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Abstract

A level graph G = (V,E, λ) is a graph with a mapping λ : V → {1, . . . , k},
k ≥ 1, that partitions the vertex set V as V = V1 ∪ . . . ∪ Vk, Vj =
λ−1(j), Vi ∩ Vj = ∅ for i ̸= j, such that λ(v) = λ(u) + 1 for each edge
(u, v) ∈ E. Thus a level planar graph can be drawn with the vertices of
every Vj , 1 ≤ j ≤ k, placed on a horizontal line, representing the level
lj , and without crossings of edges, which can be drawn as straight line
segments between the levels. Healy, Kuusik and Leipert gave a complete
characterization of minimal forbidden subgraphs for level planar graphs
(MLNP patterns) for hierarchies [4]. Minimal in terms of deleting an ar-
bitrary edge leads to level planarity. A radial graph partitions the vertex
set on radii, which can be pictured as concentric circles, instead of lev-
els, lj = (j cos(α), j sin(α)), α ∈ [0, 2π), mapped around a shared center,
where j, 1 ≤ j ≤ k indicates the concentric circles’ radius. Comparing
embeddings of radial graphs with that of level graphs we gain a further
possibility to place an edge and eventually avoid edge crossings which we
wish to prevent for planarity reasons. This offers a new set of minimal
radial non planar subgraphs (MRNP patterns). Some of the MLNP pat-
terns can be adopted as MRNP patterns while some turn out to be radial
planar. But based on the radial planar MLNP patterns and the use of
augmentation we can build additional MRNP patterns that did not occur
in the level case. Furthermore we point out a new upper bound for the
number of edges of radial planar graphs. It depends on the subgraphs in-
duced between two radii. Because of the MRNP patterns these subgraphs
can either consist of a forest or a cycle with several branches. Applying
the bound we are able to characterize extremal radial planar graphs.
Keywords: radial graphs, minimal non-planarity, extremal radial planar
graphs



1 Introduction

In the context of social network analysis it has become more and more interest-
ing to graphically visualize the information collected by such a social network.
Links in hierarchies, in kinship or in financial exchanges for instance must be
displayed easily to comprehend for the reader. This is where level graphs come
in. Their vertex set is partitioned and there are no edges connecting two ver-
tices within the same partition. The vertices of each partition lie on horizontal
lines, the levels. They are suited to display hierarchical network structures.
According to Purchase [7] the number of edge crossings has the most important
effect on human understanding. The less the number of crossings the more aes-
thetically the drawn graph appears. Therefore a graph without any crossing, a
level planar graph, is wished for. The problem of determining a drawing with
a minimal number of crossing is a difficult problem. At the same time a test
for level planarity can be done efficiently, see [5]. In [4] Healy et al. were able
to characterize level planar graphs by giving a complete list of minimal level
non planar patterns, minimal in terms of deleting an arbitrary edge leads to
level planarity. The two leveled K2,2 is an example of such a non level planar
embeddable graph.
Hence we are interested in a generalization of level graphs, the so called radial
graphs. In a radial drawing the vertex partition are no longer drawn on hori-
zontal lines but on concentric circles called radii. Utilizing this generalization
we are eventually able to avoid crossings which cannot be prevented in a level
graph. Applying it to the level non planar graph K2,2 we are able to draw an
edge around the radian and receive a radial planar embedding which can be pic-
tured as a C4. In order to test for radial planarity efficiently, we are interested
in the structure and properties of radial graphs. Kuratowski’s theorem gives a
forbidden graph characterization of planar graphs while Healy et al. came up
with minimal forbidden patterns of hierarchical level planar graphs. Following
this approach we are able to characterize the hierarchical radial planar graphs
with regard to minimal radial non planar patterns in Section 3. Another state-
ment about planar graphs can be derived from the Eulerian Formula. That is to
say the number of edges in a planar graph is at most 3n− 6. Adapted to radial
planar graphs we achieve the bound 2n− 4. Making use of our characterization
of forbidden patterns we can classify the induced subgraphs between each two
radii. With that in mind we are able to present a new upper bound for the
number of edges in a radial graph. This finally leads to a characterization of
extremal radial planar graphs which can be found in Section 4. We summarize
our work and open problems in the last section.
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2 Preliminaries

2.1 Graphs

For prerequisites, the reader is expected to be familiar with the basic definitions
of graph theory. We only point out that in this work a chain is meant to be a tree
T (V,E) where V = (x1, x2, . . . , xn) and E = ((x1, x2), (x2, x3), . . . , (xn−1, xn)).
In other words a chain is a tree without branches. Throughout this work only
finite, undirected, simple and connected graphs are considered.

2.2 Planarity

The most common characterization for planar graphs is the Kuratowski Theo-
rem. It characterizes the planar graphs in terms of forbidden graphs.

Theorem 2.1. (Kuratowski 1930) A graph is planar if and only if it contains
neither a subdivision of K5 nor a subdivision of K3,3.

A planar graph G is said to be maximal if no new edge can be added without
violating planarity. Thus every face of G is bounded by a triangle, K3, and that
is why it is also called a triangulation.

2.3 Level Graphs

A k-level graph G = (V,E, λ) is a graph with a mapping λ : V → {1, . . . , k}, k ≥
1, that partitions the vertex set V as V = V1∪ . . .∪Vk, Vj = λ−1(j), Vi∩Vj = ∅
for i ̸= j, such that λ(v) = λ(u) + 1 for each edge (u, v) ∈ E. Thus in a
drawing of a k-level graph in the plane all vertices are placed on k horizontal
lines, representing level l1, l2, . . . , lk, meaning v ∈ Vi is placed on level li =

{(x, k − i)|x ∈ R}. Edges are drawn as straight line segments only between
consecutive levels. Hence a level graph G is called level planar if there exists a
level drawing, an embedding in the plane, of G such that no edges cross except
at their common endpoints placed on levels.

