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Abstract
We consider a risk model in discrete time with dividends and capital injections. 
The goal is to maximise the value of a dividend strategy. We show that the optimal 
strategy is of barrier type. That is, all capital above a certain threshold is paid as 
dividend. A second problem adds tax to the dividends but an injection leads to an 
exemption from tax. We show that the value function fulfils a Bellman equation. As 
a special case, we consider the case of premia of size one. In this case we show that 
the optimal strategy is a two barrier strategy. That is, there is a barrier if a next divi‑
dend of size one can be paid without tax and a barrier if the next dividend of size 
one will be taxed. In both models, we illustrate the findings by de Finetti’s example.

Keywords  Discrete risk model · Optimal dividend problem · Capital injections · 
Tax · Bellman equation · Two barrier strategy · de Finetti model

Mathematics Subject Classification  Primary 91B30 · Secondary 60G42 · 60K30 · 
60J10

1  Introduction

We consider the surplus process of an insurer. A classical measure for the risk are 
the ruin probabilities, see for example [2, 10]. Even though ruin probabilities have to 
be seen as a technical measure, they were criticised since neither the time to ruin nor 
the deficit at ruin is taken into consideration. De Finetti [4], see also [6], proposed a 
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more economical tool: the expected value of discounted dividends (until ruin). We 
will consider this, as the further measures mentioned, as a stability criterion. Divi‑
dends have, like ruin probabilities, the disadvantage that the deficit at ruin is not 
taken into account. This was the reason that Kulenko and Schmidli [5], motivated 
by a remark in [3], introduced capital injections. The insurer is not allowed to get 
ruined and has to make a capital injection whenever the surplus becomes negative. 
The measure is then the discounted value of dividends minus the penalised capital 
injections. The discounting rate has to be seen as a preference parameter. That is, 
dividends today are preferred to dividends tomorrow, and capital injections tomor‑
row are preferred to capital injections today. Since the capital injections are man‑
datory, the deficit at ruin matters. In a Markovian environment, the value function 
turns out to be concave, see [5]. This implies that the optimal strategy is of barrier 
type. That means, all capital above a barrier is paid as dividends, and no dividend is 
paid below the barrier.

Since capital injections can only be avoided by the price of no dividend pay‑
ments, Schmidli [7–9] introduced tax payments for dividends. Capital injections 
lead to an exemption from tax. That is, the amount injected can later be paid as 
dividends without paying tax. For example in Switzerland a capital injection can be 
accounted as capital reserve and later be paid back as dividend without taxes. Alter‑
natively, dividends without tax are paid at times when the surplus without dividends 
is at a maximum. Therefore, the tax can also be interpreted as a tax for the com‑
pany and so less surplus is present to pay as dividends, see also [1]. In the continu‑
ous time models mentioned above, the optimal strategy turns out to be very simple. 
When an instantaneous dividend can be paid without tax, a barrier strategy with the 
same barrier as in the case without tax is applied. When taxes have to be paid, also a 
barrier strategy is applied. Unless both barriers are at zero, the second barrier is (as 
expected) higher than in the case without tax.

We now work on a probability space (Ω,F, IP) . Let {Yi} be iid modelling the 
profit of an insurance portfolio in period i. Then the post-injection—pre-dividend 
surplus at time n is

where x is the initial capital, Un−1 the dividend at time n − 1 and Ln the capital injec‑
tion at time n. In order that the problem is well defined and not trivial, we assume 
IP[Y < 0] > 0 and IE[|Y|] < ∞ . We denote by pk ∶= IP[Y = k] for k ∈ ℤ . The infor‑
mation available at time n is given by the natural filtration of the {Yk} , IF = (Fn)n∈IN . 
The processes {Un} and {Ln} have to be adapted to IF.

For the problems below we only have to choose the dividend strategy {Uk} 
because making an injection before it is necessary is not optimal. Since there is no 
advantage to pay dividends and make a capital injection at the same time, we only 
allow dividends such that Xn − Un ≥ 0 . The capital injection process {Lt} will then 
be determined as the minimal process that keeps the surplus positive. That is, {Lt} is 
given through

Xn = Xn−1 − Un−1 + Yn + Ln, X0 = x,

(1)LU
n
= (Xn−1 − Un−1 + Yn)

− ,
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where a− ∶= max{−a, 0} and a+ ∶= max{a, 0} denote the negative part and positive 
part of a, respectively. We aim to determine the optimal strategy and the correspond‑
ing value function. We will start with the model without tax and then deal with the 
model with tax. In both cases, we prove Bellman’s equation and will show that the 
optimal strategy is of barrier type. Further, as an example we look at a model con‑
sidered by de Finetti [4].

2 � The model without tax

The results in this section follow similarly as in the model without injections, see [6, 
Section 1.2].

2.1 � The value function

We denote the value of a dividend strategy {Ut} by

where 𝜂 > 1 is a penalty factor (higher administration costs for injections than for 
dividends) and � ∈ (0, 1) is the preference factor. Choosing � = 1 would lead to 
Xn − Un ≡ 0 under the optimal strategy. We are looking for the value function

and for the optimal strategy {U∗
t
} , for which V(x) = VU∗

(x).
Let Wn ∶=

∑n

k=0
(Uk − �Lk) . Then

In particular, this implies that it cannot be optimal to inject capital before it is neces‑
sary since later injections are discounted stronger.

We start by proving some useful properties.

Lemma 1  V(x) has the following properties:

	 (i)	 V(x) is bounded by

(2)VU,L(x) = IE

[
∞∑
k=0

� k(Uk − �Lk)

]
,

V(x) = sup
U,L

VU,L(x) = sup
U

VU,LU (x) ,

(3)

∞∑
k=0

� k(Uk − �Lk) =

∞∑
k=0

∞∑
n=k

(1 − �)�n(Uk − �Lk)

= (1 − �)

∞∑
n=0

�nWn.

(4)x +
�(IE[Y+] − �IE[Y−])

1 − �
≤ V(x) ≤ x +

�IE[Y+]

1 − �
.



238	 K. Bata, H. Schmidli 

1 3

	 (ii)	 V(x) is strictly increasing and concave. We have further V(x) − V(y) ≥ x − y 
for all x ≥ y ≥ 0.

