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Abstract
The paper presents results of the modelling of heat transfer at film boiling of a liquid in 
a porous medium on a vertical heated wall bordering with the porous medium. Such pro-
cesses are observed at cooling of high-temperature surfaces of heat pipes, microstructural 
radiators etc. Heating conditions at the wall were the constant wall temperature or heat 
flux. The outer boundary of the vapor film was in contact with moving or stationary liquid 
inside the porous medium. An analytical solution was obtained for the problem of fluid 
flow and heat transfer using the porous medium model in the Darcy–Brinkman and Darcy–
Brinkman–Forchheimer approximation. It was shown that heat transfer at film boiling in 
a porous medium was less intensive than in the absence of a porous medium (free fluid 
flow) and further decreased with the decreasing permeability of the porous medium. Sig-
nificant differences were observed in frames of both models: 20% for small Darcy num-
bers at Da < 2 for the Darcy–Brinkman model, and 80% for the Darcy–Brinkman–Forch-
heimer model. In the Darcy–Brinkman model, depending on the interaction conditions at 
the vapor–liquid interface (no mechanical interaction or stationary fluid), a sharp decrease 
in heat transfer was observed for the Darcy numbers lower than five. The analytical predic-
tions of heat transfer coefficients qualitatively agreed with the data of Cheng and Verma 
(Int J Heat Mass Transf 24:1151–1160, 1981) though demonstrated lower values of heat 
transfer coefficients for the conditions of the constant wall temperature and constant wall 
heat flux.

Keywords  Boiling · Porous media · Analytical solution · Darcy–Brinkman–Forchheimer 
approximation
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G	� Mass flow rate, kg/(m s)
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h	� Heat transfer coefficient, W/(m2 K)
k	� Thermal conductivity of the vapor, W/(m K)
K	� Permeability
L�	� Latent heat of vaporization, J/(kg)
Ja	� Jacob number
�	� Unit vector in vertical direction
Nu	� Nusselt number
p	� Pressure, Pa
q	� Heat flux, W/m2

Ra	� Rayleigh number
T	� Temperature, K
t	� Time, s
u	� x velocity component, m/s
�	� Velocity vector, m/s
x, y	� Cartesian coordinates

Greek Symbols
�	� Thickness of the vapor film, m
η	� Self-similar variable
μ	� Dynamic viscosity of the vapor, kg/(m s)
�	� Density of the vapor, kg/m3

Δ�	� Density difference liquid and vapor, kg/m3

φ	� Porosity

Subscripts
eff	� Effective
s	� Solid
w	� Wall
∞	� Outer boundary of the boiling film
0	� Pure vapor

Abbreviations
CHF	� Critical heat flux
2D	� Two-dimensional
3D	� Three-dimensional

1  Introduction

The attention of many researchers during the last decades focused on the study of heat and 
mass transfer processes in microchannels and microporous media due to promising per-
spectives of their use for the thermal control in microelectronics, heat pipes, radiators etc. 
Microchannel systems can provide effective heat removal at essentially small dimensions 
of the cooling systems of aerospace electronic equipment (Konovalov et al. 2019). The use 
of microradiators for the thermal control enables reducing absolute maximum temperatures 
and temperature gradients on the surfaces of devices subject to high heat fluxes (Konovalov 
et al. 2019).
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Models of porous media are used in studies of processes in shale gas formations (tak-
ing into account gas desorption and slippage effects), as well as in the study of fractal 
porous media. In the paper of Foroozesh et al. (2019), a pore network model was developed 
to model the gas desorption and the slip flow effects in recovery of shale gas reservoirs. 
Quantitative evaluation of the effective thermal conductivity of porous media has received 
wide attention in scientific investigations and engineering. The influence of geometrical 
factors, porosity and relative surface roughness on the effective thermal conductivity in 
porous media were discussed and analyzed in Qin et al. (2019).

Studies of heat transfer processes during the flow of two-phase coolants through porous 
media are relevant for various engineering applications in geothermal systems, nuclear 
waste disposal systems, storage systems, as well as at transport of thermal energy, see 
Singh and Myong (2018). Four applications of porous media in the energy sector were 
considered in the work (Singh and Myong 2018), such as electrokinetic energy converting 
devices, membrane-based water desalination through reverse osmosis, shale reservoirs and 
hydrogen storage systems. In addition, this paper provides recommendations on the further 
development of models of convective and diffusion flows in porous micro- and nanoscale 
media.

Simulation of heat transfer processes in porous media during boiling and condensation 
is a rather complicated task. Both mathematical models of two-phase mixtures, and models 
with a separate description of phases are used for the modelling purpose.

The study of Wang (1997) focused on the modeling two-phase heat transfer processes 
in porous media characterized by the presence of two-phase and single-phase zones with 
irregular and moving boundaries between them. The mathematical model included the 
equations of conservation of mass, momentum, and energy for two-phase mixtures, as 
well as a system of closing equations characterizing the interaction of phases at the phase 
boundaries.

The mathematical model developed in Wang (1997) was further used to solve the prob-
lem of complete evaporation of a liquid inside porous evaporators made of circular pipes 
(Alomar et al. 2014a, 2015) and diffusers (Alomar et al. 2014b). The authors used an algo-
rithm for smoothing the effective diffusion coefficient in the regions of transition from con-
vective heat transfer to two-phase flow and further to superheated vapor. The results of cal-
culations demonstrated an influence of the smoothing algorithm of the effective diffusion 
coefficient on the axial temperature distribution. The influence of smoothing was especially 
significant in the region of transition from two-phase flow to superheated vapor.