2.4 Radial Graphs

Radial graphs are a generalization of level graphs. A k-radial graph partitions
the vertex set on k radii, which can be pictured as concentric circles, instead of
levels. So the vertices are no longer spread on horizontal lines matching levels
but on circles li = {(i cosα, i sinα)|α ∈ [0, 2π)}, 1 ≤ i ≤ k. By melting the end-
points of each level of a level drawing we achieve the described concentric circles,
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Figure 1: A level non planar embedding and a radial planar embedding of the same graph.

called radii, and therefore a radial drawing. This procedure creates some imag-
inary cut ray from the radii’s center towards infinity whose intersection with
the radii represent the levels’ connection points. It also offers a new passage
for edges to take which has not been accessible before and eventually avoids
crossings. This time edges can be drawn as strictly monotone curves from inner
to outer levels, but once again only between consecutive levels. Note that the
term level is used to describe the vertex set partition in the level as well as
in the radial case. Corresponding to level planarity a graph G is called radial
planar if there exists a radial embedding, called radial drawing, of G such that
no edges cross except at common endpoints.
Edges are only allowed between consecutive levels hence crossings can only ap-
pear between two neighbored levels. Looking at a drawing of a level graph G,
with vertices placed on horizontal lines, we are able to detect a crossing of two
disjunct edges by the position of their vertices with respect to this particular
drawing. Let e1 = (u1, w1) and e2 = (u2, w2) be two edges with u1, u2 on level li
and w1, w2 on level li+1. Edges e1 and e2 do not cross if and only if u1 is to the
left of u2 on li and w1 to the left of w2 on li+1 at the same time, or vice versa.
Randerath et al. formulated this approach as a 2CNF -formula and answered
the question of level planarity by solving the satisfiability problem, see [8].
A radial drawing of a graph G does not provide this intuitive ordering of left
and right since it is hard to say whether a vertex is placed to the right or to the
left of another vertex on the same radian. Nevertheless, we are able to define an
orientation with the help of the above mentioned cut ray as follows. By starting
at the cut ray one can either follow the radii clock or counter clock wise for all
radii and therefore get a sequence of vertices on each radian, (v1, v2, . . . , vni) on
level li with |Vi| = ni. So an orientation of a radial embedding can either be
clockwise, if starting at the cut ray and list the upcoming vertices clockwise, or
counter clockwise by taking the opposite direction. Hence by determining an
orientation we are able to describe the placement of vertices in terms of their
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position within the cycle notation.
Let there be an orientation defined on G. Consider two consecutive radii li
and li+1. Given three vertices u, v, w ∈ Vi, we define an interval [u,w] on ra-
dian li, indicating the arc of li between u and w, starting in u, following the
given orientation and coming to an end in w where u = (i cos(α), i sin(α)),
w = (i cos(β), i sin(β)). Depending on the chosen orientation, vertex v is either
said to be inside, v ∈ [u,w], or outside the interval, v /∈ [u,w]. If v is outside the
interval [u,w] it must be situated in the complement which is denoted by ]w, u[

with respect to the chosen orientation on the radian. The same procedure can
be applied to edges. Let e1 = (u1, w1) and e2 = (u2, w2) be two non crossing
edges with u1, u2 ∈ Vi and w1, w2 ∈ Vi+1. We define a corridor [e1, e2] to be the
segment bordered by edges e1 and e2 and the belonging arcs on radian li, li+1

respectively. Those arcs are the intervals [u1, u2] on li and [w1, w2] on li+1 sub-
ject to the orientation. An additional edge e3 = (v1, v2) with v1 ∈ Vi, v2 ∈ Vi+1

is said to be inside the corridor [e1, e2] if v1 ∈ [u1, u2] and v2 ∈ [w1, w2], re-
spectively outside if v1 ̸∈ [u1, u2] and v2 ̸∈ [w1, w2]. Hence no crossing with the
border edges e1, e2 can occur if e3 ∈ [e1, e2] and it is drawn as a straight line
segment.
Keep in mind that in a radial drawing edges are only restricted to be mono-
tone curves from inner to outer level. So edge e3 might as well be drawn as
a monotone curve which crosses e1 and e2 in total an even amount of times if
e3 ∈ [e1, e2]. But then it might as well be drawn as a curve inside [e1, e2] that
is why edge e3 = (v1, v2) is said to be inside the corridor [e1, e2] if v1 ∈ [u1, u2]

and v2 ∈ [w1, w2]. Also edge e3 might cross e1 and e2 in total an even amount
of times even though it is outside the corridor. So the interesting case left is a
crossing of edge e3 with edge e1 or e2 which cannot be avoided. Edge e3 causes
a crossing with either e1 or e2 whenever v1 ̸∈ [u1, u2] and v2 ∈ [w1, w2] or vice
versa. So the problem arises whenever starting and endpoint of a new edge do
lie in different corridors. Be aware that once again there might occur an odd
amount of crossings with the border edges if e3 is drawn as monotone curve.
Note that from now on we only say level or radial graph while we are actually
talking about the embedding or drawing of such a graph. As seen before a level
graph can be transformed into a radial graph by melting the levels’ endpoints.
Especially level planar graphs are radial level planar. Hence the class of level
planar graphs is a subclass of the radial planar graphs. A k-level radial graph
is k-partite and especially bipartite which leads to the following observation.

Observation 2.2. A radial graph has only cycles of even length.

Observation 2.3. If graph G = (V,E) is radial planar so are all its induced
subgraphs Gi,i+1 located between level li and li+1.
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Unless otherwise stated we assume that graph G = (V,E) satisfies the inequality
|V | ≥ 3. This condition has been made with respect to the number of edges in
a simple graph. One edge can occur at most in a graph with less vertices and
consequently no edge crossing.

2.5 Euler’s Polyhedral Formula

Using the Eulerian Formula we can make several statements about planar graphs.
Euler’s Polyhedral Formula reads as follows:

n+ f −m = 2 (1)

where n is the number of vertices, f the number of faces and and m the number
of edges. It is known that Equation (1) can be used to provide a maximal
number of edges in a planar graph G, [see, for instance [3]]. Applying it to
Equation (1) leads to:

m = 3n− 6 (2)

Hence a planar graph can have at most 3n− 6 edges. The class of radial planar
graphs is a subclass of the class of bipartite and planar graphs. Thus only
cycles of even length occur and the smallest face possible is a C4. Applying it
to Equation (1) leads to:

m = 2n− 4 (3)

Hence a bipartite and planar graph, and therefore a radial planar graph, can
have at most 2n − 4 edges. That is how we reach the criteria for radial planar
graphs:

m ≤ 2n− 4 (4)

So we know that graph G cannot be radial planar if the inequality is violated.
Note that non radial planar graphs can fulfill the inequality as well, e.g. K2,3.
That is why we are looking for a tighter bound for the number of edges in
Section 4.

3 Forbidden Patterns

Based on three level non planar patterns for hierarchies by Di Battista and
Nardelli, [1], Healy et al. introduced the notion of minimal level non planar
patterns (MLNP) for level graphs, [4]. A hierarchy is a level graph G = (V,E)
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where for every v ∈ Vi, i > 1, there exists at least one edge (w, v) such that
w ∈ Vi−1. A level graph is said to be minimal level non planar if deleting an
arbitrary edge leads to level planarity. So these MLNP patterns do match the
subdivisions K5 and K3,3 of general planar graphs. Healy et al. gave a complete
characterization of level planar graphs in terms of minimal forbidden subgraphs
which are identified by trees, level non planar cycles and level planar cycles with
augmented paths. Kuratowski provided a characterization for planar graphs in
terms of forbidden subgraphs. By the end of this section we will give a complete
characterization for radial planar graphs in terms of forbidden patterns, the so
called minimal radial non planar (MRNP) patterns.