Proof 

	 (i)	 For the upper bound we consider the pseudo-strategy U′ with U�
0
= x and 

U�
n
= Y+

n
 for n ≥ 1 and L�

n
= 0 . Because X′

n
≤ 0 , we have W ′

n
≥ Wn for any 

strategy. From (3) we get 

Changing the injection strategy to LU�

n
= Y−

n
 we get an admissible strategy. 

The value is 

 which yields the lower bound.
	 (ii)	 For a strategy U with initial capital y we define a strategy U′ with initial capital 

x ≥ y through U�
0
= U0 + x − y and U�

n
= Un for n ≥ 1 , and LU

n
= LU

�

n
 for all n. 

Then Xn = X�
n
 for all n ≥ 1 . This causes V(x) ≥ VU�

(x) = VU(y) + x − y which 
leads the assertion by taking the supremum. Concavity follows as in [5].

	�  ◻

In the following we define V(x) = V(0) + �x for x < 0 , and we let Y be a ran‑
dom variable with the same distribution as Yk . The following is proved in [6, 
Lemma 1.1].

Proposition 1  The value function fulfils Bellman’s equation

	�  ◻

Note that u can only take values in a compact interval. Since V(x) is concave, 
the function u ↦ IE[V(x − u + Y)] is concave, too, and therefore continuous. 

VU(x) = IE

[
∞∑
n=0

�n(Un − �LU
n
)

]
≤ IE

[
∞∑
n=0

�n(U�
n
− �LU

�

n
)

]

= x + IE

[
∞∑
n=1

�nY+
n

]
= x +

�IE[Y+]

1 − �
.

V(x) ≥ VU�

(x) = x + IE

[
∞∑
n=1

�n(Y+
k
− �Y−

k
)

]

= x +
�(IE[Y+] − �IE[Y−])

1 − �
,

(5)

V(x) = sup
u∈[0,x]

{u + �IE[V(x − u + Y)]}

= sup
u∈[0,x]

�
u + �

�
∞�

k=⌊u−x⌋
pkV(x − u + k) +

⌊u−x−1⌋�
k=−∞

pk[V(0) + �(x + k − u)]

��
.
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Thus there is an u(x) where the supremum is attained. If more than one value 
u exists at which the supremum is attained, then by concavity the supremum is 
also attained at all values between. We therefore can choose u(x) as the maximal 
value at which the supremum is attained.

2.2 � The optimal dividend strategy

We can now characterise the optimal strategy.

Theorem 1  The function u(x) has the following properties:

	 (i)	 The number x0 ∶= sup{x ∶ u(x) = 0} is finite; i.e., for x large enough a divi-
dend should be paid immediately.

	 (ii)	 We have u(x) = (x − x0)
+ ; i.e., the optimal strategy is of barrier type.

	 (iii)	 Un = u(Xn) is an optimal strategy.
	 (iv)	 If f(x) is a continuous function fulfilling (5) with f (x) ≤ x + � for some � , then 

f (x) = V(x).

We postpone the proof to Appendix 2.
A numerical solution can be obtained recursively as described in [6, Lemma 1.4]. 

The conditions are fulfilled since we only have to determine values for x ∈ [0, x̂] , where 
x̂ = (1 − 𝜁)−2𝜁(𝜁 + 𝜂 − 1)IE[Y−].

We next show that it suffices to consider integer initial capital only. The proof can be 
found in Appendix 1.1.

Lemma 2  We can choose x0 ∈ IN . In particular, if x ∈ IN , then Xn ∈ IN for all n. 
Moreover, under the optimal strategy the process visits integer points only after the 
first injection or the first dividend.

2.3 � All surplus as dividend

A possible strategy is to pay all positive capital as dividend and make an injec‑
tion whenever the surplus is negative. This is optimal if the value function is 
V(x) = x + c ∶= x + (1 − �)−1�(IE[Y+] − �IE[Y−]) =∶ f (x) . We now look for condi‑
tions that this is the case. That is, the optimal strategy yields X∗

n
= 0 . We need to show 

that f(x) solves (5). For x̃ = x − u , this is equivalent to

x̃ + c ≥ 𝜁

(
∞∑

k=−x̃

pkf (x̃ + k) +

−x̃−1∑
k=−∞

pk[c + 𝜂(x̃ + k)]

)

= 𝜁

(
∞∑

k=−x̃

pk[x̃ + k + c] +

−x̃−1∑
k=−∞

pk[c + 𝜂(x̃ + k)]

)
.
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This is equivalent to

The left hand side is convex in x̃ . For x̃ = 0 we obtain equality by the definition of c. 
The inequality is therefore fulfilled, if it is fulfilled for x̃ = 1 . That is, 
1−�

�
(1 + c) + (� − 1)IE[(Y + 1)−] ≥ IE[Y] . We therefore get the condition

E.g., the condition is fulfilled if �� ≤ 1 . Note that, in contrast to [5], the condition 
depends on the distribution of Y.

2.4 � Example: de Finetti’s model

We now consider the following distribution for Y, IP[Y = 1] = 1 − IP[Y = −1] = p 
introduced in [4]. We can assume (6), or equivalently p ≥ (�� − 1)∕(�(� − 1)) , since 
otherwise we already know the solution V(x) = x + �(p − �(1 − p))∕(1 − �) and the 
optimal strategy u(x) = x . We find

Then

Further, for n ≥ 1

Thus, V(n) = C1�
n
1
+ C2�

n
2
 with

Note that 0 < 𝜆2 < 1 < 𝜆1 , �1 + �2 = 1∕(p�) and �1�2 = (1 − p)∕p . The equation for 
V(1) yields

This can be written as

1 − 𝜁

𝜁
(x̃ + c) + (𝜂 − 1)IE[(x̃ + Y)−] ≥ IE[Y].

(6)(1 − 𝜁) ≥ 𝜁(𝜂 − 1)IP[Y < 0].

(7)

V(x)

=

⎧
⎪⎨⎪⎩

�[pV(1) + (1 − p)(V(0) − �)] , for x = 0,

�(pV(x + 1) + (1 − p)V(x − 1)) , for x ∈ [1, x0],

V(x0) + x − x0 , for x ∈ [x0 + 1,∞).

