
Citation: Weinkath, M.; Nett, S.; Kim,

C.D. Feasibility Study of Wheel

Torque Prediction with a Recurrent

Neural Network Using Vehicle Data.

Vehicles 2023, 5, 605–614. https://

doi.org/10.3390/vehicles5020033

Academic Editor: Sohel Anwar

Received: 29 March 2023

Revised: 24 April 2023

Accepted: 16 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Feasibility Study of Wheel Torque Prediction with a Recurrent
Neural Network Using Vehicle Data
Miriam Weinkath 1, Simon Nett 1 and Chong Dae Kim 2,*

1 GKN Driveline International GmbH, Hauptstraße 130, 53797 Lohmar, Germany
2 Faculty of Process Engineering, Energy and Mechanical Systems, TH Köln, Campus Deutz, Betzdorfer

Straße 2, 50679 Cologne, Germany
* Correspondence: chong.kim@th-koeln.de; Tel.: +49-221-8275-2947

Abstract: In this paper, we present a feasibility study on predicting the torque signal of a passenger
car with the help of a neural network. In addition, we analyze the possibility of using the proposed
model structure for temperature prediction. This was carried out with a neural network, specifically a
three-layer long short-term memory (LSTM) network. The data used were real road load data from a
Jaguar Land Rover Evoque with a Twinster gearbox from GKN. The torque prediction generated good
results with an accuracy of 55% and a root mean squared error (RMSE) of 49 Nm, considering that
the data were not generated under laboratory conditions. However, the performance of predicting
the temperature signal was not satisfying with a coefficient of determination (R2) score of −1.396 and
an RMSE score of 69.4 °C. The prediction of the torque signal with the three-layer LSTM network
was successful but the transferability of the network to another signal (temperature) was not proven.
The knowledge gained from this investigation can be of importance for the development of virtual
sensor technology.

Keywords: time series prediction; virtual sensor; LSTM; automotive; twinster; prediction; neural
network; all-wheel drive

1. Introduction

Nowadays, the automotive industry is trying to reduce costs and replace more and
more physical sensors with virtual sensors. Therefore, a feasibility study was carried out
within the framework of a master’s thesis to understand whether it is possible to predict
a passenger car wheel torque signal with the help of a neural network, and whether it is
possible to transfer the model structure from a torque prediction to a temperature prediction.
Vehicle signals were stored as time series to describe the change of vehicle characteristics,
such as speed, acceleration, etc., over time. Recurrent neural networks (RNNs) are normally
used for timeseries prediction, which also include the previous timestep to predict the next
one [1]. A special form of an RNN is the long short-term memory (LSTM). LSTM has the
advantage that it is not susceptible to the vanishing gradient problem, as observed with
RNNs [2].

Other studies have already addressed similar issues, for example trying to predict the
mass of a vehicle using CAN data and a driveline torque observer [3]. The vehicle data
used in [3] were recorded under laboratory conditions. In contrast, the data for this paper
were generated without any specifications regarding driving style, route or distance. The
difference between the two studies is in the quantity and quality of the data. Thus, the data
in the study under laboratory conditions has more quality, whereas this study is set apart
by the large mass of data. Further studies have, in addition to the prediction of vehicle
masses using a neural network [3], dealt with the prediction of engine torques and emission
values [4], or the engine torque and brake specific fuel consumption prediction, whereby a
model was trained with only 81 datasets [5]. Another paper dealt with the prediction of
unsprung masses using a neural network, but using simulation data instead [6]. One more

Vehicles 2023, 5, 605–614. https://doi.org/10.3390/vehicles5020033 https://www.mdpi.com/journal/vehicles

https://doi.org/10.3390/vehicles5020033
https://doi.org/10.3390/vehicles5020033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com
https://doi.org/10.3390/vehicles5020033
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com/article/10.3390/vehicles5020033?type=check_update&version=1


Vehicles 2023, 5 606

study compared the prediction quality of Markov chains and recurrent neural networks [7].
Here, the vehicle speed for the next time steps was predicted. Data from 36 trips on a
specified 4.1 km route on public roads were used as input. Shin et al. [7] used a fixed route
on a public road, while in this study, no specific route with 1775 trips and 30,000 km from
everyday life were chosen. In addition, the quantity of data differs between the two studies.

Some other studies also predicted different torque signals without using artificial
intelligence. For example, an observer-based system in order to reconstruct the clutch
torque and transmission output torque in [8].

