

Bachelorarbeit Medientechnik

Testautomatisierung von
Online Spielen durch Objekt- und

Bilderkennungsmethoden

Vorgelegt von

Alexander Schoenfeldt

Mat.-Nr. 11084259

Erstgutachter: Prof. Dr. Arnulph Fuhrmann (FH Köln)

Zweitgutachter: Robert Grzeskowiak (InnoGames GmbH)

Februar 2015

Bachelor Thesis Imaging and Media Technology

Test Automation of Online Games
Using Object and Image
Recognition Approaches

Submitted by

Alexander Schoenfeldt

Mat.-Nr. 11084259

First Reviewer: Prof. Dr. Arnulph Fuhrmann (FH Köln)

Second Reviewer: Robert Grzeskowiak (InnoGames GmbH)

February 2015

Bachelorarbeit

Titel: Testautomatisierung von Online Spielen durch Objekt- und

Bilderkennungsmethoden

Gutachter:

 Prof. Dr. Arnulph Fuhrmann (Fachhochschule Köln)

 Robert Grzeskowiak, M. Sc. (InnoGames GmbH)

Kurzfassung:

Moderne Browsergames sind immer komplexer werdende Programme mit sehr

umfangreichem Quellcode. Mit zunehmender Komplexität sinkt die Wartbarkeit

solcher Programme. Automatisierte Regressionstests vereinfachen den

Wartungsprozess und ermöglichen Entwicklern und Testern ihre Arbeit

effektiver zu gestalten.

Diese Bachelorarbeit thematisiert die Anwendung automatisierter

Testverfahren auf Webapplikationen. Der Anwendungsfall wird an einem

onlinebasierten Strategiespiel für den Browser vorgestellt. In der Einführung

werden die Rahmenbedingungen für ein Softwareprojekt mit automatisierten

Testverfahren dargestellt und verschiedene Ansätze der Testautomatisierung

dargestellt. Im Hauptteil wird ein konkreter Lösungsansatz für

Testautomatisierung, angewendet auf das Spiel „Forge of Empires“, vorgestellt.

Das von der Firma erstellte Testframework wird vorgestellt. Dieses setzt sich

aus verschiedenen Softwarekomponenten zusammen. Abschließend werden die

präsentierten Methoden und Technologien vergleichend analysiert.

Stichwörter: Test Automatisierung, Online Spiele

Datum: 16. Februar 2015

Bachelors Thesis

Title: Test Automation of Online Games using Object and Image Recognition

Approaches

Reviewers:

 Prof. Dr. Arnulph Fuhrmann (Fachhochschule Köln)

 Robert Grzeskowiak, M. Sc. (InnoGames GmbH)

Abstract:

State of the art browser games are increasingly complex pieces of software with

extensive code basis. With increasing complexity, a software becomes harder to

maintain. Automated regression testing can simplify these maintenance

processes and thereby enable developers as well as testers to spend their

workforce more efficiently.

This thesis addresses the utilization of automated tests in web applications. As a

use case test automation is applied to an online-based strategy game for the

browser. The introduction presents the general conditions for a software

project that makes use of automated tests and different approaches of test

automation. The main section introduces a specific solution of test automation

applied on the game “Forge of Empires”, produced by Innogames GmbH. The

created framework of the company is presented. It implements different

software frameworks. The conclusion consists of a comparison and analysis

about the presented methods and technologies.

Keywords: Test Automatisierung, Online Spiele

Date: 16. February 2015

Contents

1. Introduction ... 1

1.1 Automated Testing ... 1

1.2 Automated Testing at InnoGames .. 2

1.3 Department: Quality Assurance ... 2

1.4 Testing Patterns ... 3

2. The InnoAutomation Framework ... 5

2.1 Used Libraries ... 5

2.2 Class Structure.. 25

2.3 TestLink .. 28

2.4 Jenkins ... 28

2.5 Configuration ... 30

Refactoring: From Spaghetticode to PageObject Pattern ... 37

3. Conclusion .. 38

4. List of Literature .. 40

5. Eidesstattliche Erklärung ... 43

-1-

1. Introduction

1.1 Automated Testing
Testing is subject to the ongoing demand to achieve optimization and high

quality in the software development process. The “BITKOM Guideline for

Industrial Software Development” points out the following considerations when

test automation is planned for a software project [TestAutm]. Besides the

increasing complexity of software projects and the obligation to proof test

results, test management has to work in compliance with the requirements of

time- and cost targets. At the same time the test coverage ought to be as high as

possible. But Test Automation is not able to completely exclude human failure,

automated tests will not necessarily find more bugs than manual testing and the

total costs do not have to be inevitably lower. Test Automation is considered to

be profitable for long-term software projects with ongoing release cycles. The

working hours saved by the repetitive retesting of codes enables testers to focus

on new features to find new bugs while automated tests cover the already

existing features that might be affected by code changes. The following section

will examine reasons for integrating Test Automation in the software project.

Once the automated test cases are implemented they can be executed over and

over the same way which terminates the possibility of creating an error by

changing the test process. In addition, it is also only once necessary to create the

test data which is needed for some tests. Automated tests ensure the

reproducibility of errors via documentation to understand the root and nature

of that respective error. The documentation created in combination with the

constant execution of tests makes the software quality measurable once it has

been defined. Furthermore it enables test engineers to compare test results

after code changes, which would be too costly in most cases when retesting

manually. Therefore, manual tests are often not retested once they succeeded,

although, unpredictable side effects can produce new errors after the code has

been changed. Test Automation makes it possible to do load- and performance

tests in the first place. With manual tests it is most of the time not possible or

not reasonable. The higher speed of automated tests compared to manual ones

enables a significantly increased test coverage and reduces human error.

The paper “A Theoretical Review of the Impact of Test Automation on Test

Effectiveness” outlines clearly “Unrealistic Expectation and gross

Underestimation of Complexity” as the pitfalls of test automation [TAE]. Careful

test planning and management is necessary and a thoroughly backup of the test

process is needed, since it will not be possible to automate all of the test cases.

While organizing the automation project, the manual testing should not be

ignored or even be neglected. Furthermore, most cases require manual testing,

-2-

which is very costly in terms of time and additionally introduces human failure

into the process.

Used correctly, Test Automation has the potential to significantly reduce the

costs of testing, nevertheless, it should be considered that the results and its

validity considerably depend on the test data, the test cases and the test

coverage. These parts constitute the initial investment, because only the careful

preparation of the automation project and the maintenance of test cases is

leading to sustainable benefits.

1.2 Automated Testing at InnoGames
The InnoGames GmbH is a development company of browser- and mobile

games located in Hamburg. The company has a strong focus on games from the

strategy-genre and specializes in historical war settings. All games are set up

based on the free-to-play business model. In all games players initially get full

functionality of the game for free on all supported platforms without

restrictions or time limits. The firms’ business model is based on the option to

buy premium accounts or items that offer additional advantages in the games.

The company policy is to ensure an optimal game experience regardless of

standard or premium account [InnoG].

Recognizing the opportunities of Test Automation InnoGames puts a lot of effort

in developing a Test Automation Framework as the company is aware of the

potential to reduce the workload needed in the game-testing process as well as

the opportunity to improve the quality of future software developments.

1.3 Department: Quality Assurance
Since the change from matrix- to studio organization the Quality Assurance (QA)

department of InnoGames operates more as a QA community. Every department

or game studio has their own QA team, but these teams share their knowledge

and discuss best practices in biweekly community meetings.

The task of every QA team is to support the ongoing development process in

order to ensure the product quality and detect errors before they enter the final

version. This is done by manual and automated testing of the specified

requirements in the fields of graphic, performance, functionality and game logic.

The goal is to maintain and increase the attention as well as the enthusiasm of

the player.

The InnoAutomation Framework was utilized throughout the development of

the Online Browser Games “Grepolis” and “Forge of Empires” (FoE). Both games

-3-

are strategic war games with historical background, which encourage the player

to build an empire in order to fight against enemies and conquer the world.