V(1) =
(1 − (1 − p)�)V(0) + (1 − p)��

�p
.

V(n + 1) =
V(n) − � (1 − p)V(n − 1)

�p
.

�1∕2 =

1

�
±
√

(
1

�
)2 − 4p(1 − p)

2p
.

p�(C1�1 + C2�2) = (1 − (1 − p)�)(C1 + C2) + (1 − p)�� .
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At x0 we find

Thus,

This has the solution

We want to maximise V(0) = C1 + C2 , or equivalently to maximise

The first order condition is

or equivalently

The solution has to be found numerically.

3 � The model with tax

3.1 � The value function

We now introduce tax on dividends. Let 1 − � ∈ (0, 1) denote the tax rate. As in [7–9], 
a capital injection leads to an exemption for tax up to the injected amount. By Zn we 
denote the amount we could immediately pay as dividend without having to pay tax. 
That is, letting Z0 = z be the initial exemption, Zn+1 ∶= (Zn − Un)

+ + Ln+1 . The value 
of a dividend strategy U is then defined as

C1�1 + C2�2 = (�1 + �2 − �1�2)(C1 + C2) + �1�2�.

C1�
x0
1
+ C2�

x0
2
+ 1 = V(x0 + 1) = C1�

x0+1

1
+ C2�

x0+1

2
.

(�1 − 1)�2C1 − (1 − �2)�1C2 = � ,

(�1 − 1)�
x0
1
C1 − (1 − �2)�

x0
2
C2 = 1.

C1 =
p�(1 − �2)

1 − �

�1 − ��
x0
2

�
x0+1

1
− �

x0+1

2

,

C2 = −
p�(�1 − 1)

1 − �

��
x0
1
− �2

�
x0+1

1
− �

x0+1

2

.

�(�
x0
1
− �

x0
2
) + �1 − �2

�
x0+1

1
− �

x0+1

2

.

�(log �1 − log �2)�
x0
1
�
x0
2
= log �1�

x0+1

1
− log �2�

x0+1

2
,

�1 log �1�
−x0
2

− �2 log �2�
−x0
1

= �(log �1 − log �2).
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It cannot be optimal to inject more capital than needed. We therefore omit the let‑
ter L in VU(x) because the injection strategy is determined by the dividend strategy 
U. The value function is defined as V(x, z) = supU VU(x, z) where the supremum is 
taken over all adapted dividend strategies U. Because of the tax we can allow here 
the value � = 1.

We will need below the value of the strategy if we pay all surplus as dividend. 
Call this reference value �(x, z) . We will calculate �(x, z) later.

The value function has the following properties. The proof is found in the 
Appendix 1.2

Lemma 3 

	 (i)	 V(x, z) is bounded byWe now work on a pr

	 (ii)	 V(x, z) is strictly increasing in both variables.
	 (iii)	 V(x, z) is concave in x.
	 (iv)	 V(x, z) is Lipschitz-continuous.

A verification theorem is proved in Appendix 3.

Theorem  2  Suppose f ∶ IR → IR is continuous and fulfils f (x, z) ≤ x + � for all x 
and for some 𝜅 > 0 , f (x, z) = f (0, z − x) + �x for x ≤ 0 and for x ≥ 0

Then f (x, z) = V(x, z) . On the other hand, V(x, z) fulfils (10).

(8)VU(x) = IE

[
∞∑
k=0

� k(min{Uk, Zk} + �(Uk − Zk)
+ − �Lk)

]
.

(9)
min{x, z} + �(x − z) + �

�IE[Y+] − �IE[Y−]

1 − �
≤ V(x, z)

≤ min{x, z} + �(x − z) +
�IE[Y+]

1 − �
.

(10)

f (x, z) = sup
0≤u≤x

min{u, z} + �(u − z)+

+ �

∞∑
k=−∞

pkf (x + k − u, (z − u)+).
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3.2 � The optimal strategy

As in Sect. 2 it follows that an optimal strategy exist. We denote by u(x, z) the opti‑
mal dividend and we choose the largest value for u if the maximiser is not unique. 
The optimal strategy has the following properties.

Theorem 3 

	 (i)	 The number x1 ∶= sup{x ∶ u(x, z) = 0 for some z ≥ 0} is finite; i.e., for x large 
enough a dividend should be paid.

	 (ii)	 For each z, there is x0(z) , such that u(x, z) = (x − x0(z))
+.

Proof  The first assertion follows similarly as in the proof of Theorem 1. The second 
assertion follows from the concavity of V(x, z) in the first argument. 	�  ◻

The optimal strategy is thus a barrier strategy, where the barrier may depend on 
Zt.

Similarly as in Lemma 2 it follows that we can restrict to integer values. We thus 
assume in the following that x, z, u ∈ IN.

3.3 � Premia of size one

We now make the additional assumption IP[Y ≥ 2] = 0 and p1 > 0 . That is a risk 
model in discrete time where the monetary unit is the premium income of a period.

Remark  If p1 = 0 , that is IP[Y ≤ 0] = 1 , we have V(0, z) = (1 − �)−1�� IE[Y] . 
The solution can then be calculated recursively for n ∈ IN from (10). 
If p0 = 0 , then either V(x + 1, z) = �

∑−1

k=−∞
pkV(x + 1 + k, z) or 

V(x + 1, z) = �z≥1 + ��z=0 + V(x, (z − 1)+) . We choose the larger of the two val‑
ues. If p0 > 0 , then either V(x + 1, z) = (1 − �p0)

−1�
∑−1

k=−∞
pkV(x + 1 + k, z) or 

V(x + 1, z) = �z≥1 + ��z=0 + V(x, (z − 1)+) , whichever is larger.

3.3.1 � Preliminaries

Let 𝜉 > 1 be the solution to the equation �IE[�Y ] = 1 . By f0(x) for x ≥ 0 denote the 
solution to

where f0(0) is the value at zero of the model without tax. From

(11)f0(x) = �

[
1∑

k=−x

pkf0(x + k) +

−x−1∑
−∞

pk(f0(0) + �(x + k))

]
,
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we see that the solution exists and is unique. Note that for x ≤ x0 + 1 , where x0 was 
defined in Lemma 2, f0(x) is the value of the model without tax.

