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Moderne Browsergames sind immer komplexer werdende Programme mit sehr 
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Wartungsprozess und ermöglichen Entwicklern und Testern ihre Arbeit 

effektiver zu gestalten.  

Diese Bachelorarbeit thematisiert die Anwendung automatisierter 

Testverfahren auf Webapplikationen. Der Anwendungsfall wird an einem 

onlinebasierten Strategiespiel für den Browser vorgestellt. In der Einführung 

werden die Rahmenbedingungen für ein Softwareprojekt mit automatisierten 
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1. Introduction 
 

1.1 Automated Testing 
Testing is subject to the ongoing demand to achieve optimization and high 

quality in the software development process. The “BITKOM Guideline for 

Industrial Software Development” points out the following considerations when 

test automation is planned for a software project [TestAutm]. Besides the 

increasing complexity of software projects and the obligation to proof test 

results, test management has to work in compliance with the requirements of 

time- and cost targets. At the same time the test coverage ought to be as high as 

possible. But Test Automation is not able to completely exclude human failure, 

automated tests will not necessarily find more bugs than manual testing and the 

total costs do not have to be inevitably lower. Test Automation is considered to 

be profitable for long-term software projects with ongoing release cycles. The 

working hours saved by the repetitive retesting of codes enables testers to focus 

on new features to find new bugs while automated tests cover the already 

existing features that might be affected by code changes.  The following section 

will examine reasons for integrating Test Automation in the software project.    

Once the automated test cases are implemented they can be executed over and 

over the same way which terminates the possibility of creating an error by 

changing the test process. In addition, it is also only once necessary to create the 

test data which is needed for some tests. Automated tests ensure the 

reproducibility of errors via documentation to understand the root and nature 

of that respective error. The documentation created in combination with the 

constant execution of tests makes the software quality measurable once it has 

been defined. Furthermore it enables test engineers to compare test results 

after code changes, which would be too costly in most cases when retesting 

manually. Therefore, manual tests are often not retested once they succeeded, 

although, unpredictable side effects can produce new errors after the code has 

been changed. Test Automation makes it possible to do load- and performance 

tests in the first place. With manual tests it is most of the time not possible or 

not reasonable. The higher speed of automated tests compared to manual ones 

enables a significantly increased test coverage and reduces human error.  

The paper “A Theoretical Review of the Impact of Test Automation on Test 

Effectiveness” outlines clearly “Unrealistic Expectation and gross 

Underestimation of Complexity” as the pitfalls of test automation [TAE]. Careful 

test planning and management is necessary and a thoroughly backup of the test 

process is needed, since it will not be possible to automate all of the test cases. 

While organizing the automation project, the manual testing should not be 

ignored or even be neglected. Furthermore, most cases require manual testing, 
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which is very costly in terms of time and additionally introduces human failure 

into the process.  

Used correctly, Test Automation has the potential to significantly reduce the 

costs of testing, nevertheless, it should be considered that the results and its 

validity considerably depend on the test data, the test cases and the test 

coverage. These parts constitute the initial investment, because only the careful 

preparation of the automation project and the maintenance of test cases is 

leading to sustainable benefits.  

 

1.2 Automated Testing at InnoGames 
The InnoGames GmbH is a development company of browser- and mobile 

games located in Hamburg. The company has a strong focus on games from the 

strategy-genre and specializes in historical war settings. All games are set up 

based on the free-to-play business model. In all games players initially get full 

functionality of the game for free on all supported platforms without 

restrictions or time limits. The firms’ business model is based on the option to 

buy premium accounts or items that offer additional advantages in the games. 

The company policy is to ensure an optimal game experience regardless of 

standard or premium account [InnoG].  

Recognizing the opportunities of Test Automation InnoGames puts a lot of effort 

in developing a Test Automation Framework as the company is aware of the 

potential to reduce the workload needed in the game-testing process as well as 

the opportunity to improve the quality of future software developments.   