3.1 Level-planarity

We use the terminology Healy et al. have used to describe the MLNP patterns
[4]. A pattern P = (V ′, E′), V ′ ⊂ V,E′ ⊂ E, is a level or radial embedded
subgraph of G which can be described by its upper- and lower-most levels, the
so called extreme levels of P . If a vertex v is located on an extreme level then
this one is called the incident extreme level. The other extreme level is called
the opposite extreme level of v.

Theorem 3.1. (Healy, Kuusik and Leipert [4]). The set of MLNP patterns
characterized by trees, LNP cycles and path-augmented level planar cycles is
complete for hierachies.

3.1.1 Trees

Healy et al. characterized MLNP trees as follows, see [4]. Let x denote a root
vertex with degree three which is located on one of the levels li, . . . , lj . There
have to be three subtrees, which emerge from the root vertex, that have the
following common properties:

• Each subtree has at least one vertex on both extreme levels.

• A subtree is either a chain or it has two branches which are chains.

• All the leaf vertices of the subtrees are located on the extreme levels, and
if there is a leaf vertex v of a subtree S on an extreme level l ∈ {i, j} then
v is the only vertex of S on l.

• Those subtrees which are chains have one or more non-leaf vertices on the
extreme level opposite to the level of their leaves.

According to the location of the root vertex two instances occur:
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(T1) The root vertex x is on an extreme level l ∈ {i, j}. At least one of the
subtrees is a chain starting from x, going to the opposite extreme level of
x and finishing on x′s level.

(T2) The root vertex x is on one of the intermediate levels l, i < l < j. At least
one of the subtrees is a chain that starts from x, goes to the extreme level
li and finishes on level lj . Furthermore, at least one of the subtrees is a
chain that starts from x, goes to level lj and finishes on level li.

Figure 2: Minimal level non planar tree pattern T1 and T2.

Figure 3: Minimal level non planar pattern, LNP cycle.

3.1.2 LNP cycles

A level non planar (LNP) cycle is a cycle bounded by the extreme levels li
and lj . In contrast to level planar cycles which consists of two distinct paths
between the extreme levels MLNP cycles must contain at least four distinct
paths between the extreme levels having only endpoints on the extreme levels.
Such a path is called a pillar.

3.1.3 Path-augmented cycles

A level non planar pattern including a cycle can also be achieved as a conse-
quence of augmenting a level planar cycle by one or more paths. In order to
specify the minimal path-augmented level non planar cycles we need some fur-
ther definitions which can be found in [4]. As mentioned before a cycle has at
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least two pillars. Vertices situated on pillars are called outer vertices where all
others are called inner vertices. A pillar’s endpoint is named corner vertex,
which is also called single corner if it is the only vertex on the extreme level. A
bridge is said to be the shortest path between corner vertices on the same level.
This is as much to say as a bridge has two corner vertices as its endpoints and
all remaining vertices are inner ones. A pillar is monotonic if the level numbers
of consecutive vertices of the pillar are either monotonically increasing or de-
creasing. The starting vertex of a chain is denoted by the vertex of degree one,
considering only the chain’s vertices, which is connected to a cycle, the other
vertex of degree one is the ending vertex.
According to [4] a minimal level non planar path-augmented cycle has to be one
of the four cases. The augmented paths always start at a vertex of the cycle
and end on an extreme level. Let li and lj be the bounding extreme levels.

(C1) A single path p1 starting from an inner vertex vp1 and ending on the
opposite extreme level of the inner vertex; p1 and the cycle only have the
vertex vp1 in common. The path has at least one vertex on an extreme
level, the end vertex, and at most two, the start and end vertices.

(C2) Two paths p1 and p2, starting, respectively, from vertices vp1 and vp2,
vp1 ̸= vp2, of the same pillar L = (vi, . . . , vp1, . . . , vp2, . . . , vj) terminat-
ing on extreme levels lj and li, respectively. Vertices vp1 or vp2 may be
identical to corner vertices of L (vp1 = vi or vp2 = vj) only if the corner
vertices are not single corner vertices on their extreme levels. Path p1 and
p2 have no vertices other than their start ( if corner) and end vertices on
the extreme levels. There are two subcases according to the levels of vp1
and vp2: λ(vp1) < λ(vp2) or λ(vp1) ≥ λ(vp2). The latter means that L

must be a non-monotonic pillar.

(C3) Three paths p1, p2 and p3. Path p1 starts from a single corner vertex and
ends on the opposite extreme level; paths p2 and p3 start from opposite
pillars and end on the extreme level where the single corner vertex is at.
Neither p2 nor p3 can start from a single corner vertex.

(C4) Four paths p1, p2, p3 and p4. The cycle comprises a single corner vertex
on each of the extreme levels. Paths p1 and p2 start from different corner
vertices and end on the opposite extreme level to their start with the paths
embedded on either side of the cycle such that they do not intersect; paths
p3 and p4 start from distinct non-corner vertices of the same pillar and
finish on different extreme levels. The level numbers of starting vertices
are such that they do not cause crossing of the last two paths.
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(a) C1 (b) C2

(c) C3 (d) C4

Figure 4: Minimal level non planar pattern, path-augmented level planar cycles C1, C2, C3
and C4.

3.2 Radial-planarity

In Section 3.1 we have seen a complete set of minimal level non planar patterns.
We want to apply this characterization to radial graphs now in order to find one
for minimal radial non planar patterns.
Let G be a radial graph with extreme levels li and lj of the considered pattern.
Assume we defined an orientation on G. We therefore know that two edges do
not cross within a chosen corridor, if their starting and endpoints appear in the
same order according to this orientation.
So far a corridor has only been defined for two consecutive levels. We now
generalize it to spread over more than two levels bounded by the extreme levels li
and lj . Let p1, p2 be two distinct pillars which have their starting and endpoints
on the extreme levels li and lj . By definition p1, p2 do have a vertex on every
level lt, i < t < j. That is to say a corridor [p1, p2] is bounded by two distinct
pillars p1, p2 and the arcs on radii li and lj defined by the pillars’ starting
and endpoints according to the chosen orientation. So a corridor is no longer
restricted to contain only edges but subgraphs. Likewise edges a path p3 is said
to be inside the corridor, p3 ∈ [p1, p2] if every edge of p3 is inside the corridor
built by the belonging edges of p1 and p2. Note that once again a path might
have an even amount of crossings with the border paths and is still said to be
inside the corridor where as an odd amount of crossings results in a path having
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either starting or endpoint outside the considered corridor, the same way as it
was outlined for edges.