Lemma 4  We have f0(x + 1) − f0(x) ≥ 1 for all x ≥ 0.

We prove the result in Appendix 1.3.
The result shows that in the model without tax we have to choose the initial value 

such that the minimal increment is one. In particular, f0(x) is strictly increasing with 
f0(x) → ∞ as x → ∞.

Let

and choose C such that min{f (x + 1, 0) − f (x, 0) ∶ x ≥ 0} = � . We let x1 be the argu‑
ment for which the minimum is attained. Note that

This implies that x0 ≤ x1 . We need to verify the existence of x1.

Lemma 5  The constants C and x1 exist.

For the proof see Appendix 1.4.

3.3.2 � The solution to the problem

We can now solve the problem.

Theorem 4  If IP[Y ≥ 2] = 0 and p1 > 0 then

The constant x0 is the dividend barrier from the model without tax.

The proof is postponed to Appendix 4.

f0(x + 1)

=
1

�p1

(
f0(x) − �

[
0∑

k=−x

pkf0(x + k) +

−x−1∑
−∞

pk(f0(0) + �(x + k))

])
,

f (x, z) = f0(x) − C�x−z ,

1 − C�x0 (� − 1) = f0(x0 + 1) − f0(x0) − C�x0 (� − 1) ≥ �

= f0(x1 + 1) − f0(x1) − C�x1 (� − 1) ≥ 1 − C�x1 (� − 1).

V(x, z)

=

⎧⎪⎪⎨⎪⎪⎩

f (0, z − x) + 𝜂x , if x < 0,

f (x, 0) , if 0 ≤ x ≤ x1 and z = 0,

f (x1, 0) + 𝛿(x − x1) , if x > x1 and z = 0,

f (x, z) , if 0 ≤ x ≤ x0 and z ≥ 1,

f (max{x0, x − z)}, (z − x + x0)
+) +min{x − x0, z} , if x > x0 and z ≥ 1.
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Theorem 4 implies that the optimal strategy is, as in [7–9], a strategy with two 
barriers. If an immediate dividend of size one is not taxed, the dividend barrier x0 
is used. That is, all capital above x0 is paid as dividend. If tax has to be paid for an 
immediate dividend, the barrier x1 is used. That means, if starting with an initial 
capital below x0 , then as long as Zt > 0 the premium is paid as dividend until the 
next claim occurs. Whenever Zt reaches zero, no dividend is paid until the surplus 
reaches x1 . Then the premium is paid as dividend until the next time of a claim.

Corollary 1  The optimal strategy is given as

	�  ◻

3.3.3 � All surplus as dividend

We next consider the strategy u(x, z) = x , that is, to pay all surplus as dividend.

Lemma 6  The value of the strategy paying all surplus as dividends has the value

Proof  The value of the dividend at zero is min{x, z} + �(x − z)+ . Thus we can 
assume x = 0 . The second term is the value of the dividends if no tax had to be paid. 
We therefore need to calculate the value of the dividends for which tax is paid. Note 
that Sn =

∑n

k=1
(Uk − Lk) . It is easy to see that Tn = (maxk≤n Sk − z)+ . The discount‑

ing of the first time point with Zn = 0 is IE[��z] , where �z = inf{n ≥ 0 ∶ Sn = z} . We 
get IE[��z] = IE∗[�−S�z ] = �−z , where the measure IP∗ is defined in Appendix 1.4. For 
z = 0 , let v0 = IE[

∑∞

n=1
�nΔTn] be the value of the dividends. Then Z1 = Y−

1
 and

Thus v0 = (� − 1)−1 . This yields the last term.	�  ◻

We next look for conditions under which it is optimal to pay all surplus as 
dividend. That is, we have to verify that (10) is fulfilled. For simplicity, we let 
f (x, z) = min{x, z} + �(x − z)+ + �1 − �2�

−(z−x)+ for x ≥ 0 , where �1 and �2 are the 
constants from Lemma 6, and f (x, z) = f (0, z − x) + �x for x < 0 . Then for z = 0,

u(x, z) = max{x − x1, min{(x − x0)
+, z}}.

min{x, z} + �(x − z)+ +
�

1 − �
(p1 − �IE[Y−]) − �−(z−x)

+ 1 − �

� − 1
.

v0 = �

[
p1(1 + v0) +

(
0∑

k=−∞

pk�
kv0

)]
= v0 + p1�(1 + v0 − �v0).
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Then g(0) = 0 and

This function is increasing in x. Therefore, (10) is fulfilled if g(1) = g(1) − g(0) ≥ 0 . 
That is

For z ≥ 1 and x < z,

where we used the definition of � . Analogous to the case z = 0 it follows that (10) is 
fulfilled if g(1, z) ≥ 0 or

which is always fulfilled if the condition for z = 0 is fulfilled.
Suppose now x ≥ z . Then

g(x) = f (x, 0) − �IE[f (x + Y , 0)] = �x + �1 − �2

− �

1∑
k=−x

pk(�(x + k) + �1 − �2)

− �

−x−1∑
k=−∞

pk(�1 − �2�
x+k + �(x + k))

= �(x − �IE[(Y + x)+]) + �� IE[(Y + x)−] + (1 − �)�1

− �2(1 − �IE[�−(Y+x)
−

]).

g(x + 1) − g(x) = 𝛿(1 − 𝜁IP[Y ≥ −x]) − 𝜂𝜁 IP[Y < −x] + 𝜁𝜅2(𝜉 − 1)IE[𝜉Y+x�Y<−x]

= 𝛿 − 𝜁 − (𝜂 − 1)𝜁 IP[Y < −x] + 𝜁(1 − 𝛿)IE[𝜉−(Y+x)
−

].

