allow any conclusions to be drawn about the
long-term use of the system. Furthermore, sessions 1 and 2 were conducted with a number
of participants generally deemed as adequate for testing UX [44]. However, even when
taking into account the reduced population the samples were drawn from, the sample sizes
are too small for valid statistical analysis. Nevertheless, we chose to use validated UX
questionnaires, as we felt that the questionnaires explore our target figures, i.e., UX and
usability, in full. While we are aware that our results are not statistically significant, they
provide a promising indication of our system’s UX. We also included only one caregiver in
session 1, and the user group in session 2 consisted of members of our lab as a convenience
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sample to confirm that our system works correctly and to evaluate the usability of our
system among expert users. Additionally, due to the direct effects of the current pandemic
situation, we were able to include three participants in session 3 only. While this number
of test users and the inclusion of a convenience sample cannot provide significant and
transferable results, the feedback from all user groups was nevertheless very valuable as a
first indication and resulting implications for future work.

5. Conclusions and Future Work

In this work, we evaluated the UX and usability of our health monitoring system
and achieved high results in both. The ratings were the highest in the users with the least
robotic experience, while they also had the most difficulties in using the system, indicating
that the novelty effect may have positively influenced the UX results. The ratings were
also high in the experienced and tech-savvy group of younger expert users, while the
older adults with the most experience with Pepper specifically were the most critical in
their responses. Based on these results, we draw the conclusion that previous robotic
experience and technological expertise play an important role in the evaluation of the UX
of robot-assisted health assessments. The care setting of the older adults may also play a
role in this evaluation, though these needs to be further investigated. All of these factors
provide important indications as to what needs to be considered when developing, but
also evaluating, health monitoring systems that provide a positive UX, specifically for
older adults.

In the future, the system should be able to respond more individually to the user’s con-
dition. Here, the rather generic assessment we tested in this study will be used to determine
current health issues and warning signs. As users are intended to undergo the assess-
ment on a daily basis, we will implement different versions of our health questionnaire
to improve the UX. If a condition can be determined based on the user’s responses to our
questionnaire, e.g., signs of hypertension, the robot will then conduct a condition-specific,
medically validated PROM assessment.

Subsequently, we will test the system in a long-term study. Thus, the influence of
the novelty effect, if any, will become visible, while the continuous use of the system will
contribute to the broadening of the health database available to us. While conducting this
long-term study we will also continuously optimize the system based on user feedback, to
guarantee a positive UX and thus promote the long-term motivation of older adults to use
this system, which can then contribute to their autonomy and independence by increasing
their health literacy while supporting them in managing their own health. In the short term,
the system should then be able to classify a user’s health status based on a combination of
the subjective and objective data collected. Finally, a long-term goal of the project is the
use of machine learning to predict a user’s health status and provide adequate advice and
recommendations to the users.
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Appendix A. Health Assessment Questionnaire

No. Session Question Possible Answer Options

1 S123 On a scale of 0 to 10: How would you rate your health today?
(0 = very poor/10 = very healthy)

numbers between 0 and 10

2 S123 Are you experiencing any pain right now? yes/no
opt. S23 Where is your pain located at the moment? everywhere, back, neck, legs, knee, head, . . .
opt. S123 How severe is your pain? mild/moderate/strong/very strong
3 S123 Do you have or have you had a headache today? yes/no
4 S123 Are you feeling or have you felt dizzy today? yes/no
5 S123 How fit are you feeling today? absolutely fit/rather fit/somewhat tired/very tired
6 S23 Have you noticed any redness of your face today? yes/sometimes/no
7 S23 Do you have or have you had intermittent swelling of your hands

or feet today?
yes/sometimes/no

8 S23 Do you have or have you had heart palpitations today? yes/no
9 S123 Are you feeling stressed or tense today? yes, slightly, not at all
10 S123 Are you feeling sad or down today? yes, slightly, not at all
11 S123 When you think about this past week, how often did you feel sad

or down?
always/usually/often/rarely/never

12 S23 Are you feeling nauseous today? yes/no
13 S23 Are you currently experiencing pressure in your chest? yes/no
14 S23 Do you feel as if you had a fever today? yes/no
15 S23 Do you have or have you had the chills today? yes/no
16 S123 Did you eat with a good appetite today, respectively yesterday? yes/no
17 S23 Have you already had a serving of fruit or vegetables today? yes/no
18 S123 Did you already drink some water today? yes/no
19 S23 Are you currently experiencing a dry mouth or have chapped lips? yes/no
20 S123 On a scale of 0 to 10: How would you rate your sleep last night?

(0 = very bad/10 = very good)
numbers between 0 and 10

21 S123 Did you feel well-rested when you got up this morning? yes/no
22 S123 Do you have difficulties with your memory? yes/no
23 S23 How would you rate your mood today? balanced/somewhat tense/rather irritated/unbalanced
24 S23 How often did you get up last night? not at all/1–2 times/3–4 times/more often
25 S23 Were you able to go straight to sleep last night? yes/took me a little while/was still awake for a long time
26 S123 Have you already taken a walk today, or do you still plan on go-

ing outside?
yes/maybe/no

27 S23 Have you done any physical activity already today, or do you still
plan to do so?

yes/maybe/no

28 S23 Can you go up and down the stairs fully independently? yes/no
29 S23 Do you regularly take the stairs instead of the elevator? yes/no
30 S23 Have you already been in contact with your family or friends today?

Even if only by phone?
yes/I still plan on doing so/I might do it (later)/no

31 S23 Do you have any plans on meeting your family or friends today? yes/not yet/no
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