3.2.1 Trees

Taking the minimal level non planar tree patterns and regarding them in radial
graphs with vertices distributed on radii and no longer on levels, we prove that
they are minimal radial non planar as well. So the set of MLNP trees and the
set of MRNP trees can be set equal without adding or deleting any properties.
Note that we are still talking about levels even though the vertices are now
spread on concentric circles and no longer on horizontal lines.

Theorem 3.2. MLNP trees are minimal radial non planar patterns (MRNP).

Proof. We prove that the MLNP tree patterns T1 and T2 are minimal radial
non planar.
(T1): Looking at an arbitrary MLNP tree pattern P with extreme levels li and
lj that fulfills condition T1, let B1 and B2 be two of the three required subtrees.
They can be embedded without any crossing. W.l.o.g. let root vertex x be
situated on level li. Our aim is to construct an interval [b1, b2] on level li where
b1 is a vertex of B1, b2 a vertex of B2 and x ∈ [b1, b2]. Vertices b1, b2 do exist by
assumption since every subtree has at least one vertex on each extreme level.
In order to label vertices b1 and b2 we direct edges. Let root vertex x be the
starting point and direct all adjacent edges away from x. Whenever we reach
a new vertex, we repeat the action and direct all adjacent edges, that have not
been directed so far, away from the vertex. After doing so, choose the longest
directed path, that starts in x and ends on radian li. Repeating it we obtain
two vertices b1 ∈ B1 and b2 ∈ B2 which are the desired endpoints of our interval
[b1, b2]. Without loss of generality let the orientation be chosen in such a way
that x ∈ [b1, b2] holds. Otherwise choose the opposite orientation.
For the same reason there have to be two vertices a1, a2 ∈ Vj on radian lj with
a1 part of B1 and a2 part of B2, such that ak (k = 1, 2) is the endpoint of a
path Ak that starts in bk on radian li and goes straight to radian lj without
passing vertex x. Thus Ak ⊂ Bk is a path between radian li and lj , hence
a pillar. We can now build the corridor [A1, A2] bordered by the two pillars
A1, A2 and x ∈ [A1, A2]. Since path Ak is part of the subtree Bk but x ̸∈ Ak,
there exists another path Ck such that Ck = Bk −Ak. Path Ck therefore starts
in root vertex x and ends either in an endpoint of Ak or an inner vertex of Ak

depending on Bk being a chain or a subtree with two branches, see Figure 5.
Now looking at pattern P we still have to put the third requested subtree B3

with root vertex x in place. Since x ∈ [A1, A2] all further subtrees starting in
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x have to be embedded in the corridor as well in order to not cause a crossing,
also B3. By assumption B3 has to have at least one vertex, other than the root
vertex x, on each extreme radian. But placing subtree B3 in [A1, A2] leaves no
possibility for a path from level li to lj without crossing either C1 or C2. Hence
T1-patterns are radial non planar as well.
(T2): Given an arbitrary MLNP tree pattern P bounded by extreme levels li
and lj that fulfills condition T2, we know that there has to be at least one chain
starting in root vertex x, going to radian lj and ending on li and vice versa.
Using this information the same reasoning as in the case T1 applies.
The set of radial planar graphs is an upper set of the set of level planar graphs.
Patterns T1 and T2 were minimal level non planar. Thus deleting an arbitrary
edge especially leads to a radial planar pattern. So Theorem 3.2 has been
proved.

Figure 5: Minimal radial non planar tree pattern T1 and T2.

3.2.2 Cycles

Radial planar cycles The pattern of LNP cycles gives us a first impression of
patterns which are not level planar but radial planar. Taking the radial planar
model by merging levels to radii we gain an extra possibility to place an edge
around the inner radian which leads to radial planarity.

Lemma 3.3. LNP cycles are radial planar.

Lemma 3.3 may be proved in much the same way as it has been in the level
non planar case in [4] except the fact that the last pillar crosses the imaginary
cut ray which evolves from melting a levels’ endpoints and not the remaining
pillars, see Figure 6. That is why this realization has not been possible in the
level planar case.
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Figure 6: A radial non planar embedding of the level non planar cycle C4 to the left and a
radial planar embedding to the right.

Radial Non Planar cycles (RNP) We have seen above that LNP cycles are
no candidates for radial non planar patterns. Instead they are radial planar. But
they can be achieved by melting two minimal radial non planar tree patterns.
That property makes them convenient as a source of further minimal radial
non planar patterns including a cycle which is gained by melting the trees’ leaf
vertices and an additional path.
Given a LNP cycle, there are three possibilities to start an additional path in
order to build a MRNP pattern. The path’s starting and end vertices can either
be corner vertices and lie on a shared extreme radian, they can both be non
corner vertices on intermediate radii such that the path starts and ends at inner
vertices of different pillars or the path can have starting and endpoint on two
different extreme radii.
We will have a closer look at the case of an additional path starting and ending
on extreme radian li and having at least one vertex on the extreme radian lj ,
for an example see Figure 7. We will prove that cycles augmented by such
a loop, which will be characterized later on, are radial non planar. We take
the characterization T1 of Healy et al for MLNP trees and slightly adjust it to
achieve a characterization for MRNP cycles. Note that the additional path has
to end in the melted leaf vertex on radian li otherwise the pattern would not be
minimal.

• (C1T1): Additionally to T1, all three subtrees end in one shared leaf
vertex y on radian li. Hence, only a subtree consisting of two branches
can have a leaf vertex other than y.

The assumption of a shared leaf vertex y on radian li, in which point all three
subtrees merge, leads towards the picture of a cycle with a loop. That is why
we call the third subtree respectively the path a loop. Note that we are still
talking about subtrees even though they build a cycle.
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Figure 7: An example of a MRNP pattern C1T1, a cycle with an additional path at the inner
radian.

Lemma 3.4. Loop-augmented cycles as described by C1T1 are MRNP patterns.