(12)

0 ≤ �(1 − �(p1 + p0)) − �� (1 − p1 − p0)

+ (1 − �)(1 − �(p0 + p1�))

= 1 − �[� + (�(1 − �) − � + �)p1 − (� − 1)p0].

g(x, z) = f (x, z) − �IE[f (x + Y , z)] = x + �1 − �2�
x−z

− �

1∑
k=−x

pk(x + k + �1 − �2�
k+x−z)

− �

−x−1∑
k=−∞

pk(�1 − �2�
x+k−z + �(x + k))

= x − �IE[(Y + x)+] + ��IE[(Y + x)−] + (1 − �)�1 ,

1 − �[� − (� − 1)(p0 + p1)] ≥ 0 ,
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The condition for g(x, 0) ≥ 0 was obtained above. Further,

This shows that g(x + z, z) is increasing in z and therefore (10) is fulfilled if (12) 
holds.

3.4 � De Finetti’s example

Suppose again IP[Y = 1] = 1 − IP[Y = −1] = p . We find � = �1 , where �k is defined 
in Sect. 2.4. Condition (12) reads then

or equivalently,

We therefore assume in the sequel that

Suppose first p ≥ (�� − 1)∕(�(� − 1)) , that is x0 = 0 . Then f0(x) = C1�
x
1
+ C2�

x
2
 

with

Equivalently,

Thus,

g(x, z) = f (x, z) − �IE[f (x + Y , z)] = z + �(x − z) + �1 − �2

− �

[
1∑

k=z−x

pk(z + �(x + k − z) + �1 − �2)

+

z−x−1∑
k=−x

pk(x + k + �1 − �2�
x+k−z)

+

−x−1∑
k=−∞

pk(�1 − �2�
x+k−z + �(x + k))

]
.

g(x + 1, z + 1) − g(x, z)

= 1 − 𝜁 − 𝜁(𝜂 − 1)IP[Y < −x].

�[� − (� − � − �(1 − �))p] ≤ 1 ,

p ≥
�� − 1

�(� − � − �(1 − �))
.

0 < p <
𝜂𝜁 − 1

𝜁(𝜂 − 𝛿 − 𝜉(1 − 𝛿))
.

C1 + C2 = (1 − �)−1�(p − �(1 − p)) = f (0)

= �[p(C1�1 + C2�2) + (1 − p)(C1 + C2 − �)].

(�1 − 1)C1 − (1 − �2)C2 = 1 ,

(1 − �)C1 + (1 − �)C2 = �(p − �(1 − p)).
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If p < (𝜁𝜂 − 1)∕(𝜁(𝜂 − 1)) , then f0(x) = C1�
x
1
+ C2�

x
2
 with the constants determined 

in the case without tax.
We look for

The first order condition for the minimum is

which is indeed a minimum if C2 > 0 or equivalently, C1 > C̃ . This is

Thus,

From the latter equation, C̃ can be determined. If C̃ is known, also x̃1 can be deter‑
mined. Since x1 ∈ IN , we have to choose ⌊x̃1⌋ or ⌊x̃1 + 1⌋ , and then to calculate C 
corresponding to x1.

4 � Conclusion

We considered a risk model in discrete time where dividends may be paid and capital 
has to be injected in order to keep the surplus positive. We determined the optimal divi‑
dend strategy in order to maximise the expected discounted value of dividends minus 
penalised injections both for the case without and with tax. In the problem with tax and 
premia of size one we could determine explicitly the form of the optimal strategy. The 
value function considered has to be interpreted as a stability measure. The dividend 
payments are a measure for the profits, the injections a measure for the losses. The 
penalising factor reflects that large losses cause administrative action and therefore lead 
to additional costs. Further, the choice of the penalising factor gives the possibility to 
weight the profits and the losses differently. This technical tool may be used to measure 
the influence of strategic decisions on the profit and the risk. The dividend barriers 
give a hint how large fluctuation reserves are reasonable to be kept. Too low fluctuation 
reserves means one needs to raise money for large losses. Too large reserves means that 
one loses money because of regulative restrictions for investments. Tax payments occur 

C1 =
1 − � + �(1 − �2)(p − (1 − p)�)

(1 − �)(�1 − �2)
,

C2 =
�(�1 − 1)(p − �(1 − p)) + � − 1

(1 − �)(�1 − �2)
.

inf{(C1 − C̃)𝜆
x̃1
1
+ C2𝜆

x̃1
2
} = 𝛿.

(C1 − C̃) log 𝜆1𝜆
x̃1
1
+ C2 log 𝜆2𝜆

x̃1
2
= 0 ,

(
𝜆1

𝜆2

)x̃1

=
−C2 log 𝜆2

(C1 − C̃) log 𝜆1
.

C2

(
− log 𝜆2

log 𝜆1
+ 1

)
𝜆
x̃1
2
= 𝛿.
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at times where the process without dividends and injections reaches a new maximum. 
In practice, a company has then to pay taxes, or the share holders require dividends. 
Taking this into account, reserves should not increase too much in such a situation.
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Appendix 1: Proofs of Lemmata

Proof of Lemma 2

Suppose x0 ∉ IN . Let ⌊x0⌋ ≤ x ≤ x0 . Let IEx denote the law with initial capital x. Let 
𝜏 = inf{n > 0 ∶ Xn − Ln ∉ [0, x0]} . Note that � does not depend on x. Then

The difference between the first dividends is also x0 − x if it is paid at time � . After 
time � the dividend and injection processes coincide. Thus,

We conclude that IEx0
[(�X𝜏>x0

+ 𝜂�X𝜏=0
)𝜁𝜏 ] ≥ 1 . For x0 < x < ⌊x0 + 1⌋ , we follow the 

(maybe not optimal) strategy not paying a dividend before � and then to follow the 
optimal strategy. The we obtain analogously, IEx0

[(�X𝜏>x0
+ 𝜂�X𝜏=0

)𝜁𝜏 ] ≤ 1 because 
V(x) − V(x0) = x − x0 . Thus we have equality and V(x0) = V(⌊x0⌋) + x0 − ⌊x0⌋ . Thus 
we can choose x0 ∈ IN . 	�  ◻

Proof of Lemma 3

	 (i)	 The lower bound is the value of the strategy if all surplus is paid as dividend 
and tax has to be paid for all the dividends except for the amount z.

		    For the upper bound note that 

V(x) = IEx[(V(X�) − �L�)�
�]

= IEx0
[(V(X�) − �(L� + (x0 − x)))�� ].