The Grepolis Game uses HTML5 which makes it possible to automate test cases

only using PageObjects. Forge of Empires instead is implemented with Adobe

Flash which led to the decision to use image recognition software for test

automation. Only the Registration or Landing Page tests are automated using

PageObjects.

1.4 Testing Patterns
There are different possibilities to automate tests. The minimum quality criteria

should be stability, maintainability and readability. The quality of technical

implementation ensures the stability. The maintainability depends on the test

workflow and the readability depends on the presentation layer. The following

section introduces established patterns of test automation and discusses the

advantages and disadvantages [Meth].

Capture & Replay
The creation of automated tests with capture & replay tools allows the QA tester

to run the application and record the user interactions [C&R]. These recorded

sessions can be automatically replayed without the need of a human user.

Technical information for recognizing the interactive elements are not stored

centrally but in separate files. This leads to high maintenance costs of GUI

changes. Capture & replay tools are mainly used to record simple interaction

sequences and not entire interactive sessions, because the lack of

maintainability with increasing complexity of tests. The advantage of these tools

is that QA testers without programming experience can use them.

Keyword-Driven Testing
Tests automated with this pattern are driven by keywords that represent

actions of a test including input data and expected results [KDT]. With this

pattern test cases can be written independently from the Software under Test

(SUT). Once the SUT changes, the keywords must be refactored, but the test

cases keep their validity. It also enables QA testers without prior experience to

use automation tools that write and run test cases. The created tests are

executed by a robot. The advantage of keyword-driven testing is the reuse of

keywords in different test cases, which reduces the maintenance costs.

Keyword-Driven testing can be used to create acceptance tests, because

keywords can be created without implementation details. Due to the high effort

-4-

that is needed to create keywords with its functionality this pattern is only

profitable for big or long term software projects.

Page Object Pattern
Tests created with the page object pattern are a compilation of test cases based

on the GUI element. For instance a single web page can be represented as a page

object [PGOP]. Every test case must access the GUI via the page objects. Page

objects provide methods in order to access single elements of a web page.

Advantages of this design pattern are the enhanced test maintenance and the

reusability of the code. If the UI changes, tests do not need to be refactored,

whereas only the page objects have to be [PageOb]. There is a clean separation

between page specific code and test code. Services and operations provided by a

page object are collected in one place and are not scattered in the code.

Model-Based Testing
While other patterns require the manual creation of test cases model-based

testing is ought to create the test cases automatically based on a model [MBT].

Nevertheless the model has to be created manually. The model is created from

the requirements of a software, mostly focused on functionality in order to

simplify the model. The automated generation of test cases shall lead to a more

efficient test process, because of the transparency and controllability of test

creation. Furthermore this approach aims to have a person independent test

quality.

-5-

2. The InnoAutomation Framework
In this section the InnoAutomation Framework will be introduced based on the

FoE Automation Project.

The InnoAutomation Framework consists of different libraries, frameworks and

self-written code. In the following sections the main components with its

purposes and common functionalities will be presented to give a quick

understanding of the project and its workflows in order to assure an efficient

induction. Furthermore the class structure of the InnoAutomation Framework

will be pointed out.

2.1 Used Libraries

Illustration - 1 - Base of the InnoAutomation Framework

The basis of the framework is provided by libraries coming from mainly three

Frameworks:

 Selenium 2 / WebDriver

 Thucydides

 Sikuli

Selenium 2 and Sikuli are operating on the same level while Thucydides is

wrapping Selenium providing more advanced tools for writing tests easier.

The following sections give a more detailed insight in every of the above

mentioned frameworks.

-6-

Selenium 2 / WebDriver
Selenium is a software testing framework that aims to automate the input of

user interactions for web applications in the testing purposes[Sel]. With the

release of Selenium 2 the WebDriver API has been included, which is an Object

Oriented API that provides functionalities to drive a browser natively [WebDr].

Introduction

The InnoAutomation framework uses WebDriver to automate tests that

simulate a realistic user interaction. When starting the test software, the

simulated user opens the browser, types a URL, clicks on buttons, types fields

and submits data. Furthermore automated tests with Selenium can check the

visibility of elements in a web application [W3C].

How to use WebDriver

In the FoE Automation Project the WebDriver is implemented and declared in

the SimpleTestTemplate.java class that extends all test classes.

@RunWith(ThucydidesRunner.class)

public abstract class SimpleTestTemplate {

 public final static String BASE_IMG_SRC = "src/test/resources/images/";

 protected final static int DEFAULT_SCREEN_NUMBER = 0;

 protected final static int DEFAULT_PAUSE = 5000;

 public final static String baserUrl = "http://yy.forgeofempires.com/";

 protected SikuliUtils sikuliActions;

 @Managed(uniqueSession = false)

 public WebDriver driver;

Code 1 – Initialization of WebDriver, SikuliUtils and constant values

That class manages what happens before and after every test execution and all

available test steps (PlayerSteps, GuestSteps, […]) are declared.

@ManagedPages

public Pages pages;

@Steps

public static LogsSteps logsSteps;

@Steps

public PlayerSteps player;

@Steps

public GuestSteps guest;

Code 2 - Initialization of Pages- and Steps-objects

-7-

The setUp() method takes care of business that has to be done right before every

test like starting a specific browser (Chrome in this project, defined in

thucydides.properties), opening the URL of the FoE website, maximizing the

browser window, cleaning the test email account and initializing the SikuliUtils

sikuliActions. The latter is used for image recognition and will be introduced

later.

@Before

public void setUp() throws MalformedURLException, AWTException {

 int max = 1000;

 Robot robot = new Robot();

 robot.mouseMove((int) (Math.random()* max), (int) (Math.random()*

max));

 try {

 Runtime.getRuntime().exec(

"wscript src/test/resources/minimizeAll.vbs");

 } catch (IOException e) {

 System.exit(0);

 }

 driver.get(baserUrl);

 driver.manage().window().maximize();

 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 EmailChecker eMailChecker = new EmailChecker(true);

 eMailChecker.removeAllMessages();

 sikuliActions = new SikuliUtils(DEFAULT_SCREEN_NUMBER,

DEFAULT_PAUSE);

 }

Code 3 – The setUp() method is executed before every test

Once the test succeeded or failed the tearDown() method is applied. In case of a

failure or unexpected event a screenshot that gets attached to the test report is

created. Finally the browser is closed.

@After

public void tearDown() throws Exception {

 FailureDetectingStepListener failureDetectingStepListener =

new FailureDetectingStepListener();

 if(!failureDetectingStepListener.lastTestFailed()) {

 captureScreenshot(getClass().getSimpleName());

 }

 if(driver != null) {

 driver.quit();

 }

 }

Code 4 – The tearDown() method is executed after every test

To make interaction between WebDriver and web applications possible

WebElements have to be defined in a way the WebDriver can interact with them

[WebEl]. WebElements relate to website components, such as buttons, fields,

-8-

list elements, etc. After defining a WebElement user interactions can be

simulated. In the FoE Automation the usage of this element is limited because

the game itself runs with flash player, which does not consist of HTML elements.

Nevertheless, all tests on the Webpage of FoE are handled with WebElements,

which maintainability is higher than the image recognition approach used in the

flash player.

Basic commands / API

WebDriver

The WebDriver class is an interface that represents an idealized web browser

and provides the functionality to control the browser, selects WebElements and

aids within the debugging process [WebDrITF].

The most important methods are get(String), which loads the requested web

page and the various methods to find WebElements like findElement(by).

The following passage gives a quick overview to the common methods in the

FoE project.

Common methods of WebDriver

void get(java.lang.String url)

Loads the passed web page in the configured browser. In case of the FoE-Project

it is the Forge of Empires landing page.

The Parameter “url” is a fully qualified URL that is intended to load.

WebDriver.Options manage()

Provides the Option interface that delivers a lot more functionality to the

WebDriver.