For this study, road load data were collected using a company car from the controller
area network (CAN) bus (without measurement technique), and the data were used for a
feasibility study to determine whether it is possible to train a neural network to predict a
torque signal with real road load data that are not created under laboratory conditions. The
vehicle was left in its standard condition and no non-standard components other than the
data logger were installed. The mentioned company car was a Jaguar Land Rover Evoque
(model year 14, produced in 2017) with a Twinster gearbox from GKN Automotive. The
Twinster enables the all-wheel drive to disconnect the rear-wheel drive from the front-wheel
drive so only the front transfers torque to the road. This has multiple advantages for the
driver, such as less fuel consumption, a good impact of the driving dynamics, and improved
lateral and longitudinal vehicle dynamics [9]. The disconnect function of the rear axle
creates additional complexity in the torque signal by suspending the torque transmission.
The opensource software Python was selected to create the neural network, specifically
tensorflow. Tensorflow is an open-source framework for machine learning that is commonly
used for building up neural networks.

The volume of the data allowed for a feasibility study to be conducted regarding a
virtual sensor using a neural network. The target signal selected was the one that had
the greatest influence on the driving behavior: the signal indicating how much torque is
transferred by the rear axle. The Twinster gearbox two clutches that transfer the torque
from the propshaft to each sideshaft. By applying an individual torque on each sideshaft,
the vehicle receives better driving dynamics, as mentioned previously. The torque applied
to the clutches was predicted in this study. The questions we sought to answer are as
follows: Is it possible to predict the torque signal? How much data are needed to predict
the torque signal? How good is the prediction accuracy?

In addition to the above-mentioned feasibility study, we investigated whether the
model can be applied to a further problem. Because the clutch temperature of the Twinster
gearbox is of great interest, the question arose as to whether the structure of the neural
network for the torque signal could be transferred to a temperature signal. Therefore,
another dataset from a prototype vehicle with additional non-standard measurement
equipment was used for this case. The measurement equipment was used during the
development phase to measure the clutch temperature. It was from the same type of
vehicle but only a fraction of the trips were used for the torque signal: 36 trips for the
temperature instead of 1775 trips for the torque prediction.

First, the data on which the work is based and the procedure for data preparation are
discussed. In the next step, the model used for this work and its optimization are described.
Then, the results are presented, discussed, and conclusions are drawn.

2. Materials and Methods
2.1. Data

A road load dataset covering 2 years, 1775 trips, and a total distance of 28,399.47 km
was analyzed. These data were collected using the data logger µCROS 1.1 from IPETRONIK.
The data logger records all of the vehicle data from the CAN bus (around 120 signals) and
stores them into MF4 files with a frequency of 500 Hz. Those signals are mixed between
actual signals and computed signals by the electronic control unit (ECU).

The vehicle data covered 2 years and 1775 trips. The data examined in this evaluation
were collected primarily on public roads. No distinction was made between the different



Vehicles 2023, 5 607

types of roads. The mean distance per trip was 16 km and the standard deviation was
30 km. This reflects the classic travel distance for everyday life: predominantly work trips
and longer individual trips, which increase the standard deviation. Analogously, the mean
trip duration was 20 min and its standard deviation was 20.4 min. To be able to handle this
amount of data, a special pre-process had to be developed. In this process, every file had
to be normalized. Here, all signals were brought to the same sampling rate and all signal
names were uniformly set for all files. With a view to reading and storing the performance
of these vehicle data, the normalized data were stored as PARQUET files. The normalized
PARQUET files allocate about 14 GB of hard disk (compared to approximately 200 GB of
uncompressed MF4 files. For the whole data pre-processing, the Python libraries scikit-learn
and pandas were used. Pandas is an open-source library that is created for data analysis.
Scikit-learn can be used also for data analysis, but it also contains some easy algorithms for
machine learning.

The first step was to check whether each measurement was suitable for the subsequent
learning process. Upon selecting the valid trips that contained all of the required signals,
1661 files were left for creating the model.

In order to create a neural network, it is mandatory to split the data into training and
testing datasets. A train–test split with 80% training data and 20% testing data was chosen
(see Figure 1). In the first step, the complete dataset was split into training and testing data
at a ratio of 80/20. In a next step, the training data were split one more time into pure
training data and validation data (same ratio). Validation data are needed for the algorithm
to control the accuracy during training by itself [10].

data

training data test data

training data validation
data

Figure 1. Train–test split of the data.