V(x0) − V(x) = (x0 − x)IEx0
[(�X𝜏>x0

+ 𝜂�X𝜏=0
)𝜁𝜏 ].

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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		    The right hand side can be made maximal if all capital is paid as dividend 
but no injections are made, and no tax has to be paid for all dividends after 
the first dividend.

	 (ii)	 This is trivial.
	 (iii)	 Let x < y and v = (1 − �)x + �y for an � ∈ (0, 1) . Consider a strategy 

{Ux
n
} and {Uy

n} for initial capital x and y, respectively, with correspond‑
ing injection strategies {Lx

n
} and {Lyn} , respectively. Then the strategy 

Uv
n
= (1 − �)Ux

n
+ �U

y
n and Lv

n
= (1 − �)Lx

n
+ �L

y
n is admissible for initial capi‑

tal v. Let Tn =
∑n

k=0
(Uk − Zk)

+ be the accumulated dividends for which tax is 
paid. Then 

 Note that this implies 

T
v
n
 only increases at points where Uv

n
> Zv

n
 . At such a point we get Zv

n+1
= 0 . 

Thus 

 Concavity follows now similarly as in [5].
	 (iv)	 It suffices to show Lipschitz continuity in each of the variables. 

Let x < y and z ≥ 0 . Choose 𝜖 > 0 . There is a strategy U, such that 
V(y, z) < VU(y, z) + 𝜖 . Using the strategy U for initial capital x, addi‑
tional injections may have to be made (or less dividends may be paid 
if the surplus would become negative otherwise). This shows that 
V(x, z) ≥ VU(x, z) ≥ VU(y, z) − 𝜂(y − x) > V(y, z) − 𝜂(y − x) − 𝜖 . Since � was 
arbitrary, V(y, z) − V(x, z) ≤ �(y − x).

∞∑
k=0

� k(min{Uk, Zk} + �(Uk − Zk)
+ − �Lk)

= (1 − �)

∞∑
�=0

��
�∑

k=0

min{Uk, Zk} + �(Uk − Zk)
+ − �Lk.

n∑
k=0

Uk + Zn+1 = z +

n+1∑
k=1

Lk + Tn.

Tn ≥

n∑
k=0

Uk − z −

n+1∑
k=1

Lk.

T
v
n
=

n∑
k=0

Uv
k
− z −

n+1∑
k=1

Lv
k

= (1 − �)

[
n∑

k=0

Ux
k
− z −

n+1∑
k=1

Lx
k

]
+ �

[
n∑

k=0

U
y

k
− z −

n+1∑
k=1

L
y

k

]

≤ (1 − �)Tx
n
+ �Ty

n
.
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Let x ≥ 0 and z1 < z2 . Similarly, as for the first argument we obtain 
V(x, z2) − V(x, z1) ≤ (1 − �)(z2 − z1) , since using the same strategy may lead to addi‑
tional tax payments. 	�  ◻

Proof of Lemma 4

Suppose the assertion does not hold. Let x2 be a point where 
𝛾 = f0(x2 + 1) − f0(x2) < 1 . We consider now the model without tax. Note that 
x2 > x0 by the results of Section 2. Consider the strategy Un = �Xn=x2+1

 and sup‑
pose x = X0 ≤ x0 + 1 . Then

Thus

Because {Xn} is bounded by x2 + 1 , we can let n → ∞ obtaining

This is the value of the proposed strategy but with all dividends taxed with the rate 
1 − � . Thus, the value function of the model without tax is strictly larger than f0(x) , 
contradicting the fact that f0(x) is the value function for x ≤ x0 + 1.

Proof of Lemma 5

Let a > x ≥ 0 . We consider the process Sn = x +
∑n

k=1
Yk and define the stop‑

ping times 𝜏a = inf{n > 0 ∶ Sn = a} and 𝜏− = inf{n > 0 ∶ Sn < 0} . We 

IE[� f0(Xk + Lk+1 − Uk + Yk+1) ∣ Fk]

= IE[�(f0(Xk − Uk + Yk+1) + �Lk+1) ∣ Fk]

= f0(Xk) − ��Xk=x2+1
+ �� IE[Lk+1 ∣ Fk]

= f0(Xk) − �Uk + ��IE[Lk+1 ∣ Fk] ,

f0(x) = IE

[
�nf0(Xn) −

n−1∑
k=0

{� k+1f0(Xk+1) − � kf0(Xk)}

]

= IE

[
�nf0(Xn) −

n−1∑
k=0

� k{� f0(Xk + Lk+1 − Uk + Yk+1)

− f0(Xk)}

]

= IE

[
�nf0(Xn) +

n−1∑
k=0

�� kUk − �� k+1Lk+1

]
.

f0(x) = IE

[
∞∑
k=0

� k�Uk − �� k+1Lk+1

]
.
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define the measure IP∗[A] = �nIE[�Sn−x�A] on Fn , see [10, Ch. 8]. We have 
IE∗[Y] = 𝜁IE[Y𝜉Y ] > 0 because of the concavity of x ↦ IE[exY ] . As above, we find

This implies

As a → ∞ , IP∗[𝜏a < 𝜏−] converges to the survival probability under IP∗ . The other 
term

converges to the Gerber–Shiu function IE[𝜁𝜏− f0(S𝜏−)�𝜏−<∞]𝜁
−x . This implies that the 

second term converges. Since the net profit condition is fulfilled under IP∗ , that is 
IP∗[𝜏− = ∞] > 0 , the limit of f0(a)�−a must be finite. We claim that the limit is non-
zero. If the latter was not the case, we had

which cannot hold for all x by Lemma 4. Thus, limx→∞ f0(x)𝜉
−x > 0 . This shows the 

assertion. 	�  ◻

Appendix 2: Proof of Theorem 1

	 (i)	 If u(x) = 0 we get from (4) 

 where we used that the upper bound also holds for x < 0 . This implies 

 Thus u(y) ≠ 0 for y larger than the right hand side.
	 (ii)	 Let x̃ = x − u(x) . Then 

f0(x) = IE[��
a∧�− f0(S�a∧�−)] = IE∗[�x−S�a∧�− f0(S�a∧�−)].

f0(x)𝜉
−x = IE∗[𝜉−S𝜏− f0(S𝜏−)�𝜏−<𝜏a] + f0(a)𝜉

−aIP∗[𝜏a < 𝜏−].