In the works of Wang and Beckermann (1993a, b), a mathematical model of two-phase 
heat and mass transfer in capillary porous media was presented, which considered two-
phase flow as a binary mixture. The model was completed with the mass conservation 
equation for the fluid. The temperatures of the liquid, vapor, and porous medium were 
assumed to be the same. The model of a two-phase mixture of Wang and Beckermann 
(1993a) was used to study boiling flow along a heated surface embedded in a porous 
medium by Wang and Beckermann (1993b). The problem was solved in the boundary layer 
approximation. In addition, it was assumed that there was a thin capillary liquid layer with 
constant saturation on a solid surface. The results of calculations of the saturation profile, 
phase velocities, and the dependence of the wall heat flux, including the maximum (criti-
cal) wall heat flux, on the saturation value are documented in the work of Wang and Beck-
ermann (1993b).

The problem of unsteady heat and mass transfer in a cell of a porous body was studied 
by Duval et al. (2004). It was assumed that the problem of two-phase fluid flow could be 
solved independently of the heat transfer problem. The mathematical model of heat and 
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mass transfer included the continuity equations for vapor and liquid phases and the energy 
equations for vapor, liquid and porous phases. As an example, a stratified unit cell was con-
sidered, in which a solid was bordered by a layer of vapor surrounded in its turn by a layer 
of liquid. The problem was solved numerically. The results of calculations were compared 
with experimental data for the heating mode of a porous medium, whereas the initial tem-
perature of three phases was equal to the saturation temperature and a volumetric heat flux 
in a porous body was equal to 107 W/m3.

The model of non-equilibrium two-phase flow in porous media developed by Duval 
et  al. (2004) was used by Bachrata et  al. (2012) to simulate high-temperature processes 
in a porous layer formed during the fragmentation of nuclear reactor fuel in the event 
of a severe accident with core destruction. The peculiarities of the model are additional 
hypotheses and a set of the closure equations. The process of flooding the porous layer of 
fuel fragments with water is essentially non-equilibrium, therefore, the transition region 
of nucleate boiling was also considered by Bachrata et al. (2012), where the heat transfer 
rate depends on the local void fraction, mass flow rate and temperature. Experimental data 
were correlated as an empirical equation that considers these effects. The heat flux in the 
transition region was determined by the combination of heat transfer at nucleate and film 
boiling. The computations were performed using the ICARE CATHARE code. In addition, 
the authors presented a dependence for the speed of movement of the wetting front on the 
parameters of injection of the coolant.

The results of the study of boiling and condensation in a porous wick of a heat pipe 
were presented in the work of Hari et  al. (2015). Here a mathematical model of a two-
phase mixture was used. The problem was solved in the boundary layer approximation. 
The saturation distributions for boiling and condensation regimes were presented in Hari 
et al. (2015) and compared with the results of other authors.

A 3D mathematical model of a two-phase flow in a heat pipe with a porous wick was 
developed by Brahim and Jemni (2012). The authors simulated performance of a heat pipe 
under critical conditions of high thermal loads. The wick of the heat pipe was modeled as 
a homogeneous and isotropic porous medium. The problem was solved numerically by the 
finite volume method. The computations demonstrated that at high heat flux the tangential 
velocity increases, especially at the liquid–vapor interface, which has a significant effect on 
phase changes. The 3D analysis yielded more accurate results than the 2D approach and 
improved visualization, especially for various external conditions.

The work of Kiseev (2001) presents the results of a theoretical and experimental study 
of heat and mass transfer in capillary porous wicks of heat pipes capable of operating under 
weightless conditions. Two-phase flows were studied in capillary structures with an average 
pore diameter of 0.5–15 μm. The authors considered closed loop heat pipes with separated 
flow of the vapor and liquid phases. It was revealed by Kiseev (2001) that a significant 
increase in the temperature load causes a pulsation mode of operation, whereas droplets 
of liquid were ejected from capillaries. The modeling of transport processes in a heat pipe 
by Kiseev (2001) was reduced to solving a conjugate problem of heat transfer with initial 
and boundary conditions in the heat source and heat sink regions describing heat trans-
fer with the environment. The system of Navier–Stokes equations was solved numerically. 
The results of computations were validated against the experimental data obtained in the 
study. As a result, the authors revealed the main peculiarities of heat transfer in the region 
of vapor removal channels. In case of high thermal loads, the vaporization front retreated 
deep into the wick thus causing unfavorable conditions for vaporization.

Results of theoretical and experimental studies of heat transfer in a porous wick of 
a heat pipe are presented in the work of Hanlon and Ma (2003). Water was supplied 
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at both inlets to the area of the porous wick. The vapor was released through the top 
surface of the wick. The bottom surface of the wick was heated part. A 2D steady-state 
problem was solved. Computations indicated that heat transfer during evaporation of a 
thin film from the surface of the wick depended on the particle size and the porous layer 
thickness. As an average particle radius of the porous layer decreased, the heat transfer 
coefficient increased. Computed values of the heat transfer coefficient on the upper sur-
face of the wick were compared with experimental data. Even though the predicted heat 
transfer coefficient exceeded the experimental data, a qualitative analysis suggested that 
evaporation from the top surface of the wick played an important role in heat transfer.