So, 1328 of the trips were used to train the neural network and 333 trips were reserved
for testing the model performance and quality. The data were fitted to the model in multiple
loops because the data were stored in multiple files and the files were too big for the random
access memory (RAM). Additionally, the training and testing were split, the training dataset
was split into training and validation data [10]. Individual files were not split up for the
train–test split. The validation took place during the training, so the last 20% of each trip
was used for validation.

Upon splitting the data, the input parameters were defined. Out of the 120 signals per
trip, the signals that had an influence on the torque signal were selected. The following
signals from the data were used:

• Side shaft speed (front left and right, rear left and right);
• Longitudinal vehicle acceleration;
• Latitudinal vehicle acceleration;
• Longitudinal vehicle speed;
• Throttle position;
• Steering wheel angle;
• Steering wheel angle speed;
• Actual throttle position;
• Actual engine torque;
• Connect status of rear axis;
• Electronic stability program (ESP) signal;



Vehicles 2023, 5 608

• Anti-lock braking system (ABS) signal.

These signals were selected because they influence the torque signal and are also used
by the ECU to generate the real torque signal. Signals, such as wiper status, rain sensor
request, and vehicle voltage level, were not selected for input data, because they have no
influence on the torque level. Additional input signals were generated through feature
engineering [11]. For example, this generated further input signals such as wheel slip for
each wheel and the throttle change for each time step.

Categorical features, such as connect status, were also transformed into separate
features using the Python pandas function get_dummies.

Analogously to the input features for the torque prediction, the input features for the
temperature prediction were selected for their influence on the temperature:

• Side shaft speed (front left and right, rear left and right);
• Longitudinal vehicle acceleration;
• Latitudinal vehicle acceleration;
• Longitudinal vehicle speed;
• Throttle position;
• Steering wheel angle;
• Steering wheel angle speed;
• Actual throttle position;
• Actual engine torque;
• Connect status of rear axis;
• ESP signal;
• ABS signal;
• Slip (front left and right, rear left and right);
• Ambient temperature;
• Established clutch torque;
• Power (rear right and left).

Upon selecting all of the input features, the pre-processing was finished by scaling the
data using MinMaxScaler (from scikit-learn).

2.2. Neural Network Design

A time series signal should be predicted, so a recurrent neural network was selected
for this problem. In [12], a similar task used long short-term memory (LSTM) cells to
predict the angle of the role. Because of the similarity, the structure of the model from [12]
was used here: three layers of LSTM cells followed by a forward directed dense layer with
only one neuron were used to build the model, as can be seen in Figure 2. The number of
neurons for each LSTM layer was identified during the hyperparameter tuning in the next
step.

Input Layer

1. LSTM Layer 2. LSTM Layer 3. LSTM Layer Dense Layer

Output Layer

nu
m

be
r o

f n
eu

ro
ns

Figure 2. Structure of the model consisting of three LSTM layers, followed by a dense layer with one
neuron.

The model was trained using a graphics processing unit (GPU), so there was no
choice for different activation functions and the default tanh function was used [13]. With
hyperparameter tuning, the best combination of fast runtime and best accuracy can be
achieved. The following hyperparameters in Table 1 were tested during tuning:



Vehicles 2023, 5 609

Table 1. Table of hyperparameters to be tuned and their values that were tested.

Hyperparameter Tested Variants

optimizer
adam

adadelta
rmsprop

number of neurons per layer
150
200
300

batch size

128
256
512

1024

number of inputs (that are used to predict the next timestep)
200
400
800

For the optimizer, the adam, adadelta, and rmsprop optimizers were tested. With respect
to the number of neurons per LSTM layer, the numbers 150, 200, and 300 were compared.
The batch sizes 128, 256, 512, and 1024 were tested as well as the number of inputs with
200, 400, and 800, which corresponded to 1, 2, and 4 s of data that were used to predict the
next timestep.

The hyperparameter tuning was performed on a randomly assembled test dataset.
The results of the hyperparameter tuning were compared by their R2, MSE, and RMSE
values. Scikit-learn contains a function called GridSearchCV that builds up a matrix of all
combinations of hyperparameters that are given to the function, and runs the model and
gives back the best combination of hyperparameters that is found. This function is not
applicable in combination with tensorflow, so the workflow of this function was used and
copied to a simple for loop.