Proof. The proof can be adapted from Theorem’s 3.2 proof. The only difference
is that in this case pillars A1 and A2 have their starting point y in common.
Besides that radial non planarity can be proven using the same arguments as in
3.2.
The fact of minimality is still missing. Since we did not force any further
restrictions on B3, apart from C1T1, any of the three subtrees could have been
B3. Thus it suffice to show that deleting any edge from B3 creates a radial planar
pattern. We only have to distinguish between B3 being a chain or having two
branches which are chains.
Chain: Deleting an arbitrary edge implies two paths P1 and P2 (one possibly
empty). Let P1 be the one starting in x and P2 the one starting in y. P1 can
be embedded inside [A1, A2] since it starts in x but does not have a leaf vertex
in y any longer and therefore does not have to cross Ck, k = 1, 2. And P2 can
be embedded outside [A1, A2] since it starts in y but has no further vertices on
radian li.
Branches: Deleting an edge on the way from x or y to the branching point
reduces to the above chain. On the other hand, deleting an edge between the
branching point and the leaf vertex on radian lj implies a smaller subtree with
two branches that can be embedded inside the chain subtree B1 or B2 which
must exist by assumption.

Further augmentations are described by the upcoming patterns C2T1 and C3T1
which either consists of a radial planar cycle with a loop starting at one of the
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Figure 8: An example of the MRNP pattern C2T1.

intermediate radii or a path that starts on an extreme radian and ends on the
opposite one, see Figures 8 and 9.

• (C2T1): Adjust T1 by melting the leaf vertices of two subtrees that are
direct chains. The third subtree is transformed into a loop that starts on
an intermediate radian ls, i < s < j, of a pillar. The loop is supposed to
end on an intermediate radian le, i < e < j, le ̸= ls, of the one pillar that
does not share a corner vertex with the pillar the starting vertex is part
of.

• (C3T1): Adjust T1 by melting the leaf vertices of two subtrees B1, B2

into a vertex y on radian li. Besides, let subtree B1 be a direct chain and
subtree B2 have two branches which are chains. An additional path starts
from B2’s leaf vertex p on radian lj and ends on radian li.

Note that the structure described by C3T1 is the only possibility to gain a
minimal pattern with a radial planar cycle having two corner vertices on every
extreme radii and augmented by a path having starting and end vertex on
different extreme radii. Notice that the additional path can have no vertices
other than its starting and end vertices on an extreme radian. Since we aimed for
a MRNP pattern a crossing is necessary. That is the reason why the augmented
path can only end in an additional vertex on radian li which is not part of the
radial planar cycle. The only way the cycle can be constructed is by melting
a subtree which represents a chain and a subtree with two branches which are
chains. Any other combination would either not be minimal or not cause a
crossing at all.
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Figure 9: An example of the MRNP pattern C3T1.

3.2.3 Path-augmented Cycles

As we will see in this section, besides the LNP cycles, the minimal level non
planar path-augmented cycles are a further class of patterns being level non
planar but radial planar. Again, we show that these patterns can be modified
in a way that they do become minimal radial non planar as well and we therefore
will have found another class of MRNP patterns.

Radial planar path-augmented cycles

Lemma 3.5. Path-augmented cycles are radial planar.

Proof. We need to show that all four patterns C1,. . . , C4 are radial planar. We
give the proof only for the case C1. The same conclusion can be drawn for C2,
C3 and C4 and will appear in a forthcoming publication. Figure 10 shows a
radial planar embedding of all four patterns. Let li, lj be the extreme radii of
the considered pattern in a level planar embedding.
(C1): Without loss of generality, let li be the radian path p1 ends on. Fur-
thermore, let Ak, k = 1, 2 be the pillars of the level planar cycle with corner
vertices ak ∈ Vj . Taking the pillars into account we are able to build the corri-
dor [A1, A2]. Since p1 starts from an inner vertex, there has to be a bridge C

going from a1 to a2 without having any vertices on radian li. Now choose an
orientation such that C ∈ [A1, A2] holds. In the level case the crossing between
p1 and the level planar cycle was caused since p1 as well as the two bridges of
the level planar cycle had to be in between A1 and A2. In the radial case we are
now able to place bridge C outside [A1, A2] by letting it run around the inner
radian li. Note that outside the corridor [A1, A2] means inside the complement,
the corridor [A2, A1], according to the chosen orientation. So path p1, starting
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from an inner vertex on C, can be placed outside [A1, A2] as well and reach
radian li without causing a crossing. Hence, pattern C1 is radial planar.

Figure 10: MLNP patterns C1, C2, C3, C4 to the left and their radial planar embeddings to
the right.

Radial non planar path-augmented cycles Having proved that patterns
C1, C2, C3 and C4 are radial planar we are led to the question if corresponding
augmentation of these patterns exist that create minimal radial non planar pat-
terns. Following the method we have used for LNP cycles, we augment our path
pk to be a subtree again with the properties recommended for radial non planar
tree patterns. Any other augmentation cannot be minimal since it should have
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occurred somehow as a pattern in the level planar case. Hence pk can either be
augmented to be a chain with a bridge, a direct chain with exactly one vertex
on each extreme radian or to have two branches which are chains.

Lemma 3.6. In order to receive a MRNP pattern based on the radial planar
patterns C1, C2, C3 or C4, path pk cannot be augmented to have two branches
which are chains or to be a chain with a bridge.

Proof. Branches: Augmenting pk, k = 1 . . . , 4, to be a subtree with two branches
which are chains and root vertex pk in pattern (Cl), l = 1, . . . , 4 does not lead
to a minimal radial non planar pattern because one can always find an induced
tree pattern with root vertex x = vpk. Induced tree pattern is briefly meant
for induced minimal radial non planar tree pattern. We might have to adjust
the extreme radii since we are looking at an induced pattern, for example take
the radian the branching point or one of the starting vertices vpk is situated
on as the belonging extreme radian and reduce the range of the pattern. Then
deleting any arbitrary edge, which does not belong to the induced tree pattern
(C̃l) with the smaller level span, does not provide a radial planar pattern. Thus,
augmenting pk to be a subtree with two branches which are chains in pattern
(Cl), l = 1, . . . , 4 does not provoke a MRNP pattern.
Bridge: Assume pk has been augmented to be a chain with a bridge B on radian
li in pattern (Cl), l = 1, . . . , 4. The resulting pattern is not minimal because
deleting an arbitrary edge of B induces a (Cl) pattern with an additional path
from radian li to lj . This path cannot be embedded along with the (Cl) pattern
without causing a crossing since (Cl) can only be embedded radial planar by
placing a cycle around the inner radian as seen before. This prevents us from
embedding the second component, the path from radian li to lj , otherwise a
crossing would be inevitable. The same conclusion can be drawn for B located
on radian lj .

Hence, the only possibility left is augmenting pk to be a direct chain with ex-
actly one vertex on each extreme radian. The following argumentation shows
that it actually leads towards minimal radial non planar patterns. So assume
pk has been augmented in the mentioned way.

