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Abstract: The transition towards climate neutrality will result in an increase in electrical vehicles,
as well as other electric loads, leading to higher loads on electrical distribution grids. This paper
presents an optimisation algorithm that enables the integration of more loads into distribution
grid infrastructure using information from smart meters and/or smart meter gateways. To achieve
this, a mathematical programming formulation was developed and implemented. The algorithm
determines the optimal charging schedule for all electric vehicles connected to the distribution grid,
taking into account various criteria to avoid violating physical grid limitations and ensuring non-
discriminatory charging of all electric vehicles on the grid while also optimising grid operation.
Additionally, the expandability of the infrastructure and fail-safe operation are considered through
the decentralisation of all components. Various scenarios are modelled and evaluated in a simulation
environment. The results demonstrate that the developed optimisation algorithm allows for higher
transformer loads compared to a P(U) control approach, without causing grid overload as observed
in scenarios without optimisation or P(U) control.

Keywords: electric vehicle; optimisation; linear programming; smart meter gateway; grid load

1. Introduction

The Paris Climate Agreement has set targets for effective action on common climate
policies to limit the global temperature increase to well below 2 ◦C within the current
century. Progress has recently been made in climate policy, particularly in Europe and Asia.
For example, China, the world’s largest emitter of CO2, has announced its intention to
achieve climate neutrality by 2060. Neighboring countries such as South Korea and Japan
aim to achieve this goal even earlier—by 2050. The EU also plans to follow suit by reducing
greenhouse gas emissions by 55% by 2030 compared to 1990 levels, becoming completely
climate-neutral by 2050.

One potential solution for reducing CO2 emissions is the electrification of freight
and passenger transport [1]. Registrations of electric vehicles (EVs) and vans in Europe
significantly increased in 2020, reaching nearly 1,325,000 units, up from 550,000 units in
2019. This represents a 3.5% increase, accounting for 11% of total new registrations in
just one year. Furthermore, the share of electric vans increased from 1.4% of total new
registrations in 2019 to 2.2% in 2020. Battery electric vehicles, rather than plug-in hybrids,
accounted for the majority of electric van and passenger car registrations in 2020 [2]. While
Norway has the largest share of EV registrations among European countries, Germany leads
the European market for plug-in electric car sales. In Norway, which has a population of
around 5.4 million people, every second newly registered car is a battery electric vehicle [3].

While electric vehicles have a positive impact on the climate, the integration of a large
number of EVs into the public grid can have some disadvantages, such as the potential
overloading of electricity grids during the charging process. This paper presents a possible
solution to this problem, along with a control algorithm for charging stations, developed
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as part of the PROGRESSUS project. Based on the grid topology, household loads, esti-
mated driving performance, state of charge (SOC), and departure time, the new algorithm
determines an optimal charging schedule for all charging stations. The aim is to achieve
non-discriminatory charging of all EVs in the network, taking into account various influenc-
ing factors while ensuring optimal network operation. Additionally, attention was given
to the expandability of the infrastructure and fail safety through the decentralisation of
all components.

2. State of the Art

Several optimisation solutions in the field of power supply and power flow optimi-
sation have been proposed and investigated. Most of previous studies have focused on
technical and economic issues, with the aim of minimising supply costs while also consid-
ering ecological aspects. Different algorithm designs and methods have been investigated
and improved. In [4], an energy management model was introduced to determine the
optimal operation strategies with maximum profit for a microgrid system. The simulation
environment includes energy storage, photovoltaic, and wind power systems. In this study,
the investment demand in storage capacities with growing electricity demand was investi-
gated.

Mixed-integer optimisation algorithms were also used in [5] for the purpose of techni-
cal and economic optimisation of power supply in microgrids. The integration of a large
number of PV systems into the distribution network and the associated problems were
studied by Bhatt et al. [6]. The focus was on reducing harmonics, voltage fluctuations, poor
power factors, and power losses. For optimisation purposes, a “novel population-based
algorithm” [7] was used in [6].

In [8], a new optimisation approach based on a hybrid algorithm consisting of
biogeography-based optimisation with an adaptive mutation scheme and the concept
of predator–prey optimisation was presented to achieve optimal energy flow. The proposed
method was tested on an IEEE 30-bus test system, with the main objectives of reducing
losses in the network, improving the voltage profile, and increasing voltage stability. Com-
parison of the results with other approaches demonstrates the effectiveness and robustness
of the proposed optimisation method.

Ehab et al. [9] proposed a new version of the JAYA algorithm to solve the problem
of optimal power flow while considering objectives such as minimum fuel cost, minimum
emissions, least transmission losses, and improved voltage profile. The application of the
new algorithm resulted in better results in terms of saving CO2 emissions and fuel cost
compared to other methods. Other algorithms such as particle swarm optimisation [10]
and artificial bee colony [11] algorithms have also been applied to achieve power flow opti-
misation.

Numerous studies have investigated the integration of a large number of EVs into
public grids. In [12], a centralised control mechanism was investigated to integrate EVs
while maintaining stability criteria. However, this control mechanism does not consider
predictions such as EVs mileage, driving distance, etc.; therefore, load shifting or time-
shifted charging may not be possible.