 

1.3 Department: Quality Assurance 
Since the change from matrix- to studio organization the Quality Assurance (QA) 

department of InnoGames operates more as a QA community. Every department 

or game studio has their own QA team, but these teams share their knowledge 

and discuss best practices in biweekly community meetings. 

The task of every QA team is to support the ongoing development process in 

order to ensure the product quality and detect errors before they enter the final 

version. This is done by manual and automated testing of the specified 

requirements in the fields of graphic, performance, functionality and game logic. 

The goal is to maintain and increase the attention as well as the enthusiasm of 

the player.  

The InnoAutomation Framework was utilized throughout the development of 

the Online Browser Games “Grepolis” and “Forge of Empires” (FoE). Both games 
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are strategic war games with historical background, which encourage the player 

to build an empire in order to fight against enemies and conquer the world.  

The Grepolis Game uses HTML5 which makes it possible to automate test cases 

only using PageObjects. Forge of Empires instead is implemented with Adobe 

Flash which led to the decision to use image recognition software for test 

automation. Only the Registration or Landing Page tests are automated using 

PageObjects. 

 

1.4 Testing Patterns 
There are different possibilities  to automate tests. The minimum quality criteria 

should be stability, maintainability and readability. The quality of technical 

implementation ensures the stability. The maintainability depends on the test 

workflow and the readability depends on the presentation layer. The following 

section introduces established patterns of test automation and discusses the 

advantages and disadvantages [Meth]. 

 

Capture & Replay 
The creation of automated tests with capture & replay tools allows the QA tester 

to run the application and record the user interactions [C&R]. These recorded 

sessions can be automatically replayed without the need of a human user. 

Technical information for recognizing the interactive elements are not stored 

centrally but in separate files. This leads to high maintenance costs of GUI 

changes. Capture & replay tools are mainly used to record simple interaction 

sequences and not entire interactive sessions, because the lack of 

maintainability with increasing complexity of tests. The advantage of these tools 

is that QA testers without programming experience can use them.  

 

Keyword-Driven Testing 
Tests automated with this pattern are driven by keywords that represent 

actions of a test including input data and expected results [KDT]. With this 

pattern test cases can be written independently from the Software under Test 

(SUT). Once the SUT changes, the keywords must be refactored, but the test 

cases keep their validity. It also enables QA testers without prior experience to 

use automation tools that write and run test cases. The created tests are 

executed by a robot. The advantage of keyword-driven testing is the reuse of 

keywords in different test cases, which reduces the maintenance costs. 

Keyword-Driven testing can be used to create acceptance tests, because 

keywords can be created without implementation details. Due to the high effort 
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that is needed to create keywords with its functionality this pattern is only 

profitable for big or long term software projects.  

 

Page Object Pattern 
Tests created with the page object pattern are a compilation of test cases based 

on the GUI element. For instance a single web page can be represented as a page 

object [PGOP]. Every test case must access the GUI via the page objects. Page 

objects provide methods in order to access single elements of a web page. 

Advantages of this design pattern are the enhanced test maintenance and the 

reusability of the code. If the UI changes, tests do not need to be refactored, 

whereas only the page objects have to be [PageOb].  There is a clean separation 

between page specific code and test code. Services and operations provided by a 

page object are collected in one place and are not scattered in the code. 

 

Model-Based Testing 
While other patterns require the manual creation of test cases model-based 

testing is ought to create the test cases automatically based on a model [MBT]. 

Nevertheless the model has to be created manually. The model is created from 

the requirements of a software, mostly focused on functionality in order to 

simplify the model. The automated generation of test cases shall lead to a more 

efficient test process, because of the transparency and controllability of test 

creation. Furthermore this approach aims to have a person independent test 

quality. 
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2. The InnoAutomation Framework 
In this section the InnoAutomation Framework will be introduced based on the 

FoE Automation Project. 