Augmented (C1): Let li be the radian the original not augmented path p1
ended on. Since p1 starts from an inner vertex vp1, there has to be a bridge Bj

on radian lj . Let p1 no longer be just a path to radian li but a subtree that
has vertices on both extreme radii. Now assume we also have a bridge Bi on
radian li. Deleting an arbitrary edge of Bi would only now cause a radial non
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planar tree pattern with root vertex vp1. Therefore a bridge Bi cannot exist in
a minimal radial non planar pattern.
According to Lemma 3.6 we can only augment p1 to a chain with exactly one
vertex on each extreme radian. Let p11 be the augmentation of p1 which goes
from radian li to radian lj . Subject to the proof of Lemma 3.5 pattern C1 can
only be embedded radial planar by placing a cycle around the inner radian.
This can either be done using a pillar or eventually a bridge. Nevertheless any
further augmentation of path p1 to be a chain with vertices on both extreme
radii forces a crossing. Thus, the augmented C1 pattern is radial non planar.
We still need to show minimality. Deleting an edge of one of the radial planar
cycle’s pillars results in two paths. The one starting on radian li can be placed
next to the other pillar without crossing p1 any more. Respectively, one can
embed p1 in the occurring gap of the pillar. By deleting an edge from bridge Bj

we are able to embed the part of Bj with p1 on it next to the former level planar
cycle such that p1 and its augmentation can be placed next to the level planar
cycle without crossing it any longer. Deleting an edge from p1 implies one half
of p1, which can be embedded inside the cycle, and p11 with the other half of
p1 embedded outside. In the end deleting an edge from p11 causes a radial pla-
nar pattern since C1 is being radial planar. The only difference is an additional
path which does not go from radian li to lj , therefore no crossing occurs. Hence,
the only way of augmenting p1 in order to achieve a minimal radial non planar
pattern is to extend it to a chain with exactly one vertex on each extreme radian.

Figure 11: Examples of minimal radial non planar (MRNP) augmented cycle patterns, Aug-
mented C1, C2 and C3.

Augmented (C2)-(C3):Similar arguments apply to the case of Augmented
C2 and Augmented C3 and it can be shown that those patterns are minimal
radial non planar as well.

Augmented (C4): Augmenting either one of the four paths pk, k = 1, . . . , 4,
leads to an induced tree pattern with root vertex x = vpk. So the augmented
C4 pattern cannot be minimal.
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Lemma 3.7. Patterns caused by augmenting a path of C1,C2 or C3 to be a
direct chain with exactly one vertex on each extreme radian and following the
rules of Augmented C1- Augmented C3 are minimal radial non planar.

Based on the MLNP patterns introduced in [4] we have found three classes of
MRNP patterns. First, there are the tree patterns which are minimal radial
non planar. In particular, those are the only minimal level non planar patterns
that are radial non planar as well. The reason for this can be found in the
tree structure which cannot take advantage of the possibility to place an edge
around an inner radian and thus avoid edge crossings. This is only relevant for
cycles not for trees. Second, there are the RNP cycles with at least four pillars
and an augmented loop. They are a generalization of the LNP cycles. Last but
not least the radial non planar path-augmented cycles which are an extension
of level non planar path-augmented cycles. They consist of a cycle with two
pillars and up to four paths whereat one of them is augmented to have exactly
one vertex on each extreme radian.
According to [4] the set of MLNP patterns is complete for hierarchies. Compared
to level graphs the radial graphs offer the opportunity to embed a cycle around a
radian, it can be wrapped around. We have used this property and considered all
possible augmentations. So if there exists a minimal radial non planar pattern
it must match one of the patterns mentioned above. Any other augmentation
should have occurred in the level case as well. We can now formulate our main
result.

Theorem 3.8. Let G = (V,E, λ) be a hierarchical radial graph then G is radial
planar if and only if it contains none of the MRNP patterns described by T1,T2,
C1T1-C3T1 and Augmented C1-C3.

4 Preprocessing

Before running an algorithm to test for planarity it makes sense to check the
satisfiability of some constraint concerning the number of edges in a radial planar
graph. From now on let G = (V,E) be a k-radial-planar graph with |V | ≥ 3.

4.1 An upper bound for the number of edges

The sum of all edges in between each two levels sums up to the entire amount
of edges. Let G be a level graph with k levels. Let Vi ⊂ V , with |Vi| = ni, be
the vertices on level li and mi,i+1 the number of edges between level li and li+1
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where i = 1, . . . , k − 1. Thus
k∑

a=1
na = |V | = n and

k−1∑
i=1

mi,i+1 = |E| = m.

From now on we will be looking at the subgraphs of G with level span 1, that
are the induced subgraphs G′ given by vertices Vi on level li and Vi+1 on li+1.
Let G be radial planar. The difference between level and radial planarity are
the cycles. G′ can either contain a cycle or it is a tree. These two cases are to
be investigated.

4.1.1 Cycle

Assume there is a longest cycle Cc in G′. Since G is radial planar so is G′ and
Cc has to be of even length c, c ≥ 4. Thus there are at least c

2 vertices on level
li. The same holds for level li+1. The remaining ni − c

2 vertices on li which
are not part of Cc can either have degree one or zero in G′. A greater degree
would induce one of the MRNP in G′ and therefore cause a crossing. These
vertices of degree one will be called leaf vertices and together with the adjacent
edge that connects to one of the cycle’s vertices it is called a branch. A cycle
vertex can have an arbitrary amount of branches as long as those branches are
situated in between the two cycle chords adjacent to the cycle vertex. Those
chords do have the same boundary character as the paths in Section 3.2.2. This
gives reason for the following lemma.

Lemma 4.1. Degree Condition Cycle: Let G′ be the radial planar subgraph
induced by the vertices Vi, |Vi| = ni, on level li and the vertices Vi+1, |Vi+1| =
ni+1, on level li+1. If there exists a longest cycle Cc of even length c, c ≥ 4, in
G′ then the following holds:

• the c cycle vertices have degree ≥ 2

• the ni + ni+1 − c remaining non-cycle vertices have degree ≤ 1.

Proof. Assume there is a cycle vertex v with deg(v) ≤ 1. This is a contradiction
since a cycle vertex has to have degree at least 2. Also assume there is a non-
cycle vertex v with deg(v) ≥ 2. This will lead to a radial level non planar
pattern. If c = 4 there is the pattern of a C4 with an augmenting path, which
is radial level non planar. If c ≥ 6 one will receive an induced radial level non
planar tree pattern. Hence a contradiction as well.