In comparison to the work of Peças Lopes et al. [12], Sortomme et al. [13] investi-
gated the influence of plug-in hybrid vehicles on medium-voltage grids. Three charging
algorithms were developed and investigated by Ahn et al. [14], who proposed a two-level
distributed charging algorithm for EVs that provides both load shifting and frequency
control. Load shifting was achieved by coordinating EV charging and electricity generation,
resulting in reduced carbon dioxide emissions and electricity generation costs. A linear
problem was formulated for the optimisation algorithm.

Decentralised solutions for EV integration were proposed and investigated in [15,16].
In contrast to other studies, the focus of power flow optimisation in [17] was not on CO2
minimisation or cost reduction for energy generation. Instead, the study reported in [17]
addressed the control of residential EV chargers connected to a low-voltage power grid
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with a tree-like operational structure. The available capacity of the power grid, measured
by distribution-level phasor measurement units, was divided in a proportionally fair
manner among connected EVs, considering their demands and self-declared deadlines. This
approach is closest to that investigated in our study. However, the proposed optimisation
method requires measuring units to be installed at every node in the considered grid,
as pointed out by Zishan et al. [17].

As of now, there is no available solution that can coordinate EV charging based on
only a limited number of measurement points. In other studies, measurements at every
node are typically required to accurately determine the state of the grid, and the topology
of the grid needs to be known in advance. In [17], although a “fair” distribution of charging
power was mentioned, there were no constraints to ensure that lines were not overloaded
and that node voltages did not drop too far.

In our study, we eliminated these problems. Using only a limited number of measure-
ments from smart meter gateways, we were able to determine the grid topology and grid
state. Our optimisation algorithm provides the maximum charging power at the charging
stations, as well as optimal utilisation of the electric power grid. Additionally, we offer
different implementations of “fair” charging.

3. Materials and Methods

As outlined in Section 1, the objective is to maximise the utilisation of the distribution
grid, enabling it to operate at its capacity limits. However, it is also crucial to ensure that
no criteria for grid overloading are breached. The criteria for grid overload, as considered
in this study, are summarised in Table 1.

Table 1. Observed criteria for grid overloading.

Observed Criterion Unit Allowed Limit

Transformer load % ≤100
Line load % ≤100

Node voltage %Unominal ≤±6 [18]

In addition, it is important to take into account customer requirements. Whenever
feasible, all customer requests should be accommodated. To achieve this, an optimisation
algorithm was developed using Python programming language and the Pyomo optimi-
sation framework [19]. The GNU Linear Programming Kit (glpk) [20] is employed as the
solver. The developed algorithm is based on linear programming techniques.

Linear programming requires certain input parameters to be available, as discussed in
Section 3.2. However, in some cases, all of these input data may not be be readily available.
For instance, measurements from smart meter gateways (SMGs) at grid nodes, such as
charging boxes, may be the only available data. To address this limitation, other algorithms,
such as grid topology estimation (GTE) and grid state estimation (GSE), can be employed
to reconstruct the required input data from the available measurements. These techniques
are described in [21], although they are not specifically discussed in this paper. However,
the findings from GTE and GSE are applied in the proposed grid line optimiser (GLO)
system, as depicted in Figure 1, to determine the optimal charging power and utilisation of
the electric power grid.
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Figure 1. System structure (SMG: smart meter gateway; GTE: grid topology estimation; GSE: grid
state estimation; GLO: grid line optimiser; EMO: simulation environment).

3.1. The Principle of the Algorithm

Linear programming determines an optimal charging schedule for all attached charg-
ing EVs according to the following input parameters:

Household load profiles: Predicted household profiles are needed so that the optimiser
can shift the EV chargings in order to react to fluctuating household loads;
Grid topology: Knowledge of the grid topology, such as line impedances and lengths,
transformer nominal power, and the positions of the charging stations, is required for
correct calculations of node voltages and currents on the lines;
Customer requests: Desired target SOCs and times, as well as start SOCs and times,
are required for optimisation to prioritise which EVs to charge;
Settings for time: The optimiser requires time settings to know which horizon (e.g.,
24 h) to predict and at what resolution (e.g., 15 min).

All the required input parameters, as well as the output of the optimisation, are shown
in Figure 2.

Household load profiles

Transformer power

Number of nodes

Number of chargers

Line impedances

Grid topology

Start/Target SOC

Start/Target time

Customer requests

Time resolution

Horizon width

Settings for time

Grid Line Optimiser
(GLO)

Timeseries for
charging currents and SOCs

Figure 2. Inputs and outputs of the optimisation algorithm (GLO).
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In Figure 3, the “considered horizon/resolution” and the information on the number
of nodes and chargers from the “grid topology” are used to construct sets for indexing.
These sets are used to construct parameters in the optimisation model. The household load
profiles are also directly used as parameters in the optimisation model. The “customer
requests” are used to determine variable upper and lower bounds in the optimisation
model. This information is used to set constraints and boundaries for the optimisation
process, ensuring that the solution adheres to the specific requirements and requests of
the customers.