The InnoAutomation Framework consists of different libraries, frameworks and 

self-written code. In the following sections the main components with its 

purposes and common functionalities will be presented to give a quick 

understanding of the project and its workflows in order to assure an efficient 

induction.  Furthermore the class structure of the InnoAutomation Framework 

will be pointed out.  

 

2.1 Used Libraries 

 

Illustration - 1 - Base of the InnoAutomation Framework 

 

The basis of the framework is provided by libraries coming from mainly three 

Frameworks:  

 Selenium 2 / WebDriver 

 Thucydides 

 Sikuli 

Selenium 2 and Sikuli are operating on the same level while Thucydides is 

wrapping Selenium providing more advanced tools for writing tests easier. 

The following sections give a more detailed insight in every of the above 

mentioned frameworks. 
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Selenium 2 / WebDriver 
Selenium is a software testing framework that aims to automate the input of 

user interactions for web applications in the testing purposes[Sel]. With the 

release of Selenium 2 the WebDriver API has been included, which is an Object 

Oriented API that provides functionalities to drive a browser natively [WebDr].  

 

Introduction 

The InnoAutomation framework uses WebDriver to automate tests that 

simulate a realistic user interaction. When starting the test software, the 

simulated user opens the browser, types a URL, clicks on buttons, types fields 

and submits data. Furthermore automated tests with Selenium can check the 

visibility of elements in a web application [W3C]. 

 

How to use WebDriver 

In the FoE Automation Project the WebDriver is implemented and declared in 

the SimpleTestTemplate.java class that extends all test classes.   

 

@RunWith(ThucydidesRunner.class) 

public abstract class SimpleTestTemplate { 

    public final static String BASE_IMG_SRC = "src/test/resources/images/"; 

    protected final static int DEFAULT_SCREEN_NUMBER = 0; 

    protected final static int DEFAULT_PAUSE = 5000; 

    public final static String baserUrl = "http://yy.forgeofempires.com/"; 

    protected SikuliUtils sikuliActions; 

 

    @Managed(uniqueSession = false) 

    public WebDriver driver; 

Code 1 – Initialization of WebDriver, SikuliUtils and constant values  

 

That class manages what happens before and after every test execution and all 

available test steps (PlayerSteps, GuestSteps, […]) are declared. 

@ManagedPages 

public Pages pages; 

 

@Steps 

public static LogsSteps logsSteps; 

 

@Steps 

public PlayerSteps player; 

 

@Steps 

public GuestSteps guest; 

 

Code 2 - Initialization of Pages- and Steps-objects 
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The setUp() method takes care of business that has to be done right before every 

test like starting a specific browser (Chrome in this project, defined in 

thucydides.properties), opening the URL of the FoE website, maximizing the 

browser window, cleaning the test email account and initializing the SikuliUtils 

sikuliActions. The latter is used for image recognition and will be introduced 

later. 

@Before 

public void setUp() throws MalformedURLException, AWTException { 

        int max = 1000; 

        Robot robot = new Robot(); 

        robot.mouseMove((int) (Math.random()* max), (int) (Math.random()* 

max)); 

 

        try { 

            Runtime.getRuntime().exec( 

"wscript src/test/resources/minimizeAll.vbs"); 

        } catch (IOException e) { 

            System.exit(0); 

        } 

        driver.get(baserUrl); 

        driver.manage().window().maximize(); 

        driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS); 

        EmailChecker eMailChecker = new EmailChecker(true); 

        eMailChecker.removeAllMessages(); 

 

        sikuliActions = new SikuliUtils(DEFAULT_SCREEN_NUMBER, 

DEFAULT_PAUSE); 

    } 

Code 3 – The setUp() method is executed before every test 

 

Once the test succeeded or failed the tearDown() method is applied. In case of a 

failure or unexpected event a screenshot that gets attached to the test report is 

created. Finally the browser is closed. 