Effects of local thermal non-equilibrium (LTNE) on the cooling process in porous 
media with a phase change of a coolant were considered by Shi and Wang (2011), Yuki 
et al. (2008), Xin et al. (2014), Alomar et al. (2017, 2018). Presented there are math-
ematical models of heat and mass transfer of a two-phase mixture in a porous body, 
which consider temperature difference between the coolant and the porous matrix. 
Numerical modeling of heat and mass transfer in porous media at high heat fluxes was 
performed in the work of Yuki et al. (2008), who pointed out that thermal non-equilib-
rium must be taken into account in modeling of two-phase flows in a porous body at 
high heat fluxes (above 1 MW/m2) and high flow velocities. Xin et al. (2014) presented 
results of numerical simulations of heat and mass transfer in a porous medium based on 
a mathematical model with separate phase flow accounting for thermal non-equilibrium. 
Computations indicated that the temperature difference between a solid and a liquid was 
less than 1 K in entire region except for the interface between two-phase flow and vapor.

Two-phase flow in a porous medium was studied by Alomar et  al. (2017), (2018) 
based on a two-phase mixture model with and without account for local thermal non-
equilibrium between flow and the solid. The authors analyzed effects of the process 
parameters on the temperature distribution and saturation temperature.

Results of numerical modeling of complete evaporation of a liquid in an aniso-
tropic porous medium obtained on basis of a two-phase mixture model accounting for 
the LTNE are presented in the works of Alomar et  al. (2019) and Alazmi and Vafai 
(2004). It was shown by Alomar et al. (2019) that porous medium anisotropy and ther-
mal conductivity of the solid phase significantly affected the beginning and the end of 
the phase transition process. Alazmi and Vafai (2004) demonstrated that the effect of 
variable porosity was very significant in the vicinity of the solid boundaries. Effects 
of local thermal non-equilibrium were enhanced due to thermal dispersion mechanism. 
Alazmi and Vafai (2004) indicated the range of variation of the process parameters, 
where effects of thermal dispersion and local thermal non-equilibrium must be taken 
into account.

A review of these studies demonstrates that they mostly deal with complex unsteady 
non-equilibrium heat transfer processes at two-phase flow in a porous medium. At mod-
eling of these processes arise difficulties in determining of the heat transfer parameters in 
the region of transition from a subcooled liquid to boiling and afterwards at the transition 
to single-phase flow of superheated vapor. At modeling of heat and mass transfer in two-
phase flow in porous media, it is necessary to take into account the temperature difference 
between the porous body and the flow in the area of transition from two-phase flow to 
vapor at high heat fluxes and high flow velocities.

Similar problems of convective heat and mass transfer at film boiling and condensation 
of nanofluid on a vertical wall in the approximation of the boundary layer with free outer 
flow were considered by Avramenko et al. (2014, 2015a, b, c, 2016, 2018). The authors 
studied the influence of physical properties of the nanofluid and outer flow parameters on 
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the behavior of velocity and temperature profiles, as well on the heat transfer coefficients. 
In addition, stability of the film was investigated.

As follows from the literature review above, velocities of liquid and vapor phases in 
porous wicks of heat pipes are rather low so that fluid flow and heat transfer are laminar. 
Theoretical modelling in the overviewed works was performed using numerical methodol-
ogy, whereas analytical solutions are practically absent. Analytical solutions, should they 
be available, provide a powerful tool for the analysis of the peculiarities of fluid flow and 
heat transfer at boiling in porous media, which clearly indicates physical trends and effects 
of different parameters and alleviates parametric studies. However, such analytical solu-
tions and their analysis are to the knowledge of the authors not available in the literature so 
far.

Thus, the objective of the present study is to derive a novel analytical solution of 
the problem of laminar fluid flow and heat transfer at film boiling of a fluid in a porous 
medium bordering with a heated solid wall. The porous medium will be modeled in the 
Darcy–Brinkman and Darcy–Brinkman–Forchheimer approximation. Effects of differ-
ent thermal boundary conditions on the heated wall (constant temperature and constant 
heat flux) and different parameters (Forchheimer parameter, Darcy number, permeability 
of the porous medium etc.) on the Nusselt number will be studied both qualitatively and 
quantitatively.

Not pretending on modelling of the entire range of non-equilibrium boiling in porous 
media we restricted ourselves by consideration of steady-state film boiling on a vertical 
wall under condition of local thermal phase equilibrium due to relatively low flow rates of 
the coolant.

2 � Mathematical Model

The present paper focuses on the problem of heat transfer at boiling of a liquid in a semi-
infinite porous medium, one side of which is bordering with a heated vertical solid wall 
(Fig. 1). The heat flux density on the heated wall is higher than the critical heat flux (CHF), 
therefore the liquid inside the porous medium evaporates and forms a layer (i.e. a film) of 
vapor between the liquid phase and the heated wall (Fig. 1).

In the chosen coordinate system, x coordinate is aligned with the surface of the wall, 
while the zero point of the y coordinate is located on the wall (Fig. 1). The vapor in the film 
flows steadily upwards in the direction of the larger x-values. The thickness δ of the vapor 
film is small compared to the length of the wall, which justifies modelling the film as a 
boundary layer.