Grid Topology Considered Horizon/Resolution

Create according Sets

Create Parameter

Create Variables

Determine upper/lower Bounds

Create Objective

Create Restrictions

Household Load Profile

Customer Request

Solve Optimisation Model

C
re

at
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O
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at
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n
M

od
el

BatteryElectricVehicle

Household

G
r
i
d
L
i
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i
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Figure 3. Data flow inside the grid line optimiser.

Currently, all the input parameters are obtained from scenarios prepared for simulation.
In the future, the inputs for the grid topology will be derived from grid topology estimation,
and household loads will be obtained from grid state estimation and real load profile data.
Additionally, customers will be able to input their requests regarding SOC and finish time
at the charging station via touch displays.

A generic grid line, as used for the optimisation, is shown in Figure 4. Charging stations
and SMGs are attached to some grid nodes, such as n2, while other grid nodes, such as n1, do
not have these attachments.

n1 n2 nn−1 nn

IHH
1 IHH

2 + IEV
2

In−1 IHH
n + IEV

n

Z1

l1

Z2

l2

Z3

l2

Zn−1

ln−1

Zn

ln

SMG SMG

Figure 4. Generic grid line used for optimisation (SMG: smart meter gateway).

Within this example, the following assumptions are made:

• Only a single grid line is considered;
• House connection lines (and their impedances) are not considered;
• Node voltages are considered over time for the SOC calculation;
• Only the real part of line impedances is considered [22].

3.2. Linear Programming Design

In the following section, all the relevant equations and parameters of the optimisation
are listed.
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3.2.1. Sets

The following sets are used as indexing variables, parameters, and constraints:

• The set of time steps (T = {1, . . . , n}) in the considered horizon;
• The set of nodes (N = {1, . . . , n}) of the considered grid line;
• The set of nodes with a charging station attached (NEV = {1, . . . , n}) in the considered

grid line, where NEV ⊆ N ;
• The set of lines (L = {1, . . . , n}) of the considered grid line.

3.2.2. Variables

As variables serve the charging currents for each EV in the grid line at each time step:

IEV
t,n ∀t, n ∈ T ×NEV,

as well as their respective SOC:

SOCt,n ∀t, n ∈ T ×NEV.

3.2.3. Parameters

Indexed parameters in the optimisation problem are:

• The impedances of the respective lines: Zl ∀l ∈ L;
• The voltages at the respective nodes: Un ∀n ∈ N ;
• The currents of the respective household loads: IHH

t,n ∀t, n ∈ T ×N ;
• The battery capacity of the respective EVs: En ∀n ∈ NEV;
• The maximum permittable charging current of the respective EVs: Imax

n ∀n ∈ NEV;
• The maximum permittable current of the respective lines: Imax

l ∀l ∈ L;
• The start SOCs of the respective EVs: SOCstart

n ∀n ∈ NEV;
• The start time steps of the respective EVs: tstart

n ∀n ∈ NEV;
• The requested target SOCs of the respective EVs: SOCtarget

n ∀n ∈ NEV;
• The requested target time steps of the respective EVs: ttarget

n ∀n ∈ NEV;
• The conceded target fulfillment of the respective EVs: Sn ∀n ∈ NEV.

Singleton parameters include:

• The voltage on the transformer low-voltage side: U0;
• The transformer nominal power: PTrafo;
• The minimum permittable node voltage: Umin;
• The maximum permittable difference among EV charging currents: ∆Imax;
• The duration of a time step: ∆t.

3.2.4. Objective Function

The charging current (IEV
t,n ) over all considered time steps and all the nodes with

attached chargers should be maximised according to Equation (1).

∑
t∈T

(
∑

n∈NEV

IEV
t,n

)
. (1)

3.2.5. Constraints

Equations (2)–(5) represent the most important constraints of the optimisation algorithm.
Equation (2) prevents the voltage at the last node from dropping too low.

U0 − ∑
l∈L

(
Zl · ∑

n∈N
n≥l

(
IEV
t,n + IHH

t,n

))
≥ Umin ∀t ∈ T . (2)
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Equation (3) ensures that the maximum permissible current (Imax = PTrafo/U0) is
not exceeded.

∑
n∈N

(
IEV
t,n + IHH

t,n

)
≤ Imax ∀t ∈ T . (3)

Equation (4) ensures energy conservation during charging.

SOCt,n +
IEV
t,n ·Un · ∆t

En
· 100% = SOCt+1,n ∀t, n ∈ T ×NEV. (4)

Equation (5) ensures that the maximum current conductivity of the individual lines is
not exceeded.

∑
n∈N
n≥l

(
IEV
t,n + IHH

t,n

)
≤ Imax

l ∀t, l ∈ T × L. (5)

3.2.6. Additional Constraints for Fair Charging

Equations (6)–(11) describe further optional constraints that can be activated to ensure
“fair” charging. Each of these additional constraints uses another definition of fairness.