Note that as soon as there exists a cycle in G′ there can only be one connected
component which consists of more than one vertex since a cycle and an edge
which is not part of the cycle’s component would always cross. In the following
the word component means connected component. Let CG′ be the set of com-
ponents in G′.
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Case |CG′ | = 1: There is only one component C1 which consists of the cycle Cc

and possibly several branches. We now want to count the edges in C1. There
are c edges coming from Cc. All non-cycle vertices have degree one and no other
edges than the branches can occur. So we have (ni + ni+1)− c edges belonging
to the branches. Hence the total number of edges in C1 is exactly

|E1| = c+ (ni + ni+1)− c = ni + ni+1. (5)

Case |CG′ | ≥ 2: We have already seen that apart from the component which
contains Cc all other components consist of the complete graph with one vertex,
the K1, and no further edges. So the amount of edges in G′ depends on the
amount of edges in the component containing Cc while taking into account the
number of K1’s. Hence we achieve the Edge Condition:

|E′| = c+ (ni + ni+1)− c− |K1| = ni + ni+1 − |K1| (6)

The degree condition provides a cycle with possible branches and maybe not con-
nected single edges or vertices while the edge condition guarantees the existence
of maximal one connected component with edges. Thus we can summarize:

Theorem 4.2. Let G be a graph with the induced subgraph G′ between level li
with vertices Vi, |Vi| = ni, and level li+1 with vertices Vi+1, |Vi+1| = ni+1. Let
Cc be a longest cycle of even length c, c ≥ 4, in G′. G′ is radial planar if and
only if

• the c cycle vertices have degree ≥ 2

• the ni + ni+1 − c remaining non-cycle vertices have degree ≤ 1

• |E′| = ni + ni+1 − |K1|

Proof. ’⇒’ Assume G′ is radial planar. According to Lemma 4.1 and the fact
that there can only be one component with more than one vertex the Degree
and Edge Conditions hold.
’⇐’ Assume the Degree and Edge Conditions hold. In the component of the
Cc we are able to place all non-cycle vertices in between the cycle chords of
the cycle vertex they are connected to. So far the component is radial planar.
Furthermore we claim that there can only be components consisting of one
vertex and no edge. Adding an edge in a component other than the one with
the Cc would raise the number of edges on the left side of the Edge Condition by
one. But at the same time the number of vertices on the right side of the Edge
Condition would be raised by two while no further K1 component is subtracted.
So the Edge Condition would be violated, a contradiction.
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Figure 12: An induced subgraph G′ with a
longest cycle C6.

Figure 13: An induced subgraph G′

with a longest path P8.

Note that as soon as a longest cycle Cc of length c is found all other vertices
not belonging to Cc are regarded as non-cycle vertices, even if they are part of
another cycle.

4.1.2 Tree

Now assume there is a longest induced path Pp of length p − 1, p ≥ 2, in G′

and no cycle, saying G′ is a forest. Once again since G is radial planar so is G′.
Just as before let CG′ be the set of connected components in G′.

Case |CG′ | = 1 : There is only one component C1 which consists of a longest
path Pp of length p − 1 and possibly more edges. What can be said about the
vertices’ degrees in the component? We adjust the degree condition for the case
of a path.

Lemma 4.3. Degree Condition Path Let G′ be the radial planar subgraph
induced by the vertices Vi, |Vi| = ni, on level li and the vertices Vi+1, |Vi+1| =
ni+1, on level li+1. If there exists a longest path Pp of length p − 1, p ≥ 2, in
G′ and no cycle then the following holds:

• the Pp’s starting and end vertices have degree = 1

• the p− 2 internal path vertices have degree ≥ 2

• the ni + ni+1 − p remaining non-path vertices have degree = 1.

Note that as soon as a longest path Pp is found all remaining vertices not
belonging to Pp are called non-path vertices.

Proof. The starting and end vertices of Pp have to have degree = 1, otherwise
Pp would not be a longest induced path. The internal path vertices have to
have degree ≥ 2 since only the starting and end vertices have degree = 1 and
|CG′ | = 1 so no further component is possible. For the same reason the remaining

23



non-path vertices cannot have degree = 0. Assume there is a non-path vertex
v with deg(v) ≥ 2 which is adjacent to the path vertex x. Then there would be
a MRNP tree pattern with x being the root vertex. So G′ would no longer be
radial planar, a contradiction.

With this in mind we are able to count the edges of C1 = G′. There are p − 1

path edges and ni + ni+1 − p branches from the remaining non-path vertices.
So the number of edges is exactly:

|E1| = (p− 1) + (ni + ni+1 − p) = ni + ni+1 − 1. (7)

Case |CG′ | ≥ 2 : Compared to the cycle case connected components with more
than one vertex are possible since path Pp leaves room for more edges from
level li to level li+1 in a component other than the one Pp belongs to. By
assumption G′ is a forest so each component in G′ must have a longest induced
path. Therefore the edge condition 7 has to apply to every single component
in G′. We have |CG′ | components. Since no cycles are allowed, we have edge
maximal trees. So the Edge Condition is formed by adding the edges of each
component:

|E′| = ni + ni+1 − |CG′ |. (8)

Now we are able to phrase the exact number of edges in G′.

Theorem 4.4. Let G be a graph with the induced subgraph G′ between level li
with vertices Vi and level li+1 with vertices Vi+1. Let G′ be a forest and Pp be
a longest induced path of length p− 1 in each component. G′ is radial planar if
and only if the Degree Condition for a path holds for each connected component
of G′ and the Edge Condition holds for G′.

Proof. ’⇒’ By assumption G′ is radial planar and has no cycle so every con-
nected component builds a tree. Hence the Edge Condition applies. The Degree
Condition holds according to Lemma 4.3. If a component has no edges, K1, the
Degree Condition is not defined. But there are no edges to count so the com-
ponent is subtracted in the Edge Condition.
’⇐’ Assume the Degree and Edge Condition hold. Each component consists of
either a K1 or has a longest induced path. Because of the Degree Condition we
are able to place non-path vertices in between chords of the path vertex they are
adjacent to. We can do so for every component since two components without
a cycle cannot cross. Components consisting of a K1 are not relevant for the
embedding. They cannot cause any crossing.
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Corollary 4.5. If graph G is radial planar then the number of edges is exactly:

|E| =
k−1∑
i=1

|E′
i|

where G′
i = (V ′

i , E
′
i) with V ′

i = Vi ∪ Vi+1 is the induced subgraph between level
li and level li+1.

|E′
i| =

{
ni + ni+1 − |K1|, if G′

i contains a cycle
ni + ni+1 − |CG′

i
|, if G′

i is a forest.