This assumption was confirmed in the study of Kim et al. (2010), where the film thick-
ness was an order of magnitude less than the length of the heated wall (the film thickness 
was 1 … 1.5 mm, the length was 50 … 100 mm).

Both the vapor and the fluid temperature T∞ at the outer boundary of the film, i.e. at 
y = δ, are equal to the saturation temperature at a given pressure. The wall temperature is 
higher than that of the fluid: Tw > T∞.

The problem will be solved under the following assumptions: porous medium is iso-
tropic; inertia forces in the vapor film can be neglected in comparison with the viscosity 
and gravity forces; thermal conductivity and convective heat and mass transfer in the vapor 
film in the streamwise direction (i.e. x-coordinate) are vanishingly small than heat transfer 
in the direction orthogonal to the wall (i.e. y-coordinate); friction is absent at the boundary 
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between the fluid and the vapor phases; the density of the vapor is much smaller than the 
density of the liquid; the surface tension effects at the outer boundary of the vapor film are 
negligible.

Flow regimes in the boiling film in pool boiling are described in detail in the textbook 
of Çengel (2002). The boundaries of the flow regimes are defined with the help of the heat 
flux density and the excess temperature (the difference between the wall temperature and 
the saturation temperature of the liquid at a given pressure). For water, the end of the nucle-
ate boiling and a transition to film boiling occurs for the critical (or peak) heat flux of about 
1 MW/m2 and the excess temperature of about 30 °C. According to Çengel (2002), devel-
oped film boiling for water is observed for the excess temperatures of above 120 °C. We 
restrict, however, our analysis with the case, where the wall temperature does not exceed 
the value of 300 °C, so that the radiation effects remain negligible, see Çengel (2002). Cry-
ogenic applications deal with fluids with very low boiling points (e.g. oxygen, nitrogen or 
helium), whereas film boiling begins below the melting point of the most of heater materi-
als, so that this regime can be operated without any danger of burnout (Çengel 2002).

Subsequently, fluid flow and heat transfer of the vapor film over a heated wall can be 
described by the modified Darcy–Brinkman–Forchheimer model. According to Ward (1964), 
flow regimes in a porous medium can be classified using the Reynolds number based on the 
average velocity and permeability ReK = uav�

√
K∕� . According to this classification, for 

Fig. 1   Schematic of film boiling 
over a vertical wall
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the ReK < 1 fluid flow can be described exclusively by the Darcy’s law. When ReK > 1 , the 
Forchheimer quadratic correction must be taken into account. At high permeability values, the 
Forchheimer correction must also considered, see Nield and Bejan (2006).

According to Nield and Bejan (2006), the full Darcy–Brinkman–Forchheimer model has 
the following form

where

ks stands for thermal conductivity of the solid porous medium itself, and k, as before, 
stands for thermal conductivity of the vapor.

Considering assumptions above, one can simplify system (1)–(3) in the boundary layer 
approach. The result is

where cF is the dimensionless Forchheimer form-drag constant, see Nield and Bejan 
(2006).

The problem is described by the modifed Navier–Stokes equation and the energy equation. 
The Navier–Stokes equation is written in the Brinkman approximation, so that it considers the 
component of the Stokes friction according to Nield and Bejan (2006). This ensures fulfill-
ment of the no-slip boundary condition on the walls. Also, this system of equations includes 
terms that consider the hydraulic resistance caused by the porosity of the medium. Namely, 
the second term in Eq. (6) describes the linear resistance (Darcy) and the third describes non-
linear resistance (Forchheimer). Since we consider fully developed fluid flow, the advection 
terms are not considered. In the steady-state process, velocity and temperature derivatives with 
respect to time are not taken into account.

Two sets of the boundary conditions will be implied while solving Eqs. (6) and (7).
The first set assumes no mechanical interaction between the vapor and the moving liquid. 

For a pure fluid (no porous medium), the following boundary conditions were considered by 
Bromley (1950):

(1)�
1

�
∇

�
� ⋅ �

�

�
= −∇p + �∇2� −

�

K
� −

cF�√
K
���� + gΔ��,

(2)∇ ⋅ � = 0,

(3)(�c)eff� ⋅ ∇T = ∇ ⋅

(
keff∇T

)
,

(4)(�c)eff = (1 − �)(�c)s + �
(
�cp

)
,

(5)keff = (1 − �)ks + �k,

(6)�
d
2u

dy2
− �

u

K
−

cF�√
K
u2 = −gΔ�

(7)
d
2T

dy2
= 0,

(8)u = 0, T = Tw, at y = 0,
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In frames of this set of the boundary conditions, we will additionally study the case where 
the constant temperature of the heated wall is replaced with the constant heat flux on it

which apparently has not been analysed yet in the literature.
For this problem, an increase in the mass flow rate through the vapor film due to the boiling 

is described by Bromley (1950) using the equation of the mass balance:

The second set of the boundary conditions proposed by Ellion (1954) outlines the condi-
tion of a stationary liquid at the outer boundary of the vapor film. Ellion (1954) considered the 
following boundary conditions

Again, as above, we will additionally study here the case where the constant wall tempera-
ture is replaced with the constant heat flux on the wall

For the case of a stationary fluid, Ellion (1954) suggested mass balance equation in a modi-
fied form

Here

whereas Gl is the mass flow rate through the film per unit of the surface length.
The advantages of the proposed models consist in that they enable us to analytically 

analyze a wide range of problems of boiling in porous media under various thermal and 
hydrodynamic boundary conditions.