Use cases in the FoE Automation Project:

driver.manage().window().maximize();

- Maximizes the browser window

Explicit and Implicit Waits [ExImpl]:

Explicit: Thread.sleep(long milis)

- Waits for the given amount of time no matter if the condition is fulfilled

or not.

Implicit: driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

-9-

- Polls the DOM to wait the given amount of time if elements are not

immediately available. Once the condition is fulfilled the next step

continues.

WebElement

The WebElement is represented by a HTML element and performs commonly

used interactions with a page [WebEl].

Calling a method of WebElement triggers a check that validates the reference to

the element.

Common methods of WebElement

void click()

The click() method performs a mouse click on the referred element. If a mouse

click causes the loading of a new page the methods blocks further steps until the

page has loaded. An element only can be clicked when it is visible.

The FoE Automation project uses that method to click login buttons or to choose

the world which should be played in.

void sendKeys(Charsequence… keysToSend)

This method simulates typing a String into an element that is able to get such

input.

Used in the FoE Automation project to type a user name and email address

when registering a player and logging into the game with the credentials.

boolean isDisplayed()

Returns “true” when the element is displayed and “false” when it is not. Can be

used to assert tests.

-10-

Thucydides
In this section the Thucydides library will be introduced and classed in the

InnoAutomation Framework [Thucyd]. In addition a description of the implicit

reporting system and the integration in Jenkins as well as the functionality given

in the FoE Automation project follows.

Introduction

The Thucydides open source library provides a set of tools to write Selenium 2

tests easier [ThucydIntro]. It sends reports to Jenkins offering detailed and

narrative test reports. It also enables the evaluation of all tests together for a

high level feedback that documents the projects progress and status.

The detailed information can be used by the software developers to test and

update the code while the high level views and reports give a good overview to

product managers and team leads.

This is done by turning the automated web tests into automated acceptance

criteria as designated in Acceptance Test Driven Development (ATDD).

How to use Thucydides

There are different places in the code of the FoE Automation project where

Thucydides comes to use.

The in the WebDriver section introduced SimpleTestTemplate.java implements

some annotations of Thucydides which will be focused on in the following.

SimpleTestTemplate.java

The only things to find in this class by Thucydides are the annotations that

manage the test.

@RunWith

This annotation shows that this class is a test run by Thucydides. The

ThucydidesRunner.class [ThucydAnnot] “initializes a WebDriver instance

before running the tests in their order of appearance. At the end of the tests, it

closes and quits the WebDriver instance.” [ThucydRun] During the tests the

runner provides a StepFactory which invokes the test steps and notifies the

runner about the step outcomes. Furthermore it processes any Thucydides

annotation in the test classes and provides a reporter that is able to report in

XML and HTML but also can be extended by subscribing more reporter

implementations.

-11-

@RunWith(ThucydidesRunner.class)

public abstract class SimpleTestTemplate {

Code 5 – The @RunWith annotation lets Thucydides initialize a WebDriver instance

@Managed

The @Managed annotation of the public WebDriver field allows Thucydides to

open, close and use the WebDriver in the test pages and test steps.

The parameter uniqueSession is set to false which means that the browser gets

restarted after every test to ensure that each test is independent. The

Thucydides runner instantiates this WebDriver with the current WebDriver.

@Managed(uniqueSession = false)

public WebDriver driver;

Code 6 – The @Managed annotation enables Thucydides to access the WebDriver instance

@ManagedPages

In order to use the PageObject Pattern the Pages class annotated with this

annotation is provided with instantiated PageObjects by the Thucydides runner.

@ManagedPages

public Pages pages;

Code 7 – The Thucydides runner provides instantiated PageObjects for Pages annotated with

@ManagedPages

@Steps

This annotation defines the class that has all steps related to the user. “For high-

level acceptance or regression tests [RegTest], it is a good habit to define the

high-level test as a sequence of high-level steps. It will make your tests more

readable and easier to maintain if you delegate the implementation details of

your test (the "how") to reusable "step" methods.“ [ThucydAnnot] PlayerSteps

are all steps related to a user that is logged into the game. GuestSteps define all

steps related to the user that is not already logged in.

@Steps

public PlayerSteps player;

@Steps

public GuestSteps guest;

Code 8 – Objects with the @Step annotation define different step types.

-12-

Pages

The FoE Automation project uses Page-Object-Pattern, which will be explained

in the PageObject section in detail. Every class that is extended by the class

PageObject is a different webpage or layer on the FoE landing page and has

different WebElements. The distinction has to be clear, because some elements

might not be available anymore if a new page or part of a page loads, which

could lead to unwanted reactions [PageOb].

To test the login and registration process with WebDriver there are currently

three pages necessary:

 LandingPage: http://yy.forgeofempires.com/ - The website where a

potential user gets redirected to register to the game

 LoginPage: http://yy.forgeofempires.com/page/ - When the user has

logged in from the landing page he is on the login page where he can click

the play- or logout-button.

 WorldSelection: Is a new layer of the login page but has the same URL.

Here it is possible to choose a world to play in.

Each of these pages contain WebElements, which are wrapped by

WebElementFacade – a wrapper class from Thucydides providing tools for

WebDriver. To find the web elements on the website Thucydides uses the

@FindBy1 annotation from WebDriver [WebDrAn]:

@FindBy

The @FindBy [FindByAnnot] annotation is placed above a WebElementFacade

on a specific PageObject. In Code 9 below you can see that with this annotation

the name field to register a user is located via XPath. There are in addition

several other methods to locate web elements. Here are some examples to

access HTML elements via different ways using the @FindBy annotation.

@FindBy(xpath = “//input[@id=’login_password’]”)

@FindBy(id = “login_password”)

@FindBy(css = “div#form_element_password>label.register_password”)

public class LandingPage extends PageObject {

 @FindBy(xpath = "//input[@name='register_name']")

 WebElementFacade registerNameField;

Code 9 – The LandingPage class owns all HTML elements related to the Landing Page website

http://yy.forgeofempires.com/
http://yy.forgeofempires.com/page/

-13-

This reference makes the WebElementFacade elements unique and ready for

use. Due to the fact that they are private they have to be accessed via methods.

The only useful action regarding the registerNameField is to type text in there.

So a method called “sendKeysToRegisterNameField(String name) {}” is created.

The naming [ThucydIntro] of the method and the element are also important

parts of the Page-Object-Pattern [POP], because it ensures an understandable

workflow of the presentation layer.

public void sendKeysToRegisterNameField(String name) {

 registerNameField.sendKeys(name);

}

Code 10 – A method to write text into the name field of the register section on the landing page

Tests

Every test is an extension of the SimpleTestTemplate.java and has the

@WithTagValuesOf annotation of the Thucydides library.

@WithTagValuesOf

This annotation makes it possible to add tags to every test in order to classify

them into different types that can be evaluated afterwards by the reporting

system of Thucydides which will be explained in the section “Reporting System”

[ThucydReport].

@WithTagValuesOf({"feature:army management", "story:basic

functionality", "level:battle", "top-level:smoke"})

public class FOE448 extends SimpleTestTemplate {

Code 11 – Tags are fetched by Thucydides and can be used as a filter in order to evaluate test results

Existing tags in the FoE Automation project are:

 Feature:

o Settings

o Army Management

o Buff System

 Story – Is a part of the feature:

o Collect all

o Motivate all

o Idle

 Level - Determines the test suite in which the test is running:

o Basic

-14-

o Tutorial

o Buff System

 Top Level – Indicates the test category

o Smoke

o Master

Reporting System

Thucydides provides the FoE Automation project with a comprehensive

reporting system which gives high level [ThucydHLRep] and low level reports.

High level reports show diagrams and statistics to give an overview about the

project status. Low level reports show the process of every step in a test and

makes a screenshot when a test fails. This section will illustrate how Thucydides

reports in the FoE Automation project.

Local Tests

Thucydides gives two options to check test results locally.