So counting the number of edges in every level span of size one is one way of
preprocessing the graph. If a graph G does not meet Corollary 4.5 it cannot be
radial planar.

The upper bound (4) can also be shown by using Corollary 4.5. Let |K̃1| :=∑k−1
i=1 |Ki

1| where |Ki
1| is the amount of K1 in subgraph G′

i, if G′
i contains a cycle

and is defined as in Corollary 4.5. In the same manner let |C̃G| :=
∑k−1

i=1 |CG′
i
|,

if G′
i is a forest. So the number of edges in a radial planar graph G can be

reformulated as follows

|E| =
k−1∑
i=1

|E′
i| = n1 + nk + 2(n2 + n3 + · · ·+ nk−1)− |K̃1| − |C̃G|

= 2n− (n1 + nk + |K̃1|+ |C̃G|).

(9)

Our aim is to prove inequality (4). Hence we are interested in the subtrahend
of equation (9). We do know that n1, nk ≥ 1, otherwise we would not have a k

level graph.

Case |C̃G| = 0 : There is no subgraph G′
i which contains a tree and no cycle. So

there is a cycle of length at least four in every subgraph G′
i. Thus there have to

be at least two vertices on every level, and therefore n1, nk ≥ 2. So |E| ≤ 2n−4

holds.
Case |C̃G| = 1 : There is exactly one subgraph G′

i with one component which
is not a cycle and all other subgraphs do contain a cycle. Suppose k = 2, so
G is a 2 level graph. By assumption |V | ≥ 3, hence n1 ≥ 2 or n2 ≥ 2 and (4)
holds. Suppose k ≥ 3, apart from one single subgraph all other subgraphs have
to have a cycle since |C̃G| = 1. So all but one level have ni ≥ 2. Once again
n1 ≥ 2 or nk ≥ 2 and (4) holds.
Case |C̃G| ≥ 2 : |E| ≤ 2n− 4 holds trivially.
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Figure 14: An extremal graph with k = 3, n = 9 and m = 14.

All considerations have been done regardlessly of |K̃1|, especially for |K̃1| = 0.
So we have been able to prove inequality (4) with the help of Corollary 4.5.

Corollary 4.6. If graph G is radial planar then the number of edges is bounded.

|E| ≤ 2n− 4.

4.2 Extremal Graphs

We now have two tools to estimate and name respectively the amount of edges in
a radial planar graph, namely Corollary 4.5 and 4.6. This enables us to analyze
the radial planar graphs with a maximal amount of edges, saying the extremal
graphs. Using equation (9) we have the equation for radial planar extremal
graphs

n1 + nk + |K̃1|+ |C̃G| = 4. (10)

Hence the extremal graphs are defined by the summands of equation (10). By
assumption n1, nk ≥ 1 holds. The same case-by-case analysis as for Corollary
4.6 can be performed. Given a value for one summand the other summands
have to be assigned regarding the fact that they all have to sum up to four.

Case |C̃G| = 0 : There is no subgraph G′
i which consists of a forest. Hence there

has to be a cycle of length at least four in every subgraph G′
i and at least two

vertices on every level. Thus n1 = nk = 2 and |K̃1| = 0 follows. See Figure 14
for an example.
Case |C̃G| = 1 : There is exactly one subgraph G′

i with exactly one tree and no
cycle. All other subgraphs have to contain a cycle. Remember, n1, nk ≥ 1. So
either |K̃1| = 0 or |K̃1| = 1 holds. In the latter case n1 = nk = 1 would follow
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which is not possible as we will see. Assume n1 = nk = 1. Then G′
1 as well as

G′
k−1 exists of exactly one tree and no cycle, a contradiction to |C̃G| = 1.

If |K̃1| = 0 then n1 = 1 and nk = 2 or vice versa. Without lost of generality
suppose n1 = 1 and nk = 2. Thus G′

1 is the only subgraph with a tree com-
ponent. All other subgraphs G′

i consists of a cycle and possible branches. In
particular G′

k−1 contains a C4 because of nk = 2. All remaining inner subgraphs
G′

i, i = 2, . . . , k − 2, are build the same way as in the case of |C̃G| = 0 since the
difference lies in the values of |C̃G|, |K̃1|, n1 and nk only.
Case |C̃G| = 2 : There is either one subgraph G′

i with exactly two components
or two subgraphs with exactly one tree each. All other subgraphs must have a
cycle. Nevertheless, |K̃1| = 0 since n1, nk ≥ 1, to be specific n1 = nk = 1 in this
case. Therefore G1 and Gk−1 have to exist of exactly one tree component each.
Note that G1 and Gk−1 only differ in their root vertex if k = 3. The same argu-
ments as before can be applied to describe the subgraphs G′

i, i = 2, . . . , k − 2,
for k ≥ 4.

Observation 4.7. A radial planar graph G with |K̃1| ̸= 0 cannot be extremal.

Definition 4.8. Let G be a radial planar graph and G′
i = (V ′

i , E
′
i) with V ′

i =

Vi ∪ Vi+1 the induced subgraph between level li and level li+1.
Let |K̃1| :=

∑k−1
i=1 |Ki

1| where |Ki
1| is the amount of K1 in subgraph G′

i, if G′
i

contains a cycle. In the same manner let |C̃G| :=
∑k−1

i=1 |CG′
i
|, if G′

i is a forest.

Let H be the class of radial planar graphs which fulfill the equation

n1 + nk + |K̃1|+ |C̃G| = 4 .

Corollary 4.9. Let G = (V,E) be a radial planar graph with G ̸∈ H then
|E| ≤ 2n− 5 .

The class of graphs that fulfill the tighter bound |E| = 2n− 5 can be achieved
from the class H by deleting an edge and possibly rearranging the vertices since
three vertices on one of the outer level might be possible.

5 Conclusion

We have followed the idea of characterizing classes of graphs by forbidden sub-
graphs. The most common characterization for planar graphs in terms of minors
comes from Kuratowski. By presenting MRNP patterns such a characterization
has been made for hierarchical radial planar graphs as well in this work.
Radii can be pictured as circles on a sphere with a shared center, projected in
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the plane we achieve the common representation of radial graphs. One exten-
sion of radii could be circles on a torus such that they all have the torus’ axes
as shared center. We then gain a new possibility to embed edges which has not
been possible in the radial case. So MRNP patterns such as the loop augmented
cycle can now be embedded toroidal. To look for a characterization of toroidal
planar graphs is an interesting and unsolved problem.
We were also able to name a new upper bound for the number of edges of radial
planar graphs. This can be used as a test for radial planarity in advance of an
efficient algorithm to identify MRNP subgraphs. Developing the just mention
algorithm is still an open question.
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