Equation (6) ensures that every EV receives approximately equal charging power
per time step. Therefore, a maximum tolerable difference (∆Imax) in charging current is
introduced.

IEV
t,n − IEV

t,m ≤ ∆Imax ∀t, n, m ∈ T ×N 2
EV with n > m. (6)

Equation (7) ensures that every EV received approximately the same target fulfillment
(Sn), which may not deviate from one another by more than a maximum permittable
difference (∆Smax ∈ [0, 1] ) in target fulfillment.

Sn − Sm ≤ ∆Smax ∀n, m ∈ N 2
EV with n > m. (7)

Here, the target fulfillment (Sn) is defined according to Equation (8):

Sn =
SOCtend,n − SOCstart

n

SOCtarget
n − SOCstart

n
(8)

where SOCtend,n is the final SOC actually reached by the EV at node n.
Equation (9) ensures that EVs that have started charging with a lower SOC receive

more charging power than EVs that started charging with a higher SOC.

Sn · SOCstart
n = Sm · SOCstart

m ∀n, m ∈ N 2
EV with n > m. (9)

Equation (10) ensures that EVs that have been waiting longer at the charger to be
charged receive more charging power than EVs that have just arrived at the charger.

∑
t∈T

(
IEV
t,n

)
· ∆τ2

n = ∑
t∈T

(
IEV
t,n−1

)
· ∆τ2

n−1 ∀n ∈ NEV. (10)

where ∆τn is the remaining energy required to charge in relation to the remaining time
required to charge the EV at node n according to Equation (11):

∆τ =
ttarget
n − t

SOCtarget
n − SOCt,n

(11)

where ttarget
n is the time when EV at node n wants to be finished charging.
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3.2.7. Bounds of the Variables

To ensure that the optimisation does not set charging current (IEV
t,n 6= 0) when there is

no EV charging at node n at time step t, the following Equation (12) determines the upper
bounds (

⌈
IEV
t,n
⌉
) of charging currents.

⌈
IEV
t,n

⌉
=


0 if t < tstart

n

Imax
n if tstart

n ≤ t < ttarget
n

0 if t ≥ ttarget
n

∀n ∈ NEV. (12)

The lower bounds (
⌊

IEV
t,n
⌋
) of charging currents are determined according to Equation (13).⌊

IEV
t,n

⌋
= 0 ∀t, n ∈ T ×NEV. (13)

For the SOC, the upper bounds (dSOCt,ne) are chosen according to Equation (14).

dSOCt,ne =

SOCstart
n if t = 0

SOCtarget
n if t > 0

∀n ∈ NEV. (14)

SOC lower bounds (bSOCt,nc) are chosen according to Equation (15).

bSOCt,nc = SOCstart
n ∀n ∈ NEV. (15)

It is important to note that the lower bounds for state of charge (SOC) are fixed at
SOCstart

n . Setting SOCtarget
n as the lower bound could cause the optimisation to fail if the

target cannot be achieved. The formulation of the objective function in Equation (1) is
sufficient for the optimiser to maximise charging currents and, hence, SOCs whenever
possible. The upper bounds for SOC are set to SOCtarget

n to prevent overcharging of EVs,
which could result in other EVs being charged less.

3.3. Hardware Used for Optimisation

The optimisation algorithm was initially developed on a laptop, but in practical use, it
needs to run on a Raspberry Pi 3. Therefore, a comparison of the performance characteristics
of the laptop and the Raspberry Pi was conducted. In Table 2, a comparison of the most
important characteristics of both devices is presented.

Table 2. Comparison of some characteristics of the used devices.

Device Processor RAM

Dell Inspiron 15 Intel Core i5 8250U; 1.80 GHz 8 GB
Raspberry Pi 3 ARMv8; 1.20 GHz 1 GB

4. Results

For the evaluation of the performance of the developed optimisation algorithm, var-
ious scenarios were modelled. Additionally, a comparison of computational time on a
laptop and a Raspberry Pi is presented. A list of all the considered scenarios is provided
in Table 3. In scenarios with control, there is also a P(U) control for comparison with the
optimisation. The P(U) control regulates the charging power of the EVs based on the lowest
node voltage across the grid, as described in [21]. In scenarios with “fairness”, additional
constraints are activated to ensure fair charging.



Energies 2023, 16, 3790 9 of 20

Table 3. Considered scenarios.

Scenario Transformer Nominal
Power [kVA] Nodes EVs Control “Fairness”

1 150 6 6 no no
2 200 40 40 yes no
3 250 40 40 yes no
4 220 40 40 no yes
5 15 6 2 no yes

Unless explicitly stated otherwise, the following assumptions apply to all of the scenarios:

• The length of the individual lines is 20 m each;
• The specific impedance of the individual lines is 2× 10−4 Ω m−1 each;
• All the individual lines are expected to be able to conduct the same current;
• The battery capacity of the individual EVs is 50 kWh each;
• The nominal power of the individual charging stations is 11 kW (three-phase total)

each;
• The household load profiles are taken from [23];
• The time resolution is 6 min;
• The considered time horizon is 24 h.