IE∗[𝜉−S𝜏− f0(S𝜏−)�𝜏−<𝜏a] = IE[𝜁𝜏− f0(S𝜏−)�𝜏−<𝜏a ]𝜉
−x

f0(x) = IE[𝜁𝜏− f0(S𝜏−)�𝜏−<𝜏a] ≤ max{f0(0), 0} ,

x + �
IE[Y+] − �IE[Y−]

1 − �
≤ V(x) = �

∞∑
j=−∞

pjV(x + j)

≤ �

∞∑
j=−∞

pj

(
x + j +

IE[Y+]�

1 − �

)

= �x + �

(
IE[Y] +

IE[Y+]�

1 − �

)

= �x + �
IE[Y] + �IE[Y−]

1 − �
,

x ≤
�(� + � − 1)

(1 − �)2
IE[Y−].
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 Thus V(x̃) = 𝜁IE[V(x̃ + Y)] and V(x) − V(x̃) = u(x) . Note that 

 Because u(x) is the largest value at which the supremum is taken, we have 
u(x̃) = 0 . Suppose that u(x) > 0 and choose y > x . We have by the concavity 

 or equivalently, V(y) ≤ y − x̃ + V(x̃) . By Lemma 1, we have equality. This 
implies that u(y) ≥ y − x̃ . Now, 

 Thus V(x̃) = x̃ − (y − u(y)) + V(y − u(y)) . Since u(x̃) = 0 we find 
u(y) = y − x̃ . This shows that there is x̃0 such that u(x) = (x − x̃0)

+ . By the 
definition of x0 , we get x̃0 = x0.

	 (iii)	 follows like the corresponding statement in [6, Theorem 1.10].
	 (iv)	 Let ũ(x) be the optimiser if we replace V by f. The considerations above apply 

also to f implying that ũ(x) exists. As in [6, Cor. 1.3] it follows that f (x) = V(x).

	�  ◻

Appendix 3: Proof of Theorem 2

That V(x, z) fulfils equation (10) is proved in [6].
Let {Un} be an arbitrary strategy. Then

Conditioning on the information Fk up to time k

because Lk+1 is only non-zero if Xk − Uk + Yk+1 < 0 . Further, by (10),

u(x) = x − x̃ ≤ V(x) − V(x̃) ≤ V(x) − 𝜁IE[V(x̃ + Y)]

= V(x) − 𝜁IE[V(x − u(x) + Y)] = u(x).

V(x) = u(x) + 𝜁IE[V(x̃ + Y)]

= u(x) + u(x̃) + 𝜁 IE[V(x − u(x) − u(x̃) + Y)].

V(x̃) + x − x̃ = V(x) ≥
x − x̃

y − x̃
V(y) +

y − x

y − x̃
V(x̃) ,

u(y) + V(y − u(y)) = V(y) = y − x̃ + V(x̃)

≥ y − x̃ + (x̃ − (y − u(y))) + V(y − u(y)) = u(y) + V(y − u(y)).

�nf (Xn, Zn) − f (x, z) =

n−1∑
k=0

[� k+1f (Xk+1, Zk+1) − � kf (Xk, Zk)]

=

n−1∑
k=0

� k[� f (Xk + Lk+1 − Uk + Yk+1, (Zk − Uk)
+ + Lk+1) − f (Xk, Zk)].

IE[� f (Xk + Lk+1 − Uk + Yk+1, (Zk − Uk)
+ + Lk+1) ∣ Fk]

= IE[� f (Xk − Uk + Yk+1, (Zk − Uk)
+) + �Lk+1 ∣ Fk] ,
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Thus

We have Xn ≤ x +
∑n

k=1
Y+
k

 . Thus �nIE[f (Xn, Zn)] ≤ �n(x + nIE[Y+] + �) tends 
to zero. From Un ≤ Xn and 

∑n

k=1
Lk ≤

∑n

k=1
Y−
k

 we get by bounded convergence 
f (x, z) ≥ V(x, z).

Since f is continuous, there exists u(x), such that

Repeating the above calculations with Un = u(Xn) , the inequality becomes an equal‑
ity, implying f (x, z) = VU(x, z) . Thus f (x, z) ≤ V(x, z) , which proves the assertion. 	
� ◻

Appendix 4: Proof of Theorem 4

We have to verify Bellman’s equation. We make the additional assumption that 
f (x + 1, 0) − f (x, 0) is decreasing for x ≤ x1 . Note that this also holds for x < 0 with 
f (x, 0) = f (0,−x) + �x.

If z = 0 and x ≤ x1 , then

where we used that f0(x) solves (11) and that �IE[�Y ] = 1 . The above equation also 
holds with x replaced by x − u . Since �u + f (x − u, 0) ≤ f (x, 0) by the definition of 
x1 , Bellman’s equation holds in this case.

If z ≥ 1 and 0 ≤ x ≤ x0 , then as above

IE[� f (Xk − Uk + Yk+1, (Zk − Uk)
+) ∣ Fk] ≤ f (Xk, Zk) −min{Uk, Zk} − �(Uk − Zk)

+.

f (x, z) ≥ IE

[
�nf (Xn, Zn)

+

n−1∑
k=0

� k(min{Uk, Zk} + �(Uk − Zk)
+ − ��Lk+1)

]
.

min{u(x), z} + �(u(x) − z)+

+ �

∞∑
k=−∞

pkf (x − u(x), (z − u(x))+)

= sup
0≤u≤x

min{u, z} + �(u − z)+ + �

∞∑
k=−∞

pkf (x − u, (z − u)+).

f (x, 0) = f0(x) − C�x

= �

[
1∑

k=−x

pk(f0(x + k) − C�x+k) +

−x−1∑
k=−∞

pk(f0(0) + �(x + k) − C�x+k)

]
.
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The equation also holds for x replaced by x − u and z replaced by (z − u)+ . For u ≤ z,

by Lemma 4. If z < u ≤ x , then

where we used the inequality in the case z = 0 and the inequality in the case u ≤ z . 
This shows (10) in that case.