Console Test Reports

Within the console of the IDE Thucydides gives a quick overview in the console

during test execution which writes line by line the executed step. The advantage

of this method is to directly see which method fails. Since almost every method

includes only one action it is relatively easy to find the source of the error.

Illustration - 2 - Local console output of Thucydides after text execution

-15-

Once the test has passed the confirmation message will be displayed.

HTML Test Reports

The same report will be saved locally on the running computer in the

\…\target\site\thucydides folder of the test automation project. The basic

difference here is that the duration of every test step is illustrated, which can be

relevant for performance evaluation in a later stage. In addition a screenshot of

the last step or the step that failed is attached.

Illustration - 3 - Local Thucydides HTML report

Jenkins

In the FoE Automation project Jenkins is used to manage and automate the

execution of tests on servers. The integrated Thucydides plugin

[ThucydPlgnJen] provides also statistics that give an overview about the status

of tests.

-16-

The illustration below shows the reports from Thucydides in the Jenkins plugin.

A pie-chart gives a clear visualization of how many tests passed, are pending,

were ignored, have failed or contain errors. This gives a fast feedback about the

general status of the test cycle. Further information are provided in the test

result summary where one can see the same information from the pie-chart in

numbers. Below that the evaluation of the tags take place, which are defined in

every test with the @withTagValuesOf annotation. In this high level view of the

given example one can see that tests are failing related to Social Interaction

features. Looking into the Stories tag shows more precisely where failures

occur. In this scenario errors are related to the “Neighbor Chat” user story

[UserStory]. Then in the section below it is possible to see explicitly which test

failed. This evaluation of tests makes it very fast and comfortable to track the

error down to its source.

-17-

Illustration - 4 - Thucydides report in Jenkins

-18-

Prospects

Currently the existing FoE Automation framework is used to test the game after

new features have been implemented, which does not involve the QA in the

development process.

“Testing an application after it has been developed has a number of significant

drawbacks. Most importantly, having feedback about problems raised at this

late stage of development makes it very difficult to correct bugs of any size. This

results in costly rework, wasted developer time, and delayed deliveries.”

[ATDD]

The FoE Automation framework addresses the above described issue by turning

the process of game development into ATDD, which basically means that the

creating of automated acceptance tests begins before the development process

starts. This kind of development process includes not only the QA team but the

whole team by creating acceptance criteria. This process adjustment does not

only increase the efficiency of testing but also ensures that every team member

knows which feature will be implemented. Once the acceptance tests are

written Thucydides provides the whole team with a comprehensive progress

bar.

“Acceptance tests are also the ultimate progress indicators. An automated

acceptance test works or it doesn't -- there is no "80 percent done" in ATDD!”

[ATDD]

Product Managers will benefit from the high level reports giving a good

indicator of the project status. They are given indication which feature is

implemented and which is not, while developers have a clear overview of what

has to be done from a user perspective.

Besides all these benefits given, the project will receive a broad set of regression

tests, that have a great readability and maintainability, once the features are

implemented.

-19-

Basic commands/API

Annotations

The annotations are documented in the “How to use Thucydides” section.

Methods

WebElementFacade click()

- Clicks on an element once it is visible and enabled

boolean isCurrentlyVisible()

- Returns true/false whether the element is visible on the screen or not.

WebElementFacade waitUntilVisible()

- Holds the test until the element is visible.

WebelementFacade

WebElement

The WebElement is documented in Selenium 2 API

Wrapselement

Is an interface illustrating that this class is wrapping an element.

WebElement getWrappedElement()

- Returns the wrapped WebElement

Webelementstate

This interface presents the state information about a WebElement.

-20-

Page Object Pattern

The PageObject Pattern is a design pattern where each screen of a web app is a

sequence of objects and encapsulated features, which means that on every

object or HTML element different methods can be executed. This automatically

reduces the amount of duplicated code due to reuse in different test cases.

“A page object is an object-oriented class that serves as an interface to a page of

your AUT” [POP] (Application under test).

The PageObject class provided by Thucydides represents the screens of a web

page as a series of objects. Every class that is extended by the PageObject class is

used to store WebElements wrapped by the wrapper class WebElementFacade

as already mentioned in the section “Thucydides/ How to use Thucydides/

Pages” (Page 10).

The PageObjects represent the lowest level of the Page-Object-Pattern and are

the place where the HTML elements get defined. The well-structured

PageObjects and levels of abstraction above the PageObjects are used to

increase the maintainability [ATDD] of the project. For example, if some UI

element on the web page changes, only that specific PageObject has to be fixed

and nothing else in the code. All other classes are not affected.

The following section demonstrates how tests with this type of pattern are

written.

Tests with PageObjects

As mentioned above it is possible to reuse code as it is required in different

tests. The following example will serve to show how it is done in a real test of

the FoE Automation project.

@WithTagValuesOf({"feature:army management", "story:basic functionality",

"level:battle", "top-level:smoke"})

public class FOE447 extends SimpleTestTemplate{

@Test

public void army_management_era_filters_all_ages_FOE447() throws

IOException,InterruptedException,TimeoutException{

guest.atLandingPage().logs_in_as_default_user(getClass().getSimpleName());

player.atLoginPage().clicks_play_button();

player.atWorldSelection().clicks_on_world_button(2);

player.atCityScreen().waits_for_town_hall_to_be_rendered(ScenarioStepsTempla

te.Eras.IRON_AGE);

player.atGameHud().clicks_army_management_button_and_checks_for_opened_windo

w();

//Checking for bronze age

player.atArmyManagementWindow().clicks_era_selection_arrow();

player.atArmyManagementWindow().hovers_over_close_button();

-21-

player.atArmyManagementWindow().clicks_to_choose_era_in_era_selection(Scenar

ioStepsTemplate.Eras.BRONZE_AGE);

player.atArmyManagementWindow().should_see_units_in_unit_pool(AtArmyManageme

ntWindow.UnitPool.BRONZE_AGE_CHAMPION_ROUGE);

//Checking for All Ages

player.atArmyManagementWindow().clicks_era_selection_arrow();

player.atArmyManagementWindow().hovers_over_close_button();

player.atArmyManagementWindow().clicks_to_choose_era_in_era_selection(Scenar

ioStepsTemplate.Eras.ALL_AGES);

player.atArmyManagementWindow().should_see_units_in_unit_pool(AtArmyManageme

ntWindow.UnitPool.ALL_AGES_UNITS);

Code 12 – Example of an automated test of the game Forge of Empires

Every test is a sequence of method calls. The naming in combination with the

PageObject Pattern makes it very easy to understand what happens in the test

and it is done step by step just by reading the method call. This high level

implementation does not question the technical details about the feature and

hides them in the PageObjects. Once the steps are defined the tests can be

written easily through reuse of the steps, which is occurring very often in game

testing. Each class consists of only one test (@test) which is named like the test

it performs plus a consecutive number that is also the class name.

Sikuli
Sikuli [Sik] is the image recognition tool that is used to automate the test steps

within the game as it is not possible to use PageObjects. The basic concept of

this method is to compare pre saved pictures from the tests with pixels on the

screen. If Sikuli finds a match it performs the requested action, which is in most

cases a mouse click.

Introduction

Once the user logged into the game in order to play Adobe Flash takes over.

Since there are no HTML elements the WebDriver cannot work here. The

SikuliUtils class provides the commonly used Sikuli methods and is

implemented in the ScenarioStepsTemplate class which extends every test class.

The following section will show how Sikuli is used for automated testing in the

project.

How to use Sikuli

Since for guest steps WebDriver is used, all Sikuli actions are implemented in

the player step classes,. Further all player step classes are extended by the

ScenarioStepsTemplate class that declares the SikuliUtils object sikuliActions.

-22-

The AtArmyManagementWindow class will serve as an example. The army

management is the window in the game where you can choose units to defend

your city or attack other players or NPC’s (Non Player Characters).