The best ten R2 results differed by around 9%, the best prediction matched the true
signal by 57%. In addition to accuracy, training time also played a crucial role. The training
time differed between 2 h (the slowest hyperparameter combination) and 47 min (the
fastest combination). The decision for the best hyperparameter combination was set on a
compromise between accuracy and training time. The decision was made for the fastest
hyperparameter combination with 47 min and an accuracy of 50%:

• Optimizer: adadelta;
• Batch size: 1024;
• Number of neurons (first layer): 200;
• Number of neurons (second layer): 200;
• Number of neurons (third layer): 150;
• Number of inputs: 200.

3. Results

There were multiple results that needed to be evaluated and compared. With regard
to identifying the impact of the size of the training dataset, the original training dataset
was split into multiple sizes (10%, 20%, 50%, 80%, and 100%) so that, for example, only 10%
of the trips were used to train the model. These results proved to improve the prediction
accuracy.

Table 2 shows the numerical results of the trained models with different training
dataset sizes. For each dataset, the coefficient of determination R2, mean squared error
(MSE), and the root mean squared error (RMSE) were computed to show the performance
of the models trained by the training datasets of different sizes. The table shows an increase
in accuracy with more training data. An increasing accuracy becomes apparent with the



Vehicles 2023, 5 610

increasing size of the training data. However, it can also be seen that the accuracy did not
improve further after gaining an accuracy of 55% and an RMSE value of 49.87 Nm.

Table 2. Results per split training dataset.

Size of the Training Dataset R2 MSE RMSE

10% 0.4958 2840.28 53.2943
20% 0.4402 3153.11 56.1526
50% 0.5456 2559.45 50.5910
80% 0.5585 2487.00 49.8699

100% 0.5547 2508.21 50.0820

Figure 3 shows the graphic results of the prediction. Each prediction of every trained
model from Table 2 is plotted with the true torque signal. The true torque signal is in blue,
the prediction of the model that was trained with 10% of the training data is in orange, for
the model trained with 20%, the prediction is in green, for 50%, the prediction is in red, for
80%, the prediction is in violet, and the prediction that is based on all of the training data is
in brown. This particular trip has an accuracy of 77.73%. Figure 3a shows the entire test trip
and its predictions. Figure 3b shows the first part of the trip. It highlights the displacement
of the signal while the rear axle does not transfer any torque. Figure 3c shows another
example for the displacement in the disconnect phase. Here, it can also be seen that the
prediction improves as the training dataset increases in size.

The results show that it was possible to predict the given torque signal up to an
accuracy of 55%. At the same time, it shows that some peaks were not well predicted by the
neural network and that the prediction reacted rather slowly. Especially affected were the
high peaks, e.g., at point E and H in Figure 3a. These deflections could not be reproduced
well by the neural network. The need for optimization was also seen for the time periods in
which the rear-wheel drive was disconnected and 0 Nm should have been transferred, see
Figure 3a,b. There, the prediction of the neural network had the biggest issues. The areas in
which the rear axle was decoupled (D to E, see Figure 3c, and G to H, see Figure 3a), show
strong noise (±50 Nm). In the first seconds of this run (see Figure 3b) however, this strong
noise did not occur. Here, the best prediction was slightly offset above the true signal by
about 11 Nm. Another aspect that was not correctly reproduced by the neural network was
the fact that the real signal never became negative. Neither in the training data nor in the
test data did the controller of the vehicle require a negative torque signal. Nevertheless,
the neural network calculated a negative torque (see Figure 3). However, this happened
exclusively in the phases in which the all-wheel drive (AWD) was switched off.

In addition to investigating the feasibility of the prediction of the torque signal with
a neural network, the transferability of the model to another signal was investigated.
Therefore, another dataset was used, see Section 1. The same pre-processing was executed,
and the same model structure and hyperparameters that were used for the training of the
torque signal were used here. Another difference was the train–test split ratio. Because
there were only 36 trips available, 35 trips were used for training and only one for testing,
instead of an 80/20 split, as stated in Section 2.1.

Figure 4 shows the graphical performance of the temperature prediction. It shows that
the data do not match the true temperature signal at all. In particular, the step where the
temperature increases very quickly is not reproduced by the neural network. It can be seen
that it is not possible to predict the temperature in this initial simulation. In numbers, the
prediction of the temperature signal scored an RMSE of 69.388 °C and an R2 of −1.396.