@After 

public void tearDown() throws Exception { 

        FailureDetectingStepListener failureDetectingStepListener = 

new FailureDetectingStepListener(); 

        if(!failureDetectingStepListener.lastTestFailed()) { 

            captureScreenshot(getClass().getSimpleName()); 

        } 

        if(driver != null) { 

            driver.quit(); 

        } 

    } 

Code 4 – The tearDown() method is executed after every test 

 

To make interaction between WebDriver and web applications possible 

WebElements have to be defined in a way the WebDriver can interact with them 

[WebEl]. WebElements relate to website components, such as buttons, fields, 
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list elements, etc. After defining a WebElement user interactions can be 

simulated. In the FoE Automation the usage of this element is limited because 

the game itself runs with flash player, which does not consist of HTML elements. 

Nevertheless, all tests on the Webpage of FoE are handled with WebElements, 

which maintainability is higher than the image recognition approach used in the 

flash player.  

 

Basic commands / API 

WebDriver 

The WebDriver class is an interface that represents an idealized web browser 

and provides the functionality to control the browser, selects WebElements and 

aids within the debugging process [WebDrITF]. 

The most important methods are get(String), which loads the requested web 

page and the various methods to find WebElements like findElement(by).  

The following passage gives a quick overview to the common methods in the 

FoE project. 

 

Common methods of WebDriver 

void get(java.lang.String url) 

Loads the passed web page in the configured browser. In case of the FoE-Project 

it is the Forge of Empires landing page.  

The Parameter “url” is a fully qualified URL that is intended to load. 

WebDriver.Options manage() 

Provides the Option interface that delivers a lot more functionality to the 

WebDriver. 

Use cases in the FoE Automation Project: 

driver.manage().window().maximize(); 

- Maximizes the browser window 

Explicit and Implicit Waits [ExImpl]: 

Explicit: Thread.sleep(long milis) 

- Waits for the given amount of time no matter if the condition is fulfilled 

or not. 

Implicit: driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);  
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- Polls the DOM to wait the given amount of time if elements are not 

immediately available. Once the condition is fulfilled the next step 

continues. 

 

WebElement 

The WebElement is represented by a HTML element and performs commonly 

used interactions with a page [WebEl].  

Calling a method of WebElement triggers a check that validates the reference to 

the element. 

 

Common methods of WebElement 

void click() 

The click() method performs a mouse click on the referred element. If a mouse 

click causes the loading of a new page the methods blocks further steps until the 

page has loaded. An element only can be clicked when it is visible.  

The FoE Automation project uses that method to click login buttons or to choose 

the world which should be played in.  

 

void sendKeys(Charsequence… keysToSend) 

This method simulates typing a String into an element that is able to get such 

input. 

Used in the FoE Automation project to type a user name and email address 

when registering a player and logging into the game with the credentials. 

 

boolean isDisplayed() 

Returns “true” when the element is displayed and “false” when it is not. Can be 

used to assert tests.   
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Thucydides 
In this section the Thucydides library will be introduced and classed in the 

InnoAutomation Framework [Thucyd]. In addition a description of the implicit 

reporting system and the integration in Jenkins as well as the functionality given 

in the FoE Automation project follows. 

 

Introduction 

The Thucydides open source library provides a set of tools to write Selenium 2 

tests easier [ThucydIntro]. It sends reports to Jenkins offering detailed and 

narrative test reports. It also enables the evaluation of all tests together for a 

high level feedback that documents the projects progress and status.  

The detailed information can be used by the software developers to test and 

update the code while the high level views and reports give a good overview to 

product managers and team leads.  

This is done by turning the automated web tests into automated acceptance 

criteria as designated in Acceptance Test Driven Development (ATDD). 

 

How to use Thucydides 

There are different places in the code of the FoE Automation project where 

Thucydides comes to use.  

The in the WebDriver section introduced SimpleTestTemplate.java implements 

some annotations of Thucydides which will be focused on in the following. 