According to [24], the line lengths and impedances are typical values for a line of
the type “NAYY 4 × 150 SE”, which is commonly used in urban areas.

All the results can be validated using the software described in Appendix A. A detailed
description of the customer requests assumed in each of the scenarios is provided in Appendix B.

These five scenarios were chosen to demonstrate how the optimisation algorithm
handles specific situations. In Scenario 1, the goal is to show how the optimisation shifts
the EV charging processes to prevent grid overload when there is a higher demand from
uncontrollable household loads. In Scenario 2, the goal is to demonstrate that the optimisa-
tion is scalable to handle longer grid lines and situations in which all the EVs want to start
charging at the same time. Scenario 3 aims to provide a comparison of the performance
of the optimisation, P(U)-control, and uncontrolled charging over the course of one week.
In Scenario 4, the goal is to compare the performance of different approaches for fair charg-
ing under extreme situations in which additional household loads congest the grid. Finally,
in Scenario 5, the goal is to provide a detailed comparison of how different approaches for
fair charging handle a situation that leads to unfairness.

4.1. Scenario 1: Demonstrate Load Shifting

The first scenario is designed to demonstrate load shifting in response to inflexible
household loads. Since these household loads cannot be influenced by the optimiser,
the optimiser shifts the EV loads to prevent grid overloading while still attempting to
fulfill customer requests to the greatest extent possible. In this scenario, additional loads
of 23.8 kW are added on top of each household profile from 11 a.m. to 7 p.m. to observe
the reaction of the optimiser. The results of the optimisation for Scenario 1 are shown in
Figure 5.

The transformer’s nominal power is large enough to allow for multiple EVs to be
charged simultaneously, for example, between 9 a.m. and 11 a.m. However, from 11 a.m.
to 7 p.m., there is always only one EV charging at a time, and not even at nominal power.
Only after 7 p.m. is one more charging possible at nominal power. Despite this, by the end
of the day, all customer requests are fulfilled. It can be observed that between 11 a.m. and
7 p.m., the transformer load is at 100% due to the additional loads within each household.
This is the reason why the optimiser shifts the EV charging outside of this time frame.
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Figure 5. Results of optimisation for Scenario 1.

4.2. Scenario 2: Demonstrate Scalability

The second scenario aims to demonstrate the scalability of the algorithm and its ability
to handle extreme situations. In this scenario, 40 nodes are considered, each with a charger
and EVs connected. The EVs start with an SOC of 10% and wish to be charged to 100%.
The start and target times are set at 12 a.m. and 6 p.m., respectively. No additional loads
are added on top of the household loads, creating an extreme scenario in which all EVs
start charging at the same time. The results are compared for different setups of the grid
line. The first setup is optimised, the second setup is not optimised, and the third setup is
P(U)-controlled. The resulting timelines for transformer load and the voltage at the last
node are shown in Figure 6.

In the case with the optimiser, the node voltage always stays at 376 V. The transformer
load remains at roughly 100%, never significantly exceeding this levle for many consecutive
time steps. In the case of non-optimised charging, the transformer load exceeds 300%
for nearly two hours, and the node voltage falls below 300 V. In the case of P(U) control,
the transformer load also rises above 300%, and it takes around two hours for the trans-
former load to fall below 100%. Additionally, the node voltage falls below 300 V, and it
takes some time to bring the voltage back above 376 V. The optimiser shifts EV charging to
prevent any violation of grid overload criteria.

Without optimisation, a maximum of 5 EVs can start charging at the same time before
the voltage drops below 376 V. However, with optimisation, all 40 EVs can start charging at
the same time without overloading the grid. This corresponds to a 700% increase in the
number of charged EVs.
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Figure 6. Results of optimisation for Scenario 2.

A box plot for the target fulfillment in each of the considered cases is shown in Figure 7.
In the case of optimisation, almost all EVs are charged according to their requests, except for
those at the last seven nodes, which are not charged at all. In the case of P(U) control, all EVs
are charged to around 60% target fulfillment. In the “normal” case, all EVs are charged to
100% target fulfillment but at the cost of massive grid overload.

optimised controlled “normal”
0

50

100
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rg
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lfi
lm

en
t[

%
]

Figure 7. Target fulfillments for Scenario 2.

4.3. Scenario 3: Comparison over One Week

The third scenario involves a comparison of grid overload over the course of one
week for different setups of the grid line. In the first setup, the optimizer is activated
(optimized). In the second setup; the optimizer is deactivated (“normal”); and in the third
setup, the optimizer is deactivated, but the P(U) control is activated (controlled). There are
40 nodes, with a charging station connected to each of them, but no additional loads are
added to the households. Both the start/target SOC and start/target time are randomly
generated. A total of seven days are simulated, and the transformer load and voltage at the
last node are considered. The resulting timelines are shown in Figure 8, and the resulting
duration curves are shown in Figure 9.