Vehicles 2023, 5 611

(a)

(b)

(c)

Figure 3. The graphic results of the different predictions with different amounts of training data.In
blue is the true torque signal; in orange the prediction of the model that was trained with 10% of the
training data, in green with 20%, in red with 50%, in violet with 80% and in brown the prediction that
is based on all training data. This particular trip has an accuracy of 77.73%. (a) shows the entire test
trip and its predictions. (b) shows the first part of the trip. It highlights the displacement of the signal
while the rear axle does not transfer any torque. (c) shows another example for the displacement in
the disconnect phase.

Figure 4. The graphic results of the investigation to see if the model structure is transferable from the
torque signal to the temperature signal.



Vehicles 2023, 5 612

4. Discussion

The results show that prediction with the help of a neural network is possible in
principle. The conformity, as measured by the R2 value, could possibly be expanded by
extending the hyperparameter tuning. Furthermore, the structure of the neural network
was not further analysed in this work. As mentioned in Section 2.2, the structure was taken
from another case study that was similar to the case study described in this work.

There are multiple opportunities to further optimize the neural network, for example,
by deeper and more extensive hyperparameter tuning and/or increasing the number of
LSTM layers in the model structure.

One further try at optimization was carried out during the study by raising the
number of epochs. Instead of 10 epochs per trip, the number of epochs was raised to 1000
in combination with the EarlyStopping function. The EarlyStopping function makes sure that
if a given quality criterion does not improve after a defined number of epochs, the run is
interrupted, and in this case the next training trip will start.

This procedure was tried on the 10% training dataset for keeping the run time as low
as possible. The results of the new run were not better at all. With a new accuracy of only
43.86% and an RMSE value of 56.2330 Nm, the new model was even slightly worse than
the original 10% model (see Section 2), and the calculation time increased by a factor of 15.

The transferability of the model of the torque signal to the temperature signal was
unsuccessful. The reason for the failure was not analyzed further, but the likely assumption
is that the small dataset caused the failure. On the one hand, this issue can be dealt with by
changing the hyperparameters and changing the model structure of the neural network.
On the other hand, if doing so does not show any effect, it is clear that the training data
were much too small.

A few small improvement attempts were also tried during the transferability studies.
For example, as with the torque prediction, the number of epochs was raised to improve
the prediction accuracy in combination with the EarlyStopping function, and in another run,
the loss function was changed from MSE to mean squared log error (MSLE).

The results of these improvement attempts are displayed in Table 3. The first line
shows the results of the original model from Table 2. The second line shows the results of
the model with 500 epochs and EarlyStopping. The last line of the table shows the results
of the model with the MSLE loss function. With a view to the RMSE values, the results
also show that in this case, the higher number of epochs did not have any impact on the
results. The changing loss function had a small impact on the performance and improved
the RMSE from 69.388 Nm to 66.3138 Nm (see Table 3).

Table 3. Results of the improvement attempts with a higher number of epochs and a different loss
function.

Number of
Epochs Loss Function R2 MSE RMSE

10 MSE −1.396 4814.65 69.388
500

+ EarlyStopping MSE −1.5501 5123.85 71.5811

10 MSLE −1.1886 4397.52 66.3138

These new and unique results show that there is a difference between the prediction
accuracy of neural networks that are trained with real road load data from every day
use and those that are recorded under laboratory conditions in specific selected driving
maneuvers [3] or with simulated data [6].



Vehicles 2023, 5 613

5. Conclusions

The feasibility studies determined that it is possible to predict a torque signal in
general using a large amount of data that are not selected from a maneuver collection that is
generated under laboratory conditions. It showed that a large training dataset is needed to
improve the accuracy of the prediction. The best prediction achieved an accuracy of 55.85%
with an RMSE of 49.9 Nm. With further improvement and optimization, the developed
model could be used for a virtual sensor and replace physical sensors in the vehicle. This
replacement saves on costs and weight for the automotive manufacturer.

The investigation into the transferability showed that under the given conditions,
a transfer of the model structure from the torque signal to the temperature signal is
not possible.

All in all, the investigation showed that it is possible to predict a torque signal with
a good accuracy and the results can be used to conduct further research with respect to a
virtual sensor. Other fields of application could be the use of a torque or temperature neural
network model for digital twins during the advancement of the system, or in automation.