SimpleTestTemplate.java 

The only things to find in this class by Thucydides are the annotations that 

manage the test. 

 

@RunWith 

This annotation shows that this class is a test run by Thucydides. The 

ThucydidesRunner.class [ThucydAnnot] “initializes a WebDriver instance 

before running the tests in their order of appearance. At the end of the tests, it 

closes and quits the WebDriver instance.” [ThucydRun] During the tests the 

runner provides a StepFactory which invokes the test steps and notifies the 

runner about the step outcomes. Furthermore it processes any Thucydides 

annotation in the test classes and provides a reporter that is able to report in 

XML and HTML but also can be extended by subscribing more reporter 

implementations.   
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@RunWith(ThucydidesRunner.class) 

public abstract class SimpleTestTemplate { 

Code 5 – The @RunWith annotation lets Thucydides initialize a WebDriver instance 

 

@Managed 

The @Managed annotation of the public WebDriver field allows Thucydides to 

open, close and use the WebDriver in the test pages and test steps.  

The parameter uniqueSession is set to false which means that the browser gets 

restarted after every test to ensure that each test is independent. The 

Thucydides runner instantiates this WebDriver with the current WebDriver.  

@Managed(uniqueSession = false) 

public WebDriver driver; 

Code 6 – The @Managed annotation enables Thucydides to access the WebDriver instance 

 

@ManagedPages 

In order to use the PageObject Pattern the Pages class annotated with this 

annotation is provided with instantiated PageObjects by the Thucydides runner. 

@ManagedPages 

public Pages pages; 

Code 7 – The Thucydides runner provides instantiated PageObjects for Pages annotated with 

@ManagedPages 

 

@Steps 

This annotation defines the class that has all steps related to the user. “For high-

level acceptance or regression tests [RegTest], it is a good habit to define the 

high-level test as a sequence of high-level steps. It will make your tests more 

readable and easier to maintain if you delegate the implementation details of 

your test (the "how") to reusable "step" methods.“ [ThucydAnnot] PlayerSteps 

are all steps related to a user that is logged into the game. GuestSteps define all 

steps related to the user that is not already logged in.  

@Steps 

public PlayerSteps player; 

 

@Steps 

public GuestSteps guest; 

Code 8 – Objects with the @Step annotation define different step types. 
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Pages 

The FoE Automation project uses Page-Object-Pattern, which will be explained 

in the PageObject section in detail. Every class that is extended by the class 

PageObject is a different webpage or layer on the FoE landing page and has 

different WebElements. The distinction has to be clear, because some elements 

might not be available anymore if a new page or part of a page loads, which 

could lead to unwanted reactions [PageOb].  

To test the login and registration process with WebDriver there are currently 

three pages necessary: 

 LandingPage: http://yy.forgeofempires.com/ - The website where a 

potential user gets redirected to register to the game 

 LoginPage: http://yy.forgeofempires.com/page/ - When the user has 

logged in from the landing page he is on the login page where he can click 

the play- or logout-button.  

 WorldSelection: Is a new layer of the login page but has the same URL. 

Here it is possible to choose a world to play in.  

Each of these pages contain WebElements, which are wrapped by 

WebElementFacade – a wrapper class from Thucydides providing tools for 

WebDriver. To find the web elements on the website Thucydides uses the 

@FindBy1 annotation from WebDriver [WebDrAn]: 

 

@FindBy 

The @FindBy [FindByAnnot] annotation is placed above a WebElementFacade 

on a specific PageObject. In Code 9 below you can see that with this annotation 

the name field to register a user is located via XPath. There are in addition 

several other methods to locate web elements. Here are some examples to 

access HTML elements via different ways using the @FindBy annotation.  