The @Step annotation imported from the Thucydides library is on top of every

method indicating that this method has to be handled and later reported as a

step in the evaluation. The first method is named based on the way a user does

the interaction. In this case the name is

clicks_close_button_and_checks_for_closed_-army_management_window. As one

can see this is exactly what happens. First the Sikuli driver clicks on the close

button and then an assertion is made by checking if the army management page

header has vanished by calling the sikuliActions().isImageNotPresent(…)

method. All methods that are implemented in the different step classes can be

reused in every test.

public class AtArmyManagementWindow extends ScenarioStepsTemplate {

 @Step

 public void

clicks_close_button_and_checks_for_closed_army_management_window() throws

IOException, TimeoutException, InterruptedException {

 sikuliActions().clickOnImage(Commons.CLOSE_X_BUTTON);

 Assert.assertTrue("Army Management window not closed",

sikuliActions().isImageNotPresent(ArmyManagement.PAGE_HEADER));

 }

 @Step

 public void clicks_ok_button_and_checks_for_closed_window() throws

IOException, TimeoutException, InterruptedException {

 sikuliActions().clickOnImage(Commons.Ok_BUTTON_ORANGE);

 Assert.assertTrue("Army Management window not closed",

sikuliActions().isImageNotPresent(ArmyManagement.PAGE_HEADER));

 }

}

Code 13 – Example of Step methods

-23-

Basic commands/API

The SikuliUtils class is provided by the InnoAutomation Framework and

provides methods that gather common used Sikuli methods and objects.

SikuliUtils.java

void clickOnImage(String)

Clicks on the center of the image that is passed with the “String”, which has to be

the path to the image. Within that method a “Mouse” object is created and

instantiated which performs the “.click()” method.

public void clickOnImage(String imageName) throws IOException

 {

 // Click the center of the found target

 Mouse mouse = new DesktopMouse();

 mouse.click(getImage(imageName).getCenter());

 }

Code 14 – The clickOnImage() method is used to simulate a mouse click

void doubleClickOnImage(String)

Double clicks on the image that is passed with the “String”, which has to be the

path to the image. Within that method a “Mouse” object is created and

instantiated which performs the “.doubleClick()” method.

public void doubleClickOnImage(String imageName)

 throws IOException

 {

 // double click the center of the found target

 Mouse mouse = new DesktopMouse();

 mouse.doubleClick(getImage(imageName).getCenter());

 }

Code 15 – The doubleClickOnImage() method is used to simulate two fast mouse clicks

void clickOnSideOfImage(String, SideOfImage)

Clicks on the side of the image that is passed with the “String”, which has to be

the path to the image. SideOfImage is an enumeration and enables Sikuli to click

in every corner of an image. Within that method a “Mouse” object is created. The

SideOfImage enumeration gets passed to a “switch-case” statement where it gets

evaluated.

public void clickOnSideOfImage(String imageName, SideOfImage sideOfImage)

throws IOException

 {

 Mouse mouse = new DesktopMouse();

 switch(sideOfImage) {

 case CENTER: mouse.click(getImage(imageName).getCenter());

 break;

 case LOWER_LEFT_CORNER:

mouse.click(getImage(imageName).getLowerLeftCorner());

-24-

 break;

 case LOWER_RIGHT_CORNER:

mouse.click(getImage(imageName).getLowerRightCorner());

 break;

 case UPPER_LEFT_CORNER:

mouse.click(getImage(imageName).getUpperLeftCorner());

 break;

 case UPPER_RIGHT_CORNER:

mouse.click(getImage(imageName).getUpperRightCorner());

 break;

 }

 }

Code 16 – The clickOnSideOfImage() method is used to click in a specific region of an image

void hoverMouseOver(String)

Hovers over the image that is passed with the “String”, which has to be the path

to the image. Within that method a “Mouse” object is created and instantiated

which performs the “.hover()” method on the center of the image.

public void hoverMouseOver(String imageName) throws IOException {

 Mouse mouse = new DesktopMouse();

 mouse.hover(getImage(imageName).getCenter());

 }

Code 17 – The hoverMouseOver() method is used to hover over an image

boolean imageIsPresent(String)

Checks if the image is present on the screen. Returns “true” or “false”. A

ScreenRegion object from Sikuli calls the “getImage()” method where the image

of the passed String source is compared with the current screen. Once there is a

match the method returns true or after five seconds without finding a match it

returns false.

public boolean isImagePresent(String imageName) throws IOException

 {

 ScreenRegion region = getImage(imageName);

 return region != null;

 }

Code 18 – The imageIsPresent() method asserts if the searched image is currently displayed

-25-

2.2 Class Structure
This section will give a look into the folder structure of the project and

document its content and purposes for the automation.

The following illustration shows the folder structure of the FoE Automation

Project.

Illustration - 5 - Folder Structure of the InnoAutomation Framework

com.innogames.qa.foe

elements

The elements folder consists of different classes that represent specific parts of

the game. Within these classes are Strings that hold a path of an image resource.

Sikuli accesses these Strings to compare the images with the pixels on the

screen. If the pixels match the test step succeeds. Putting these image resources

in objects enables code reuse and clears the code.

pages

The pages folder consists of different classes that represent the FoE landing

page or parts of it. Within these classes are the already introduced

WebElementFacade objects and methods to interact with them.

steps

The steps folder consists of the guest, the player folder and the

ScenarioStepsTemplate class that hand down the common functionalities for the

player- and guest step classes. Furthermore there are the GuestSteps and

-26-

PlayerSteps class which provide getter methods for the classes that are in the

guest- and player folder.

guest

The guest folder consists of different classes that provide the reusable steps

(@Step) for the tests in the tests folder, which are executed as a guest e.g.

logging in on the landing page.

player

The player folder consist of different classes that provide the reusable steps

(@Step) for the tests in the test folder, which are executed as a player e.g.

clicking the army management button.

testcommon

The testcommon folder consist of different classes that serve as a template for

all test classes in the tests folder providing basic functionality for every test as

for instance starting and closing the browser or logging into the game.

tests

The tests folder consists of several subfolders that organizes the contained test

classes according to their feature. For example all tests related to the battle are

in the battle folder which also has subfolders that specifies the features

functionalities such as army management and continent.

util

The util folder consists of several classes that are useful helper and can be

extended on demand.

ClipboardUtil

Provides methods to interact with the system clipboard.

EmailChecker

Provides methods to interact with the email account that is used for registering

the accounts like logging in, removing all messages, getting the latest email, etc.

RandomStringGenerator

Provides a method to generate a random String.

WindowTools

Provides methods to interact with the browser window as for instance

switching tabs or windows, handling the window size, etc.

-27-

Annotations
The InnoAutomation Framework uses JUnit annotations for the test template

SimpleTestTemplate.java

@BeforeClass

Methods with the @BeforeClass [BeforeClass] annotation are executed right

before every test sequence. This can save the computation of expensive setups

but might compromise the independence of tests.

@Before

Methods with the @Before [Before] annotation are executed right before every

test. This annotation can be used to avoid code repetitions in every test. In the

InnoAutomation projects it is mainly used to start the browser, maximize the

browser window and clear the test email account.

@Test

Methods with the @Test [Test] annotation are run as a test. If exceptions are

thrown Thucydides will report a failure within the test.

@After

Methods with the @After [After] annotation are executed right after every test.

This feature is used for taking screenshots in case of failing tests and shutting

down the browser when finishing a test.

@AfterClass

Methods with the @AfterClass [AfterClass] annotation are executed right after

every test sequence. This can save the computation of expensive setups but

might compromise the independence of tests.

Example:

This illustration demonstrates how the workflow of these annotations.

Illustration - 6 - Workflow of test execution using JUnit Annotations

-28-

@Managed(uniqueSession = true|false)

@Managed lets Thucydides take care of the following WebDriver.

“uniqueSession” decides whether the browser should be restarted after every

test case or if all tests shall be run in the same browser.

ScenarioSteps
The ScenarioSteps class provides a set of reusable steps for web tests. For

example it implements the getDriver() method that returns the WebDriver from

the pages that are used.