(9)
(
du

dy

)

y=�

= 0, T = T∞ at y = �

(10)u = 0,

(
dT

dy

)

y=0

= −
qw

keff
at y = 0,

(11)
(
du

dy

)

y=�

= 0, T = T∞ at y = �

(12)dG =
qw

L�
dx.

(13)u = 0, T = Tw at y = 0

(14)u = 0, T = T∞ at y = �

(15)u = 0,

(
dT

dy

)

y=0

= −
qw

keff
, at y = 0,

(16)u = 0, T = T∞ at y = �

(17)qw = L�Gl.

(18)

x

∫
0

Gldx =

�

∫
0

�udy,
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3 � Pure Fluids

At first let us consider heat transfer subject to two sets of the boundary conditions men-
tioned above. For the boundary conditions (8)–(11), Bromley (1950) obtained the veloc-
ity profile in the following form

Boundary conditions (8) and (9) (Tw = const) yield the following equations for the 
vapor film thickness, the temperature distribution and the Nusselt number, see Bromley 
(1950)

where the Rayleigh number Ra is defined as

and the Jakob number is defined as

The boundary conditions (10) and (11) (qw = const) also yield the velocity profile 
(19). Then with the help of Eq. (12) one can obtain

An integration of this equation under the boundary condition

gives

For the temperature profile one can obtain

(19)u =
gΔ��2

�

(
y

�
−
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2�2

)
.

(20)� = 4

√
4keff�ΔTx

gL��Δ�
,
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) y
�
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√
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4
RaJa,
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,
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cpΔT
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dx
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d

dx
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gL��Δ�
.
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Based on Eqs. (27) and (28), one can derive a relation for the Nusselt number

For the boundary conditions (13)–(16), Avramenko et al. (2015a) obtained the velocity 
profile in the following form

Using the boundary conditions (13) and (14) (Tw = const) Ellion (1954) obtained the fol-
lowing equations for the vapor film thickness and the Nusselt number

The temperature distribution has again the form of Eq. (21).
Boundary conditions (15) and (16) (qw = const) also lead to the velocity profile (30). 

Using this profile, one can come to the relation for the mass flowrate

Then, based on Eqs. (17) and (18), one can obtain a relation for the vapor layer thickness

The use of the temperature profile (28) yields again Eq.  (32) for the Nusselt number. 
So, for the boundary conditions (13), (14) and (15), (16) in view of Eqs.  (17) and (18) 
for the mass flow rate, the Nusselt number remains the same for the boundary conditions 
Tw = const and qw = const.

All results described above are summarized in Table 1.

4 � Darcy–Brinkman Approach

According to Avramenko et  al. (2015b), in the range of ReK < 1 the quadratic drag (the 
third term) in the right-hand side of Eq. (6) is much smaller than the linear drag (the sec-
ond term). Thus, Eq. (6) can be reduced to the following form
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RaJa.
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which corresponds to the Darcy–Brinkman approach. The general solution of the homog-
enous Eq. (35) is

Let us separately consider two cases mentioned above: (1) no mechanical interaction 
between the vapor and the moving liquid on the outer boundary of the vapor film and (2) a 
stationary liquid.

4.1 � No Mechanical Interaction

In this case described by the boundary conditions (8)–(11), Eq. (36) yields the following 
velocity profile

Here

is the Darcy number, whereas � =
y

�
 is a dimensionless coordinate.

Profile (37) results in the relation for the mass flow rate through the vapor film

We will split the further investigation into two separate subcases: Tw = const and 
qw = const.

4.1.1 � Condition Tw = const

For the condition Tw = const, the differential Eq. (12) for the film thickness has the follow-
ing form

where the effective thermal conductivity of the porous medium filled with vapor is deter-
mined by the relation (5).

A solution of this equation under the boundary condition (26) yields the following tran-
scendental equation for the film thickness

(35)�
d
2u

dy2
− �

u

K
= −gΔ�,

(36)u =
gKΔ�

�
+ C1 cosh

�
y√
K

�
+ C2 sinh

�
y√
K

�
.
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gKΔ�

�
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cosh
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�

cosh
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K
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(39)G =

�

∫
0

�udy =
g�KΔ�
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K tanh
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Da
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.
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d

dx
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K tanh
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L��
,
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or

The linear temperature profile gives following equation for the Nusselt number

A combination of Eqs. (41) and (43) gives

or

whereRa� = RaDax,

Thus, we have a transcendental equation to find the Nusselt number as a function 
of the local Darcy number Dax and the Nusselt number Nu0 for pure fluids, Eq.  (22). 
Cheng and Verma (1981) used dimensionless Rayleigh and Darcy numbers, Ra� and Ja , 
to describe heat transfer in porous media. In view of this, we can also recast Eq. (41) as

where

This is another transcendental equation for the Nusselt number. Unfortunately, this 
equation cannot be solved analytically in a closed form. It can be however solved ana-
lytically in particular limiting cases. At first, we will analyze the limiting case of small 
permeability of the porous medium: K → 0 and Da → 0.