If z = 0 and x > x1 , then using f (x1) − f (v) ≥ �v for v ≤ x1,

This is increasing in x under our additional assumption. For x = x1 we get zero. 
Therefore, the above expression is positive for all x. The inequality remains true 
if we replace x with x − u for u ≤ x − x1 and equality holds for u = x − x1 . For 
u > x − x1 , the inequality was shown in the case x < x1 . This shows (10) in the case 
z = 0.

Assume now z ≥ 1 . Then for x0 < x ≤ x0 + z , using the definition of �,

f (x, z) = f0(x) − C�x−z

= �

[ 1∑
k=−x

pk(f0(x + k) − C�x+k−z)

+

−x−1∑
k=−∞

pk(f0(0) + �(x + k) − C�x+k−z)

]
.

u + f (x − u, z − u) = u + f0(x − u) − C�x−z ≤ f0(x) − C�x−z

z + �(u − z) + f (x − u, 0) ≤ z + f (x − z, 0) ≤ f (x, z) ,

f (x1, 0) + �(x − x1) − �

1∑
k=x1−x

pk(f (x1, 0) + �(x + k − x1))

− �

x1−x−1∑
k=−x

pkf (x + k, 0)

− �

−x−1∑
−∞

pk(f (0,−x − k) + �(x + k))

= (1 − �)[f (x1, 0) + �(x − x1)] − ��IE[Y]

+ �

x1−x−1∑
k=−x

pk(f (x1, 0) − �x1 − {f (x + k, 0) − �(x + k)})

+ �

−x−1∑
−∞

pk(f (x1, 0) − �x1 − {f (0,−x − k)

+ (� − �)(x + k)})

= (1 − �)[f (x1, 0) + �(x − x1)] − ��IE[Y]

+ �

x1−x−1∑
k=−∞

pk(f (x1, 0) − �x1 − {f (x + k, 0) − �(x + k)}).
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with f0(x) = f0(0) + �x for x < 0 . Because f0(x) is the value function for the 
case without tax for x ≤ x0 , it is concave. Further f0(x0 + 1) − f0(x0) = 1 . Thus 
f0(x + 1) − f0(x) is decreasing and the result follows as in the case z = 0 and x > x1.

Next consider x0 + z < x ≤ x1 + z . Then

f0(x0) + x − x0 − C�x−z − �

1∑
k=x0−x+1

pk[f0(x0) + (x + k − x0)

− C�x+k−z] − �

x0−x∑
−x

pk[f0(x + k) − C�x+k−z]

− �

−x−1∑
−∞

pk[f0(0) + �(x + k) − C�x+k−z]

= (1 − �)[f0(x0) + x − x0] − � IE[Y]

+ �

x0−x∑
−x

pk[f0(x0) − x0 − {f0(x + k) − (x + k)}]

+ �

−x−1∑
−∞

pk[f0(x0) − x0 − {f0(0) + (� − 1)(x + k)}]

= (1 − �)[f0(x0) + x − x0] − � IE[Y]

+ �

x0−x∑
−x

pk[f0(x0) − x0 − {f0(x + k) − (x + k)}] ,



257

1 3

Optimal capital injections and dividends with tax in a risk…

As in the case x0 < x ≤ x0 + z , the right hand side is decreasing in x. At x = x0 + z , 
the right hand side is positive, as shown in the case x = x0 + z . The assertion follows 
now as in the case x0 < x ≤ x0 + z.

Let now x > x1 + z . Consider

f0(x − z) + z − C�x−z

− �

1∑
k=x0+z−x

pk[f0(x + k − z) + z − C�x+k−z]

− �

x0+z−x−1∑
k=x0−x

pk[f0(x0) + x + k − x0 − C�x+k−z]

− �

x0−x−1∑
k=−x

pk[f0(x + k) − C�x+k−z]

− �

−x−1∑
−∞

pk[f0(0) + �(x + k) − C�x+k−z]

= (1 − �)[f0(x − z) + z]

+ �

1∑
k=x0+z−x

pk(f0(x − z) − f0(x + k − z))

+ �

x0+z−x−1∑
k=x0−x

pk[f0(x − z) + z − f0(x0) − x − k + x0]

+ �

x0−x−1∑
k=−x

pk[f0(x − z) + z − f0(x + k)]

+ �

−x−1∑
−∞

pk[f0(x − z) + z − f0(0) − �(x + k)]

≥ (1 − �)[f0(x − z) + z] − �IE[Y]

− �p1(f0(x + 1 − z) − 1 − f0(x − z))

+ �

x0−x−1∑
k=−x

pk[f0(x − z) − (x − z) − {f0(x + k) − (x + k)}]

+ �

−x−1∑
−∞

pk[f0(x − z) − (x − z) − f0(0) − (� − 1)(x + k)].
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Then

where Ṽ(x) is the solution in the case without tax. The last inequality follows from 
the corresponding calculation in the case without tax. Note that g(x, 0) ≥ 0 has been 
proved in the case z = 0 . This shows (11) also in this case.

We need to show that our additional assumption holds. Since �x is con‑
vex, and f0(x) has the desired property, f (x + 1, 0) − f (x, 0) is decreasing for 
x ≤ x0 . Suppose there is a x0 < x2 < x1 , such that f (x + 1, 0) − f (x, 0) is decreas‑
ing for x ≤ x2 but f (x2 + 2, 0) − f (x2 + 1, 0) > f (x2 + 1, 0) − f (x2, 0) . Then 
𝛿 = f (x2 + 1, 0) − f (x2, 0) ∈ (𝛿, 1) . By the proof above, f (x0, 0) is the value func‑
tion of the problem with tax rate 𝛿 . Because 𝛿 > 𝛿 we have f (x0, 0) > V(x0, 0) . On 
the other hand, in the problem with tax rate � , f (x0, 0) is the value of the proposed 
strategy with barriers x0 and x1 , respectively. Therefore, f (x0, 0) ≤ V(x0, 0) . This is a 
contradiction. Thus our assumption must hold. 	�  ◻
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