2.3 TestLink

“TestLink is a web-based test management system that facilitates software

quality assurance.” [TestLink] The FoE Automation Project uses it to organize

tests. A plugin enables Jenkins to collaborate with TestLink in order to exchange

the status of tests. Every test case is registered in TestLink and is ordered in the

same structure as in the automation project itself. This enables the team to have

a proper overview about the test coverage.

2.4 Jenkins
“Jenkins is an open source continuous integration tool written in Java.” [Jenkins]

The QA of InnoGames uses Jenkins to monitor the execution of repeated jobs

like the nightly execution of the automated test cases. A plugin integrates Git

into Jenkins and allows to manage the source codes including merging of code

and building of new versions.

In the illustration below shows the Build Pipeline used in the FoE Browser

Automation Project. Every row is an apposition of different jobs that need to be

done in order to execute the tests. The first job (TestRestoreWorld) is to restore

the test accounts on the server to their initially prepared state to ensure the

independency of the test. The next job (Smoke Test) is a selection of test cases

that are supposed to ensure the basic functionality of the test. The feedback is

much faster than the last job (Master List) which makes it possible to react

quicker to errors and bugs. The Master List covers all parts of the game and

tests its functionality on a very detailed level. This regression test checks if parts

of the game are affected by code changes or merges.

-29-

Illustration - 7 - The visualization of the automated browser test automation workflow in Jenkins

-30-

2.5 Configuration

Slave Server
InnoGames uses Jenkins to manage the servers which execute the test cases,

which makes it possible to access the server and execute the tests anywhere. All

that is needed is a Notebook with a VPN connection and access to Jenkins.

Standalone machine

The standalone machine is a mac mini and can be accessed via an URL in a web

browser that redirects the user to the Jenkins login page. Once logged in it is

possible to run Jenkins jobs as described in the “Jenkins” section.

Cloud Service

The Grepolis Automation Team uses Browserstack [browserStack], a cloud

service, which makes it possible to use all available browsers with different

versions and operating systems, for testing the project.

-31-

Tutorial – How to write a test case
This section will use an example to illustrate how a test in the FoE Automation

project is conducted.

The generic test case that will be automated has the purpose to check if an error

message will appear during registration process when the user types in a user

name with adjacent spaces like “A B”.

All automated and manual tests are listed in the web-based test management

system Testlink

Creating a test in TestLink

Follow the subsequent steps to create a test case in TestLink:

1. Login to https://testlink.innogames.de/login.php with your account.

2. Choose “FoE” as the Test Project

Illustration - 8 - Choosing the project in TestLink

3. Click on Test Specification in the Test Specification bar on the left.

Illustration - 9 - Clicking the Test Specification to access all tests in TestLink

4. Choose a fitting Folder for the test case in order to create it there. For the

given example the Folder “Login & Registration” is a fitting section.

https://testlink.innogames.de/login.php

-32-

Illustration - 10 - Choosing an accurate folder to create the test

5. Click on the small gear icon in the main section to expand the possible

test case operations.

-33-

Illustration - 11 - Expanding possible test case operations

6. Click on the “Create” Button to create a test case.

Illustration - 12 - Creating a test

7. Choose a suitable title for the test case. In the example the title

“Registration – username with adjacent spaces” was chosen.

8. Optional: Write a short summary that describes the test purpose.

9. Click on the “Create” button to create the test.

10. The Test will now appear in the left navigation bar with an ongoing

number and the chosen name. In this case it is: “FOE-1337: Registration

– username with adjacent spaces.”

11. When the test case is created in the FoE Automation project use the path

and its name in the following style and put it in the field “TAP file name”:

com.innogames.qa.foe.tests.loginAndRegistration.FOE1336#registration_

with_adjacent_spaces_in_username_FOE1337 . The “TAP file name”

enables TestLink to access the test results.

Illustration - 13 - Creating the “TAP file name“

12. Click on the small gear icon and then the “Add to Test Plans” button.

13. Do a checkmark at the “Test automation” Test Plan.

-34-

Illustration - 14 - Adding the test to the test plan

14. Click the “Add” button.

Once these steps are done it is time to create the test class in the FoE

Automation project.

Creating a class in the FoE Automation Project

1. Create a class in the accordingly folder and name it like the ongoing

number in TestLink. For the example it is “FOE1337” in

“com.innogames.qa.foe.tests.loginAndRegistration”

Illustration - 15 - Creating the test in the IDE

2. Extend the class with “SimpleTestTemplate”

-35-

3. Add the @WithTagValuesOf({“feature:login and registration”, “story:

registration”, “level:basic”}) (Use fitting tags for every test. You can

compare tags with related tags and copy them.

4. Within the class create a method with the @Test annotation on top and

give it a comprehensible name with the ongoing number at the end. In

this case its “registration_with_adjacent_spaces_in_username_FOE1337”.

@WithTagValuesOf({"feature:landing page", "story:registration",

"level:homepage", "top-level:smoke"})

public class FOE1337 extends SimpleTestTemplate {

@Test

public void registration_with_adjacent_spaces_in_username_foe1337()

throws IOException {

Code 19 – Creating the method

5. The first real step that needs to be done in the test is typing a user name

into the register name field that has two adjacent spaces on the landing

page. To define a step on the Landing Page the “LandingPage” PageObject

needs to be created in the “pages” folder.

6. Extend that class with the “PageObject” class.

7. To access the register name field on the landing page create a

WebElementFacade object and name it registerNameField.

8. Add the @Findby(xpath = "//input[@name='register_name']")

annotation on top of the element to declare it. To find the xpath source

go on http://yy.forgeofempires.com/ and do a right mouse click on the

register name field and chose the “investigate element” option.

public class LandingPage extends PageObject {

 @FindBy(xpath = "//input[@name='register_name']")

 WebElementFacade registerNameField;

Code 20 – Creating WebElementFacades

9. Write a method that makes it possible to send input to that field and

name it properly. Hand over a “String name” as a parameter and use it

for the “.sendKeys(name)” method on the “registerNameField” object.

public void sendKeysToRegisterNameField(String name) {

 registerNameField.sendKeys(name);

}

Code 21 – Writing a method to type text in a field

10. Create a class named “AtLandingPage” in the “steps.guest” folder of the

project.

11. Extend the “AtLandingPage” class with ScenarioStepsTemplate. This

class contains all steps related to the landing page that can be reused in

every test related to the landing page.

12. Create a “LandingPage” object and name it “onLandingPage”.

13. Create a method with the @Step annotation handing over a String

“username” and access the “registerNameField” object through the

http://yy.forgeofempires.com/

-36-

“onLandingPage” object using the

“.sendKeysToRegisterNameField(username)” method.

public class AtLandingPage extends ScenarioStepsTemplate {

 LandingPage onLandingPage;

 RuntimePropertiesLoader runtimePropertiesLoader = new

RuntimePropertiesLoader();

@Step

public void logs_in_as(String username, String password)

throws IOException {

Code 22 – Creating a class to collect steps related to the Landing Page

14. Add a getter method in the “GuestSteps” class of the “steps” folder to

make the “AtLandingPage” class accessible in the test classes.

public class GuestSteps extends ScenarioSteps {

 private StepFactory stepFactory;

 public GuestSteps(Pages pages) {

 super(pages);

 stepFactory = new StepFactory(pages);

 }

 public AtLandingPage atLandingPage() {

 return stepFactory.getStepLibraryFor(AtLandingPage.class);

 }

Code 23 – Adding a getter method to the GuestSteps class

15. Now everything is prepared to write the test easily in the test class.

16. Type “guest.” and chose from the offered methods the “.atLandingPage()”

17. Chose the method that does the correct user interaction, which is in this

case “.types_username_to_register("A B");”

18. Repeat steps 7-17 for the other steps. (Clicking the register button and

checking for the correct error message)

@WithTagValuesOf({"feature:landing page", "story:registration",

"level:homepage", "top-level:smoke"})

public class FOE1337 extends SimpleTestTemplate {

@Test

public void registration_with_adjacent_spaces_in_username_foe1337()

throws IOException {

 guest.atLandingPage().types_username_to_register("A B");

 guest.atLandingPage().clicks_register_button();

 guest.atLandingPage().should_see_error_message_invalid_username();

 }

}

Code 24 – Writing the test

-37-

Refactoring: From Spaghetticode to PageObject Pattern
This section describes the refactoring of the FoE Automation Project and writing

new test cases in PageObject Pattern as part of a practical work of the thesis.