Case Da → 0  After expanding the left-hand side of Eqs. (41) or (42) in the McLaren series, 
one can obtain a relation for the film thickness
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K tanh
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x
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2
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It gives an equation for the Nusselt number

The Nusselt number in porous media can be expressed with the help of the Nusselt 
number in a pure fluid. Then Eq. (50) can be transformed to

where Da0 =
K

�2
0

 , and δ0 is the vapor film thickness in fluid flow without a porous medium.
As expected, Eqs. (50) and (51) indicate that heat transfer degenerates, if permeabil-

ity of the porous medium approaches to zero.

Case Da → ∞  A series expansion of the left-hand side of Eqs.  (41) or (42) at Da → ∞ 
yields

where δ0 is the film thickness for a pure fluid. This equation can be recast as

A substitution

enables transforming Eq. (53) to

This cubic equation has three roots. A physical meaning has the following root

where

Considering a relation
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one can further calculate the Nusselt number with the help of Eq. (56).
There exists an easier way to derive a relation for the Nusselt number. For the condition 

K → ∞, an assumption Da0 ≈ Da is valid. As a result, one can obtain

This leads to the following equation

The normalized Nusselt numbers Nu
/
Nu0 calculated by Eqs. (58) and (60) are depicted 

in Fig. 2.
For Da > 1.5, the relative differences between Eqs. (58) and (60) are less than 3%.

4.1.2 � Condition qw = const

For this condition, the differential equation, Eq. (12) for the film thickness looks as

A solution of this equation under the boundary condition (26) brings the following tran-
scendental equation for the film thickness

(58)
Nu

Nu0
=

𝛿0

𝛿
= 𝛿−1
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�
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4
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.
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d
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�
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��

�
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=
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L�
.

Fig. 2   Dependence of the nor-
malized Nusselt number Nu

/
Nu

0
 

on the Darcy number Da
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Using (28), one can obtain from Eq. (62)

This leads further to the equation

and finally

Case Da → 0  For this case, the film thickness can be expressed as

and the Nusselt number looks as

or

Figure 3 depicts the Nusselt numbers calculated by Eqs. (50), (67) and by Cheng and 
Verma (1981), who considered also nonlinear effects (advection and convection). The dif-
ferences between the present calculations using a linear approach and the results of the 
nonlinear approach obtained by Avramenko et  al. (2018) increase with the decreasing 
Jacob numbers.

Case Da → ∞  For this case, the equation for the film thickness

is transcendental and cannot be solved analytically.
However, we can obtain its solution under the assumption Da0 ≈ Da

This yields a solution for the Nusselt number
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K tanh
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4.2 � Stationary Fluid

For a stationary fluid under the boundary conditions (13)–(16), Eq. (36) yields the follow-
ing velocity profile

In this case, the mass flow rate is

Again, we will further consider two separate subcases: Tw = const and qw = const.

4.2.1 � Condition Tw = const

For the condition Tw = const, Eqs. (17) and (18) give

Using Eq.  (43), one can obtain the following transcendental equation for the Nusselt 
number

(71)
Nu
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.
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2
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2

�
⎞⎟⎟⎟⎠
.
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.

Fig. 3   Dependence of the Nusselt 
number on the Jacob number Ja



Darcy–Brinkman–Forchheimer Model for Film Boiling in Porous…

1 3

or

Another form of this transcendental equation is

Now let consider limiting cases, where closed form solutions of Eq.  (74) can be 
obtained.

Case Da → 0  A series expansion of the left-hand side of Eq.  (74) in the McLaren series 
yields

In its turn, Eq. (78) enables obtaining a solution for the Nusselt number

Finally, one can reduce it to

Case Da → ∞  A series expansion of the left-hand side of Eq. (74) in the McLaren series at 
K → ∞ brings

Substituting Eq. (54) in Eq. (81), one can obtain

A physically meaningful solution of this equation is

where
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An approximate solution in present case is

Comparisons of the calculations by Eq. (58), as well as Eqs. (83) and (85) are illus-
trated in Fig. 4.

In the case of a stationary fluid (Fig. 4), like in the case of a moving fluid (Fig. 2), 
the normalized Nusselt numbers Nu

/
Nu0 decrease with the decreasing Darcy number. 

However, in the case of a stationary fluid, this decrease is weaker.

4.2.2 � Condition qw = const

Based on Eqs. (17) and (18), one can obtain

or

This equation can be transformed to the following transcendental equation for the 
Nusselt number

This equation also can be rewritten in the following form
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.
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Fig. 4   Dependence of the nor-
malized Nusselt number Nu

/
Nu

0
 

on the Darcy number Da
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or

Again, let us consider two limiting cases that enable obtaining closed form solutions of 
Eq. (90).

Case Da → 0  Using Eq. (66) for the film thickness and Eq. (67) for the Nusselt number, 
one can finally obtain

Case Da → ∞  The equation for the film thickness looks as

which yields

All solutions obtained in frames of the Darcy–Brinkman approach are summarized in 
Table 2.

5 � Darcy–Forchheimer–Brinkman Approach

According to Ward (1964), under the condition

the Darcy–Forchheimer regime occurs, i.e. it is necessary to consider both the Darcy linear 
drag and the Forchheimer quadratic drag. In this case, momentum Eq. (6) holds.