Energies 2023, 16, 3790 12 of 20

300

350

400

Vo
lt

ag
e

at
th

e
la

st
no

de
[V

]

optimised
controlled
“normal”

0 24 48 72 96 120 144 168

0

100

200

Time [h]

Tr
an

sf
or

m
er

lo
ad

[%
] optimised

controlled
“normal”

Figure 8. Results of optimisation for Scenario 3.
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Figure 9. Results of optimisation for Scenario 3—sorted timelines.

In the “normal” case, the transformer load exceeds 100% for almost 24 h within the
week. However, with optimisation or control activated, the transformer load never exceeds
100%. Nevertheless, the optimiser keeps the transformer at a higher load for a longer time,
resulting in more EVs being charged to higher SOCs, as is the case with P(U) control.

In the “normal” case, the node voltage drops below 376 V for almost 43 h in the week.
With the control activated, there are only 22 h during which the voltage drops below 376 V.
This is because the P(U) controller can only react once the voltage has dropped too low,
and it takes some time to raise the voltage afterwards. Only the optimiser manages to keep
the voltage above 376 V, thereby preventing the grid from being overloaded. However,
the optimiser pushes the grid to its limits, maintaining the node voltage at around 376 V
for roughly 80 h within the week, thereby maximising grid utilisation.
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In Figure 10, the difference in transformer load between the setup with optimisation
and the setup with control is shown. The green area represents times when the load on the
transformer is higher for the optimisation case. The blue area represents times when the
transformer load is higher in the case of P(U) control. The red dashed line represents the
mean value. There are approximately 90 h within the week during which the transformer
load is higher with the optimiser and almost 16 h during which the transformer load
is higher with the controller. On average, the transformer load is 2.4% higher with the
optimiser compared to the controller. With a transformer nominal power of 250 kVA, this
translates to 6 kW. Over the course of a week with 168 h, this amounts to an additional
1000 kWh that can be charged. Considering an average battery capacity of 50 kWh, this
corresponds to 20 additional complete EV cycles.
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Figure 10. Results of optimisation for Scenario 3—difference between sorted timelines for transformer
load in the case of optimisation and control.

The corresponding target fulfillments, calculated as mean values over the complete
week, are shown in Figure 11. The optimiser not only charges more energy compared to
P(U) control but also enables more homogeneous charging, resulting in smaller variance in
target fulfillment. In the ’normal’ case, some EVs are charged more than desired (target
fulfillments > 100%) but at the cost of other EVs being charged less, resulting in grid
overload each day.
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Figure 11. Mean target fulfillments for Scenario 3.

4.4. Scenario 4: Fair Charging under Extreme Conditions

The fourth scenario compares the performance of different strategies for fair charging
by activating additional constraints from Equations (6), (7), (9), and (10) one at a time.
There are 40 nodes, each with a charger attached, and the transformer nominal power is
220 kVA. The customer requests are randomly generated (but the same for each additional
constraint). Additionally, from 11 a.m. to 4 p.m., there are additional loads of 1.8 kW added
on top of each household. The results are shown in Figure 12.
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Figure 12. Results of optimisation for Scenario 4.

The results of optimisation with the constraint from Equation (10) are not shown here
because the optimisation failed with this additional constraint activated because in the
denominator of Equation (11), the difference between the desired SOC and the actual SOC
is calculated. If an EV reaches the desired SOC, this leads to a division by zero.

In the time slot with the additional household loads, the optimisation manages to
prevent grid overload, independent of the activated constraint. However, before and after
that time slot, there are differences observed among the different additional constraints.

The achieved target fulfillments are shown in Figure 13. In the case of optimisation
without additional constraints activated (unfair), most of the EVs are charged to 100%
target fulfillment, except for a few EVs at the last nodes, which are not charged as much.

In the case with the constraint from Equation (6) additionally activated, most of the
EVs end up with very low target fulfillment. This constraint formulation is too restrictive,
as it does not allow for differences between the charging currents of the individual EVs,
thereby preventing effective load shifting. As a result, the outcomes are unsatisfactory.

In the case with the constraint from Equation (7) additionally activated, different classes of
target fulfillment can be observed. Within each class, all EVs reach exactly the same target fulfill-
ment.

op
ti

m
is

ed
(u

nf
ai

r)

op
ti

m
is

ed
(E

qu
at

io
n

(6
))

op
ti

m
is

ed
(E

qu
at

io
n

(7
))

op
ti

m
is

ed
(E

qu
at

io
n

(9
))

0

50

100

Ta
rg

et
fu

lfi
lm

en
t[

%
]

Figure 13. Mean target fulfilments for Scenario 4.
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In the case with the constraint from Equation (9) additionally activated, the EVs also
achieve low target fulfillments but with the lowest variance among them.

4.5. Scenario 5: Detailed Comparison of Fair Charging

The fifth scenario involves a detailed comparison of different constraints for fair
charging. The additional constraints from Equations (6), (7), (9), and (10) are activated
one at a time. The grid line consists of six nodes, with 2 EVs charging at nodes 1 and 6.
The transformer has a nominal power of 15 kVA, which is not enough to charge both EVs
simultaneously at their nominal power. Moreover, there are additional loads of 1.7 kW,
each added to the household loads in a time window from 8 a.m. to 4 p.m.