Author Contributions: Conceptualization, M.W., S.N. and C.D.K.; methodology, M.W. and S.N.;
software, M.W.; validation, M.W., S.N. and C.D.K.; formal analysis, M.W.; investigation, M.W. and
S.N.; resources, S.N.; data curation, M.W.; writing—original draft preparation, M.W.; writing—review
and editing, M.W. and S.N.; visualization, M.W.; supervision, C.D.K.; project administration, S.N.
and C.D.K.; funding acquisition, C.D.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The author acknowledges GKN International GmbH for bringing the problem
and the dataset to the authors’ attention and support for the work on this matter. Furthermore,
we thank Hans Willi Langenbahn, the Dean of the Faculty of Process Engineering, Energy and
Mechanical Systems at the TH Köln, for financial assistance in publishing our research paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Choo, K.; Greplova, E.; Fischer, M.H.; Neupert, T. Machine Learning Kompakt—Ein Einstieg für Studierende der Naturwissenschaften,

1st ed.; Springer Spektrum: Wiesbaden, Germany, 2020; pp. 24–28, 30.
2. Elsworth, S.; Güttel, S. Time Series Forecasting Using LSTM Networks: A Symbolic Approach. arXiv 2020, arXiv:2003.05672.
3. Ghosh, J.; Foulard, S.; Fietzek, R. Vehicle Mass Estimation from CAN Data and Drivetrain Torque Observer; SAE International:

Warrendale, PA, USA, 2017. [CrossRef]
4. Atkinson, C.M.; Long, T.W.; Hanzevack, E.L. Virtual Sensing: A Neural Network-Based Intelligent Performance and Emissions Prediction

System for On-Board Diagnostics and Engine Control; SAE International: Warrendale, PA, USA, 1998. [CrossRef]
5. Kara Togun, N.; Baysec, S. Prediction of Torque and Specific Fuel Consumption of a Gasoline Engine by Using Artificial Neural Networks;

Elsevier: Amsterdam, The Netherlands, 2010; pp. 349–355. [CrossRef]
6. Šabanovič, E.;Kojis, P.; Šukevičius, Š.; Shyrokau, B.; Ivanov, V.; Dhaens, M.; Skrickij, V. Feasibility of a Neural Network-Based

Virtual Sensor for Vehicle Unsprung Mass Relative Velocity Estimation. Sensors 2021, 21, 7139. [CrossRef] [PubMed]
7. Shin, J.; Yeon, K.; Kim, S.; Sunwoo, M.; Han, M. Comparative Study of Markov Chain With Recurrent Neural Network for Short

Term Velocity Prediction Implemented on an Embedded System. IEEE Access 2021, 9, 24755–24767. [CrossRef]
8. Foulard, S. Online and Real-Time Load Monitoring for Remaining Service Life Prediction of Automotive Transmissions: Damage Level

Estimation of Transmission Components Based on a Torque Acquisition, 1st ed.; Shaker Verlag: Herzogenrath, Germany, 2015. [CrossRef]
9. Höck, M. Effiziente Antriebsstrangdifferenzierung Durch ein Modulares Achskonzept; ATZ—Automobiltechnische Zeitschrift:

Berlin/Heidelberg, Germany, 2015.
10. Géron, A. Praxiseinstieg Machine Learning mit Scikit-Learn & TensorFlow, 1st ed.; O’Reilly Media: Newton, MA, USA, 2018; pp. 30–31.
11. Zheng, A.; Casari, A. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists, 1st ed.; O’Reilly Media:

Newton, MA, USA, 2018; pp. 1–96.

http://doi.org/10.4271/2017-01-1590
http://dx.doi.org/10.4271/980516
http://dx.doi.org/10.1016/j.apenergy.2009.08.016
http://dx.doi.org/10.3390/s21217139
http://www.ncbi.nlm.nih.gov/pubmed/34770447
http://dx.doi.org/10.1109/ACCESS.2021.3056882
http://dx.doi.org/10.1016/j.mechatronics.2015.06.013


Vehicles 2023, 5 614

12. Rahim, L.; Blume, S.; Reicherts, S.; Sieberg, P.; Schramm, D. Zustandsschätzung des Wankverhaltensvon Personenkraftwagen Mittels
Künstlicherneuronaler Netze; Springer Gabler: Wiesbaden, Germany, 2019.

13. TensorFlow: tf.keras.layers.LSTM. Available online: https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
(accessed on 31 January 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM

	Introduction
	Materials and Methods
	Data
	Neural Network Design

	Results
	Discussion
	Conclusions
	References