For the subsequent comparisons, it is convenient to present the solution of Eq.  (6) in a 
dimensionless form. For this purpose, we transform Eq.  (6) using dimensionless variables, 
such as

where
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here Fh is a dimensionless parameter.
Equation  (95) has a symmetry, which can be described by the following infinitesimal 

generator

It means that the function U is an invariant of this transformation and, according to Olver 
(1993), it can be accepted as a new independent argument. Then we can use a substitution

Substituting Eq. (100) into Eq. (95) one can obtain

Having performed a separation of variables and an integration, we have

The integration constant C2 is equal to zero because of the boundary condition

The left-hand side of the integral in Eq. (102) is an elliptic integral of the first kind. The 
inverse function of this solution is

where sn is the Jacobi elliptic function,

rootn is the n the ordinal number of a particular root of the equation

(97)U =
u�

gΔ��2
,

(98)Fh =
cFg�Δ�K

3∕2

�2
.

(99)� =
�

��
.

(100)
dU

d�
= s(U),

d
2U

d�2
= s(U)

ds(U)

dU
.

(101)s
ds

dU
−

U

Da
−

Fh

Da
2
U2 = −1.

(102)±

U

∫
0

1√
C1 − 2U +

1

Da
U2 +

2

3

Fh

Da
2U

3

dU = � + C2.

(103)u = 0 at y = 0

(104)U = root3 +
(
root2 − root3

)
sn2(Z|R ),

(105)Z =
1

2Da

√
−
�2

3

(
3Da + 2Fh

(
root2 + 2root3

))
,

(106)R =
root2 − root3

root1 − root3
,

(107)3Da
2C1 − 6Da

2W + 3Da
2W2 + 2FhW3 = 0.
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It is necessary to say that Eq.  (98) is a nonlinear differential equation. According to 
Kamke (1977), this type of equations can have different solutions. In the present case, 
Eq. (104) is not acceptable as a solution of the mathematical problem at hand.

Hence, we will try to obtain another approximate solution and then to compare it with 
the numerical solution. For this purpose, we will perform a linearization of Eq. (95). We 
will further introduce an unknown mean velocity Um in the last term of the left-hand side 
of Eq. (95). This yields as a result

At first, we will consider case of no mechanical interaction and then stationary fluid.

5.1 � No Mechanical Interaction

A dimensionless solution of the linearized Eq. (108) with the boundary conditions (8), (9) 
or (10), (11) has the following form

The mean velocity Um can be expressed from Eq. (109), such as

The condition (94) indicates that it necessary to take into account the Forchheimer drag 
when ReK ≥ 1 . It means that at slow fluid flow in a porous medium we should as usu-
ally consider the problem in frames of the model for high Darcy numbers. In this case, 
Eq. (110) for the mean velocity Um can be presented in the following form

A substitution of Eq. (111) into Eq. (109) gives

A comparison of the numerical integration of Eq. (108) and the linearized solution (108) 
is presented in Fig. 5. It is evident that the numerical solution of Eq. (108) and the approxi-
mate analytical solution (112) agree quite well. The differences between them decrease, if 
the dimensionless parameters Da and Fh increase.
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d
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2
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Of these two parameters, the variation of the Darcy number causes the most noticeable 
effect. As can be seen from Eq. (108), the square of the Darcy number is included in the 
denominator of the last term on the left-hand side. With an increase in the Darcy number, 
the role of this last term declines. Therefore, the difference between the numerical and ana-
lytical solutions decreases with the increasing Darcy number.

Expanding Eq.  (111) in the McLaren series yields a dimensional form of the mean 
velocity

Let us again consider two separate subcases: Tw = const and qw = const.

5.1.1 � Condition Tw = const

Using Eqs. (12) and (113), one can obtain

where δ0 is the film thickness for a pure fluid (no porous medium, see Table 1). Using the 
substitution (54), one can transform Eq. (114) to

A solution of this equation has four roots, which are cumbersome and therefore not pre-
sented here.

An approximate simplified approach assumes that Da0 ≈ Da . In frames of this approach, 
one can obtain

(113)um =
gΔ��2

3�
−

2cFg
2�Δ�2�6

45�3
√
K

−
2gΔ��4

15�K
.

(114)�4 −
4�6

9K
−

7cFg�Δ�

45�2
√
K
�8 = �4

0
,

(115)z2 −
4

9Da
0

z3 −
7Fh

45Da
2

0

z4 = 1.

Fig. 5   Comparisons of the numerical integration of Eq.  (108) and the analytical solution (112) for the 
velocity profile in a vapor film depending on the Darcy number and the parameter Fh
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Then the approximate solution for the Nusselt number is

Figure 6 depicts comparisons of the calculated normalized Nusselt numbers based on 
Eq. (58) in combination with one of four roots of Eq. (115) against the normalized Nusselt 
numbers by Eq.  (117). It is evident that these curves are in a good agreement with each 
other.

Figure 6 indicates that account for the non-linear Forchheimer resistance is the reason 
for the Nusselt number to tend to zero at large values of permeability (Da), i.e. when the 
physical properties of the medium tend closer to those of a pure liquid.

As expected, an increase in the parameter Fh leads to heat transfer deterioration. Obvi-
ously, it can be attributed to the additional hydrodynamic drag.

5.1.2 � Condition qw = const

For this condition, the differential Eq. (12) yields an equation for the vapor film thickness

Unfortunately, this equation cannot be solved. However, under the assumption Da0 ≈ Da 
we can obtain an approximate solution in the following form
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0
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√
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−
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= �3

0

Fig. 6   Comparisons of the numerically and analytically computed normalized Nusselt numbers Nu
/
Nu

0
 

depending on the Darcy number and the parameter Fh
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Consequently

Figure  7 depicts computations based on Eqs.  (117) and (120). They indicate that the 
effect of porosity expressed in the form of the Darcy number on the normalized Nusselt 
number is almost the same for the boundary conditions Tw = const and qw = const.