The EV at node 1 starts charging at 12 a.m. with an SOC of 10%, while the EV at node
6 begins charging at 4 p.m. with an SOC of 30%. Both EVs aim to reach a 100% SOC by
9 p.m. However, the EV at node 1 is affected by the increased household load during a
portion of its available charging time due to its charging time frame. The results of the
optimisation for each of the additional constraints are presented in Figure 14.

0

50

100

Equation (6)

SO
C

of
EV

s
[%

]

Node 1 (unfair)
Node 6 (unfair)
Node 1 (fair)
Node 6 (fair)

0

50

100

Equation (7)

SO
C

of
EV

s
[%

]

Node 1 (unfair)
Node 6 (unfair)
Node 1 (fair)
Node 6 (fair)

0

50

100

Equation (9)

SO
C

of
EV

s
[%

]

Node 1 (unfair)
Node 6 (unfair)
Node 1 (fair)
Node 6 (fair)

0 4 8 12 16 20 24

0

50

100

Equation (10)

Time [h]

SO
C

of
EV

s
[%

]

Node 1 (unfair)
Node 6 (unfair)
Node 1 (fair)
Node 6 (fair)

Figure 14. Results of optimisation for Scenario 5.
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Here, the results of the optimisation without additional constraints are displayed
with lower opacity to facilitate a direct comparison between fair and unfair optimisation.
The additional restriction is listed in the bottom-right corner of the figure.

The EV at the first node, despite starting charging 4 h earlier, is charged less than the
EV at the last node without additional constraints. This is because the increased household
loads during the time window from 8 a.m. to 4 p.m. limit the available charging power.
As a result, the EV at node 1 can only charge with a very low current from 12 p.m. to 4 p.m.
Once the EV at node 6 starts charging at 4 p.m., the EV at node 1 is no longer allocated any
charging current, even though it has been waiting at the charging station for a longer time.
In contrast, the EV at node 6 receives the full charging power.

The constraint from Equation (6) requires that the difference between the charging
currents of both EVs must be exactly 0 A (∆Imax = 0 A) for each time step. This is evident
in the period from 4 p.m. to 9 p.m., during which the SOC of both EVs increases in parallel.
However, there is a difference in the charging currents of the two EVs in the period from
12 p.m. to 4 p.m., as the additional household loads only allow for one additional charging
process during that time.

The constraint from Equation (7) mandates that the difference between the target
fulfillments of both EVs should be exactly 0% (∆Smax = 0%). As a result, the optimiser
alternately switches the charging processes on and off, leading to a fluctuating pattern
in the SOCs of the EVs. However, both EVs ultimately reach the same target fulfillment,
which may not necessarily result in the same SOC levels according to Equation (8).

The constraint from Equation (9) stipulates that the product of the SOC at the start of the
charging process and the conceded target fulfillment should be the same for all EVs. This means
that EVs starting with a lower SOC are given preference. As a result, in this case, the EV at
node 1 is charged more than the EV at node 6, as it starts with a lower SOC.

The constraint from Equation (10) specifies that EVs that have been at the charging
station for a longer duration are granted more charging power compared to those that have
been there for shorter periods. As a result, the EV at node 1 is charged more than the EV at
node 6. When the additional electrical load is removed at 4 p.m., the charging power of
the EV at node 1 is increased. Initially, the EV at node 6 is granted a lower charging power.
However, a “shaky” course of the SOCs can be seen from 5 to 7 p.m., indicating a similar
phenomenon as with Equation (7).

4.6. Time Required to Solve the Optimisation Model

As described in Section 3.3, the optimisation algorithm was developed on a laptop.
However, in practical use cases, the optimisation is intended to be run on Raspberry Pis. As
shown in Table 2, the laptop outperforms the Raspberry Pi in terms of processing power and
RAM. Therefore, the performance of the optimisation on both devices was compared using
a test case scenario similar to Scenario 2. In this test case, the number of nodes is varied to
simulate progressively more complex optimisation problems. Each optimisation problem
is solved ten times to calculate the mean time required to solve the problem. The results
achieved with both devices are presented in Table 4, where the time for creating and solving
the problem is specified in each case.

Table 4. Comparison of time required to solve the optimisation problem.

Device
Number of EVs

10 20 30 40 50 60

Laptop
Create

problem [s] 0.29 0.61 0.84 1.1 1.51 1.91

Solve problem [s] 0.36 0.61 0.74 1.04 1.56 2.13

Raspberry Pi
Create

problem [s] 0.74 1.79 3.04 4.65 6.44 8.37

Solve problem [s] 0.91 1.91 3.25 5.2 8.41 16.02
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A graphical representation of the results is shown in Figure 15. It can be observed that
the time needed to solve the problem, especially on the Raspberry Pi, increases dispropor-
tionately for more complex optimisation problems. However, even on the Raspberry Pi,
the most complicated scenario takes only about 25 s to solve.
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Figure 15. Comparison of required time to solve the problem on a laptop and on a Raspberry Pi.