The term Spaghetticode [Spaghetti] is referring to code that has little structure

which leads to a difficult maintainability and gives no opportunity for code

reuse.

The illustration below shows a test case written in the above mentioned style.

As one can see the code is not clear at first sight and it would take some time to

understand the logic used. Though, the biggest disadvantage of that “style” is the

non-existing possibility to reuse code, furthermore the missing ability for

Thucydides to report detailed step information. Thucydides would only be able

to report that an image has been clicked or that the mouse hovered over

something. It would not be clear where the failure has occurred.

Illustration - 16 - „Spaghetti Code“

The great difference can be seen while comparing the Spaghetticode directly

with the formatted PageObject Style. Almost like a normal text it is possible to

read what actually happens. Step by step. Furthermore it is very efficient to

repeat test steps through reusing the methods. This style of coding reduces the

danger of careless mistakes and enables unexperienced programmers to write

automated test cases.

@WithTagValuesOf({"feature:campaign map", "story:basic functionality", "level:battle", "top-level:smoke"})

public class FOE5 extends SimpleTestTemplate {

@Test

public void campaign_map_is_shown_FOE5() throws IOException {

guest.atLandingPage().logs_in_as_default_user(getClass().getSimpleName());

player.atLoginPage().clicks_play_button();

player.atWorldSelection().clicks_on_world_button(2);

player.atCityScreen().waits_for_town_hall_to_be_rendered(ScenarioStepsTempla

te.Eras.STONE_AGE);

player.atGameHud().clicks_campaign_map_button();

player.atGameHud().hovers_over_global_chat_button();

player.atCampaignContinentMap().clicks_back_to_city_button();

player.atGameHud().should_see_game_menu_bottom();}}

Code 25 - A test written with the Page Object design pattern

-38-

3. Conclusion

This thesis discussed general advantages and drawbacks of test automation in

software projects and introduced an existing test automation framework

implementation for an online strategy browser game. This test case has shown

advantages as well as disadvantages of the introduced testing techniques. Those

are discussed in the following. On the one hand there are the following benefits:

- Reuse of automated test cases: Once implemented the test cases can be

repeatedly the same way without changing the conditions.

- Reproducibility of Errors: Often it is not possible to reproduce errors

when the test cases are executed manually. With a good reporting system

that serves as a good documentation test automation allows the

reconstruction of errors.

- Regression testing: Once the code has changed, side effects can lead to

errors in functionality that already has been tested. With manual testing

it is often not possible to reiterate over all tests. Automated tests run

much faster while causing nearly no additional human effort.

- Simulation of non-functional requirements: Performance tests must be

automated in most cases, because manually, they are either too costly or

impractical.

- Test coverage: Test automation can cover much more content in a

shorter amount of time than manual testing can.

On the other hand there is a lot of decisions and planning that has to be done in

the first place. In addition there are some drawbacks that should be taken into

account:

- Test automation does not exclude human failure: The automated tests

are still created by human beings so the possibility of failure is still given,

even if it is just a false positive or wrongly evaluated test results.

- There is no guarantee that automated tests will find more bugs or that

the total costs will be lower. Often the initial costs are underestimated

and the only pay-off is only utilized after a long period.

- The creation of an automated test tool is difficult and requires skilled

developers to set up the framework. In addition the creation of test cases

has often to be done manually and the maintenance of them can be time

consuming.

- The costs of refactoring the test framework and its tests can be

underestimated, once the test software has changed.

- The evaluation of automated tests can lead to bottlenecks when there are

differences in the target-performance comparison, because it causes a lot

of manual evaluation.

-39-

All in all one can say that test automation is in most cases just reasonable in big

or long-term software projects, but with a structured planning and a vision that

maintains the motivation of the team it is possible to benefit from the

advantages of test automation.

Applying these considerations to the FoE Automation project, one can say that

the effort of developing this framework is worth it, even so the benefits are not

yet measurable. Test automation in that sense has to be seen as a long term

investment. The reason for this is the still low test coverage. Since FoE is a long

term project it is very likely that the QA team will benefit from that investment

of time and workforce. The reward will be a lot more time to focus on important

features and test cases that are not possible to automate. Nevertheless the

automation framework will need to be maintained and updated. This will

require a lot of time when it comes to GUI changes, because the image database

for the image recognition approach has to be updated. The decision to use the

Page Object Pattern design was clearly a good one since it supports the reuse of

code and simplifies the maintenance. In addition this comprehensible code will

facilitate the access to software development for QA testers, who want to do

further studies. Although Thucydides provides all tools and functionalities to

turn the development process in ATDD, the FoE project does not utilize this

opportunity. This, however, is already planned. Soon it will be possible to

integrate the testing in the whole development process from the beginning. In

the end one can say that state of the art browser games need test automation to

stay maintainable.

-40-

4. List of Literature
Every web document is attached on the CD in the folder literature and is named

like the abbreviation.

The date indicates the moment of data retrieval. The web links might differ from

the web documents on the CD.

Abbr. Web link Date
[After] JUnit API – Annotation Type After

http://junit.sourceforge.net/javadoc/org/junit/After.html
08.01.2015

[AfterClass] JUnit API – Annotation Type AfterClass
http://junit.sourceforge.net/javadoc/org/junit/AfterClass.htm
l

09.02.2015

[ATDD] John Ferguson Smart – Acceptance test driven development
for web applications
http://www.javaworld.com/article/2078432/open-source-
tools/acceptance-test-driven-development-for-web-
applications.html

18.12.2014

[Before] JUnit API – Annotation Type Before
http://junit.sourceforge.net/javadoc/org/junit/Before.html

08.01.2015

[BeforeClass] JUnit API – Annotation Type BeforeClass
http://junit.sourceforge.net/javadoc/org/junit/BeforeClass.ht
ml

09.02.2015

[Browserstack] Browserstack Homepage
https://www.browserstack.com/automate

09.02.2015

[C&R] Software and Programmer Efficiency Research Group – GUI
Capture & Replay tools – http://sape.inf.usi.ch/gui-capture-
replay-tools

01.02.2015

[ExImpl] Selenium API – Explicit and Implicit Waits
http://docs.seleniumhq.org/docs/04_webdriver_advanced.jsp

22.01.2014

 [FindByAnnot] Selenium Browser Automation Framework - @FindBy
Annotation

22.01.2014

[InnoG] Wikipedia – InnoGames
http://en.wikipedia.org/wiki/InnoGames

09.01.2015

[Jenkins] Wikipedia – Jenkins
http://en.wikipedia.org/wiki/Jenkins_%28software%29

23.01.2015

[KDT] Test Automation Patterns – Keyword Driven Testing
http://www.dorothygraham.co.uk/patterns/desPatterns/key
wordDriven.html

01.02.2015

[MBT] AUTOMATED TEST CODE GENERATION
FROM CLASS STATE MODELS - DIANXIANG XU, WEIFENG XU

11.01.2015

[Meth] IX – Magazin für professionelle Informationstechnik – Ausgabe
Dezember 2014 – Artikel: Unter Dauerstrom – S.52 – ISSN:
0935-9680

30.01.2015

[PageOb] Selenium HQ – Page Object Pattern Design
http://www.seleniumhq.org/docs/06_test_design_considerati
ons.jsp#page-object-design-pattern

01.02.2015

[PGOP] Improving Test Suites Maintainability with the
Page Object Pattern: An Industrial Case Study -