5.2 � Stationary Fluid

The solution of the dimensionless linearized Eq. (108) with the boundary conditions (13), 
(14) or (15), (16) has the following form

The mean velocity Um can be expressed from Eq. (109) as

(119)� =
�
0

3

√
1 −

2

5Da
−

2Fh

15Da
2

.

(120)
Nu

Nu0
= 3

√
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−
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2
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2
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15Da
2

0

.

(121)U =
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2
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cosh

�
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√
Da+FhUm
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�
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�
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∫
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2

�
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Da + FhUm
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��
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Fig. 7   Comparisons of the numerically and analytically computed normalized Nusselt numbers Nu
/
Nu

0
 

depending on the Darcy number and the parameter Fh
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In frames of the model approach for high Darcy numbers, the mean velocity Um, 
Eq. (110), can be presented in the following form

A substitution of Eq. (123) into Eq. (121) yields

Results of the numerical integration of Eq. (108) and calculations by the linearized ana-
lytical solution (124) are shown in Fig. 8.

One can see from here that the agreement between the numerical solution of Eq. (108) 
and the approximate analytical solution (124) is very good.

An expansion of Eq.  (123) into McLaren series yields a dimensional relation for the 
mean velocity

As above, let us again consider two separate subcases: Tw = const and qw = const.

5.2.1 � Tw = const

Using Eqs. (125), (17) and (18), one can obtain

(123)Um =
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1

10Da

12

(
1 +

1Fh

120Da
2

) .

(124)U =
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2 + Fh
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⎛⎜⎜⎜⎝
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�
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�
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�

cosh

��
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⎞⎟⎟⎟⎠
.

(125)um =
gΔ��2

12�
−

cFg
2�Δ�2�6

1440�3
√
K

−
gΔ��4

120�K
.

Fig. 8   Comparisons of the numerically integrated and the analytically predicted velocity profiles in a vapor 
film depending on the Darcy number and the parameter Fh



	 A. A. Avramenko et al.

1 3

A substitution of Eq. (54) allows recasting Eq. (126) as

Again, we have four roots of Eq. (127).
An approximate solution of Eq. (126) at Da0 ≈ Da looks as

Equation (128) leads to the solution for the Nusselt number

Figure  9 demonstrates comparisons of the calculations by Eq.  (58) in combination 
with one of four roots of Eq. (127) and by Eq. (129). It is evident that both compared 
solutions agree well with each other.

The curves depicted in Figs.  5 and 8 indicate that for a stationary fluid the effects 
of porosity vanish at lower values of the Darcy number than for the conditions of “no 
mechanical interaction”.

5.2.2 � Condition qw = const

In this case we have

Approximate solutions for the film thickness and the Nusselt number are

Figure 10 shows curves calculated by Eqs. (129) and (132). In this case, the effect of 
the parameter Fh is somewhat stronger than at the condition of qw = const.

All solutions in frames of the Darcy–Forchheimer–Brinkman approach are summa-
rized in Table 3.
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6 � Conclusions

The present work focuses on a study of heat transfer during film boiling of a liquid on a 
vertical heated wall immersed in a porous medium subject to variation of different param-
eters of the porous medium and heating conditions at the wall.

Heat transfer peculiarities during film boiling in a porous medium and in the absence of 
a porous medium were compared against each other. Significant differences are observed 
for small Darcy numbers Da < 2.

The simulations of heat transfer were performed using a model of a porous medium in 
the Darcy–Brinkman and Darcy–Brinkman–Forchheimer approximation.

Taking into account the non-linear Forchheimer resistance causes the Nusselt number 
to tend to zero at large values of permeability (Da), i.e. when the properties of the porous 
medium tend closer to those of pure liquid.

Fig. 9   Comparisons of the numerically and analytically computed normalized Nusselt numbers Nu
/
Nu

0
 

depending on the Darcy number and the parameter Fh

Fig. 10   Comparisons of the 
numerically and analytically 
computed normalized Nusselt 
numbers Nu

/
Nu

0
 depending 

on the Darcy number and the 
parameter Fh
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It was shown that heat transfer intensity during film boiling in a porous medium is 
weaker than in a free fluid (without porosity) and decreases with the decreasing perme-
ability of the porous medium. In the Darcy–Brinkman model depending on the interaction 
conditions at the vapor–liquid interface an abrupt decrease in heat transfer was observed at 
Da < 5.

The predicted values of the heat transfer coefficient for the boundary conditions of the 
constant wall temperature and constant heat flux on the wall were compared with the data 
of Cheng and Verma (1981). Our results for the Nusselt numbers demonstrate qualitative 
agreement with those of Cheng and Verma (1981), although lie below them.

The use of a porous medium model in the Darcy–Brinkman–Forchheimer approxima-
tion showed the effect of the Forchheimer parameter on heat transfer during film boiling in 
a porous medium. An increase in the Forchheimer parameter leads to heat transfer deterio-
ration, which is more significant at small values of the Darcy number. Effects of different 
thermal boundary conditions on the heated wall on the heat transfer are insignificant.
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