This enables calling the optimisation each time new measurement data arrives from
the smart meter gateway. Based on these new data, a corresponding optimisation problem
will be created and solved, allowing the optimisation to react to sudden changes in input
parameters. As a result, the solution of this new optimisation problem will be a new
charging schedule that prevents grid overload for the updated conditions.

5. Discussion/Conclusions

The developed system enables optimal coordination of multiple EVs charging along a
grid line. By using limited measurements, the grid topology and state can be reconstructed,
which serves as input for the optimisation. Combined with other information such as
household loads and customer requests, the optimisation determines an optimal charging
schedule. This ensures that the grid is utilised to its limit but not beyond in order to charge
as many EVs as possible. In cases in which it is not possible to fulfill all customer requests,
the optimiser can still ensure fair charging.

To achieve fair charging, multiple approaches have been implemented, each with its
own definition of fairness. All approaches are capable of enabling fair charging according
to their respective definition. However, in extreme scenarios, some of these approaches
may lead to unsatisfactory solutions due to their restrictive nature, excluding too many
potential solutions. It should be noted that these extreme scenarios were intentionally
chosen to test the optimisation algorithm, and in reality, it is unlikely that all EVs will start
charging at exactly the same time.

Moreover, the proposed optimisation algorithm is scalable, as it can handle a varying
number of nodes in the grid line and a varying number of attached charging stations. It can
also accommodate different horizons and time resolutions. This means that the optimisation
can be applied to grid lines of any length and with charging stations distributed arbitrarily.

The optimisation problem is formulated as a linear programming scenario and solved
using the simplex algorithm, which ensures that the optimal solution can be obtained within
a “reasonable” amount of time. This allows the optimisation to be executed regularly as
new measurement data arrive, enabling timely reactions to unexpected changes in the grid
load. A new optimisation problem incorporating the new data will be created and solved,
resulting in an updated charging schedule for all the EVs.
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However, the optimisation approach described in this paper is currently limited to
single grid lines. In order to fully utilise the potential of the proposed system, future work
should focus on extending the optimisation to accommodate arbitrary grid topologies.
Additionally, while household loads are currently considered as standard load profiles,
the capability to dynamically add loads on top of these profiles allows for simulation of
more realistic scenarios. In the future, incorporating real measurement data from house-
holds will further enhance the accuracy and applicability of the optimisation approach.

As a next step, it would be interesting to explore the inclusion of controllable electric
loads inside households in the optimisation. For instance, coordinating heat pumps with
EV charging could help prevent grid overload. However, it is important to consider the
impact on the optimisation time when adding more components. In particular, formula-
tions that require binary variables may significantly increase the time needed to solve the
optimisation problem. Careful consideration of the tradeoffs between model complexity
and computational time will be crucial in future developments.
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Appendix A. Source Code of the Optimisation

The source code for the optimisation algorithm described in this paper can be found in the
GitHub repository of the corresponding author: https://github.com/AndreGismo/Masterarbeit/
tree/main/Code (accessed on 23 April 2023). The script test_optimization.py is the executable
script. The scripts optimization.py, household.py, and battery_electric_vehicle.py hold
the necessary definitions. The script EMO.py holds the code for the simulation environment
(code is adapted from the author of [21]). The comments given in the source code are
sufficient as a description. In case of further questions, the corresponding author may
be contacted.

Appendix B. Detailed Customer Requests of the Scenarios

A detailed description of the customer requests assumed in each of the investigated
scenarios presented in Section 4 is provided below. In case of many EVs, the customer
requests are randomly generated using a fixed seed for reproducibility. In such cases, the
needed parameters of the used equal distribution are given.

https://github.com/AndreGismo/Masterarbeit/tree/main/Code
https://github.com/AndreGismo/Masterarbeit/tree/main/Code
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Table A1. Detailed customer requests in Scenario 1.

Node Nr. Start SOC (%) Target SOC (%) Start Time (h) Target Time (h)

1 20 80 2 10
2 20 70 2 16
3 30 80 2 18
4 20 90 2 18
5 25 80 2 17
6 40 70 2 20

Table A2. Detailed customer requests in Scenario 2.

Wish Lower Bound Mean Upper Bound

Start SOC (%) 10 10 10
Target SOC (%) 100 100 100
Start time (h) 12 12 12

Target time (h) 18 18 18

Table A3. Detailed customer requests in Scenario 3.

Wish Lower Bound Mean Upper Bound

Start SOC (%) 20 30 40
Target SOC (%) 60 80 100
Start time (h) 8 10 12

Target time (h) 15 19 23

Table A4. Detailed customer requests in Scenario 4.

Wish Lower Bound Mean Upper Bound

Start SOC (%) 20 30 40
Target SOC (%) 60 80 100
Start time (h) 8 10 12

Target time (h) 15 19 23

Table A5. Detailed customer requests in Scenario 5.

Node Nr. Start SOC (%) Target SOC (%) Start Time (h) Target Time (h)

1 10 100 12 21
2 — — — —
3 — — — —
4 — — — —
5 — — — —
6 30 100 16 21
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