14.01.2015

http://junit.sourceforge.net/javadoc/org/junit/After.html
http://junit.sourceforge.net/javadoc/org/junit/AfterClass.html
http://junit.sourceforge.net/javadoc/org/junit/AfterClass.html
http://www.javaworld.com/article/2078432/open-source-tools/acceptance-test-driven-development-for-web-applications.html
http://www.javaworld.com/article/2078432/open-source-tools/acceptance-test-driven-development-for-web-applications.html
http://www.javaworld.com/article/2078432/open-source-tools/acceptance-test-driven-development-for-web-applications.html
http://junit.sourceforge.net/javadoc/org/junit/Before.html
http://junit.sourceforge.net/javadoc/org/junit/BeforeClass.html
http://junit.sourceforge.net/javadoc/org/junit/BeforeClass.html
https://www.browserstack.com/automate
http://sape.inf.usi.ch/gui-capture-replay-tools
http://sape.inf.usi.ch/gui-capture-replay-tools
http://docs.seleniumhq.org/docs/04_webdriver_advanced.jsp
http://en.wikipedia.org/wiki/InnoGames
http://en.wikipedia.org/wiki/Jenkins_%28software%29
http://www.dorothygraham.co.uk/patterns/desPatterns/keywordDriven.html
http://www.dorothygraham.co.uk/patterns/desPatterns/keywordDriven.html
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp#page-object-design-pattern
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp#page-object-design-pattern

-41-

Maurizio Leotta, Diego Clerissi, Filippo Ricca, Cristiano
Spadaro

[POP] Assert Selenium - PageObject Pattern
http://assertselenium.com/automation-design-
practices/page-object-pattern/

16.12.2014

[RegTest] Wikipedia – Regression Test
http://de.wikipedia.org/wiki/Regressionstest

20.01.2015

[Sel] Wikipedia - Selenium
http://en.wikipedia.org/wiki/Selenium_%28software%29

15.12.2014

[Sik] Sikuli – How Sikuli works
http://sikulix-2014.readthedocs.org/en/latest/devs/system-
design.html

19.12.2014

[Spaghetti] Wikipedia – Spaghetti code
http://en.wikipedia.org/wiki/Spaghetti_code

23.01.2015

[TAE] A Theoretical Review of the Impact of Test Automation on Test
Effectiveness - Donovan Lindsay Mulder and Grafton Whyte

01.01.2015

[Test] JUnit API – Annotation Type Test
http://junit.sourceforge.net/javadoc/org/junit/Test.html

08.01.2015

[Testautm] Bitkom – Industrielle Softwareentwicklung – 4.3
Testautomatisierung
http://www.bitkom.org/files/documents/Industrielle_Softwa
reentwicklung_web.pdf

20.01.2015

[TestLink] Wikipedia – TestLink
http://en.wikipedia.org/wiki/TestLink

08.01.2015

[Thucyd] Thucydides Homepage
http://www.thucydides.info/

15.12.2014

[ThucydPlgnJen] Thucydides Plugin Jenkins
https://wiki.jenkins-
ci.org/display/JENKINS/Thucydides+Plugin

17.12.2014

[ThucydAnnot] Thucydides Manual – Annotations
http://thucydides.info/docs/thucydides-one-
page/thucydides.html#_defining_high_level_tests_in_junit

15.12.2014

[ThucydHLRep] Thucydides Manual - Defining high-level tests
http://thucydides.info/docs/thucydides/_defining_high_level_
tests_in_easyb.html

17.12.2014

[ThucydIntro] Thucydides Manual - Introduction
http://www.wakaleo.com/thucydides-one-
page/thucydides.html#introduction

15.12.2014

[ThucydReport] Thucydides Manual - Tags
http://thucydides.info/docs/thucydides/_adding_tags_to_test_
cases.html

16.12.2014

[ThucydRun] Thucydides Manual – Thucydidesrunner.class
http://wakaleo.com/thucydides-
javadoc/net/thucydides/junit/runners/ThucydidesRunner.ht
ml

22.01.2014

[UserStory] Wikipedia – User story
http://en.wikipedia.org/wiki/User_story

17.12.2014

[W3C] WebDriver Working Draft - Abstract
http://www.w3.org/TR/2013/WD-webdriver-20130117/

15.12.2014

[WebDr] WebDriver Homepage
http://docs.seleniumhq.org/projects/webdriver/

15.12.2014

[WebDrAn] Selenium API – Annotation Type FindBy
https://selenium.googlecode.com/git/docs/api/java/org/ope

16.12.2014

http://assertselenium.com/automation-design-practices/page-object-pattern/
http://assertselenium.com/automation-design-practices/page-object-pattern/
http://de.wikipedia.org/wiki/Regressionstest
http://en.wikipedia.org/wiki/Selenium_%28software%29
http://sikulix-2014.readthedocs.org/en/latest/devs/system-design.html
http://sikulix-2014.readthedocs.org/en/latest/devs/system-design.html
http://en.wikipedia.org/wiki/Spaghetti_code
http://junit.sourceforge.net/javadoc/org/junit/Test.html
http://www.bitkom.org/files/documents/Industrielle_Softwareentwicklung_web.pdf
http://www.bitkom.org/files/documents/Industrielle_Softwareentwicklung_web.pdf
http://en.wikipedia.org/wiki/TestLink
http://www.thucydides.info/
https://wiki.jenkins-ci.org/display/JENKINS/Thucydides+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Thucydides+Plugin
http://thucydides.info/docs/thucydides-one-page/thucydides.html#_defining_high_level_tests_in_junit
http://thucydides.info/docs/thucydides-one-page/thucydides.html#_defining_high_level_tests_in_junit
http://thucydides.info/docs/thucydides/_defining_high_level_tests_in_easyb.html
http://thucydides.info/docs/thucydides/_defining_high_level_tests_in_easyb.html
http://www.wakaleo.com/thucydides-one-page/thucydides.html#introduction
http://www.wakaleo.com/thucydides-one-page/thucydides.html#introduction
http://thucydides.info/docs/thucydides/_adding_tags_to_test_cases.html
http://thucydides.info/docs/thucydides/_adding_tags_to_test_cases.html
http://wakaleo.com/thucydides-javadoc/net/thucydides/junit/runners/ThucydidesRunner.html
http://wakaleo.com/thucydides-javadoc/net/thucydides/junit/runners/ThucydidesRunner.html
http://wakaleo.com/thucydides-javadoc/net/thucydides/junit/runners/ThucydidesRunner.html
http://en.wikipedia.org/wiki/User_story
http://www.w3.org/TR/2013/WD-webdriver-20130117/
http://docs.seleniumhq.org/projects/webdriver/
https://selenium.googlecode.com/git/docs/api/java/org/openqa/selenium/support/FindBy.html

-42-

nqa/selenium/support/FindBy.html
[WebDrITF] Selenium API – WebDriver

https://selenium.googlecode.com/svn/trunk/docs/api/java/o
rg/openqa/selenium/WebDriver.html

15.12.2014

[WebEl] Selenium API – WebElement
https://selenium.googlecode.com/svn/trunk/docs/api/java/o
rg/openqa/selenium/WebElement.html

15.12.2014

https://selenium.googlecode.com/git/docs/api/java/org/openqa/selenium/support/FindBy.html
https://selenium.googlecode.com/svn/trunk/docs/api/java/org/openqa/selenium/WebDriver.html
https://selenium.googlecode.com/svn/trunk/docs/api/java/org/openqa/selenium/WebDriver.html
https://selenium.googlecode.com/svn/trunk/docs/api/java/org/openqa/selenium/WebElement.html
https://selenium.googlecode.com/svn/trunk/docs/api/java/org/openqa/selenium/WebElement.html

-43-

5. Eidesstattliche Erklärung

Ich versichere hiermit, die vorgelegte Arbeit in dem gemeldeten Zeitraum ohne

fremde Hilfe verfasst und mich keiner anderen als der angegebenen Hilfsmittel

und Quellen bedient zu haben.

Hamburg, den 16.02.2015

Unterschrift

(Vorname, Nachname)