@FindBy(xpath = “//input[@id=’login_password’]”) 

@FindBy(id = “login_password”) 

@FindBy(css = “div#form_element_password>label.register_password”) 

 

public class LandingPage extends PageObject { 

    @FindBy(xpath = "//input[@name='register_name']") 

    WebElementFacade registerNameField; 

Code 9 – The LandingPage class owns all HTML elements related to the Landing Page website 

                                                        
 

http://yy.forgeofempires.com/
http://yy.forgeofempires.com/page/
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This reference makes the WebElementFacade elements unique and ready for 

use. Due to the fact that they are private they have to be accessed via methods. 

The only useful action regarding the registerNameField is to type text in there. 

So a method called “sendKeysToRegisterNameField(String name) {}” is created. 

The naming [ThucydIntro] of the method and the element are also important 

parts of the Page-Object-Pattern [POP], because it ensures an understandable 

workflow of the presentation layer.  

public void sendKeysToRegisterNameField(String name) { 

 registerNameField.sendKeys(name); 

} 

Code 10 – A method to write text into the name field of the register section on the landing page 

 

Tests 

Every test is an extension of the SimpleTestTemplate.java and has the 

@WithTagValuesOf annotation of the Thucydides library.  

 

@WithTagValuesOf 

This annotation makes it possible to add tags to every test in order to classify 

them into different types that can be evaluated afterwards by the reporting 

system of Thucydides which will be explained in the section “Reporting System”  

[ThucydReport]. 

@WithTagValuesOf({"feature:army management", "story:basic 

functionality", "level:battle", "top-level:smoke"}) 

public class FOE448 extends SimpleTestTemplate { 

Code 11 – Tags are fetched by Thucydides and can be used as a filter in order to evaluate test results 

 

Existing tags in the FoE Automation project are: 

 Feature: 

o Settings 

o Army Management 

o Buff System 

 Story – Is a part of the feature: 

o Collect all 

o Motivate all 

o Idle 

 Level - Determines the test suite in which the test is running: 

o Basic 
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o Tutorial 

o Buff System 

 Top Level – Indicates the test category 

o Smoke 

o Master 

 

Reporting System 

Thucydides provides the FoE Automation project with a comprehensive 

reporting system which gives high level [ThucydHLRep] and low level reports. 

High level reports show diagrams and statistics to give an overview about the 

project status. Low level reports show the process of every step in a test and 

makes a screenshot when a test fails. This section will illustrate how Thucydides 

reports in the FoE Automation project. 

 

Local Tests 

Thucydides gives two options to check test results locally. 

 

Console Test Reports 

Within the console of the IDE Thucydides gives a quick overview in the console 

during test execution which writes line by line the executed step. The advantage 

of this method is to directly see which method fails. Since almost every method 

includes only one action it is relatively easy to find the source of the error. 

 

Illustration - 2 - Local console output of Thucydides after text execution 
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Once the test has passed the confirmation message will be displayed. 

 

HTML Test Reports 

The same report will be saved locally on the running computer in the 

\…\target\site\thucydides folder of the test automation project. The basic 

difference here is that the duration of every test step is illustrated, which can be 

relevant for performance evaluation in a later stage. In addition a screenshot of 

the last step or the step that failed is attached.  

 

Illustration - 3 - Local Thucydides HTML report 

 

Jenkins 

In the FoE Automation project Jenkins is used to manage and automate the 

execution of tests on servers. The integrated Thucydides plugin 

[ThucydPlgnJen] provides also statistics that give an overview about the status 

of tests.  
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The illustration below shows the reports from Thucydides in the Jenkins plugin. 

A pie-chart gives a clear visualization of how many tests passed, are pending, 

were ignored, have failed or contain errors. This gives a fast feedback about the 

general status of the test cycle. Further information are provided in the test 

result summary where one can see the same information from the pie-chart in 

numbers. Below that the evaluation of the tags take place, which are defined in 

every test with the @withTagValuesOf annotation. In this high level view of the 

given example one can see that tests are failing related to Social Interaction 

features. Looking into the Stories tag shows more precisely where failures 

occur. In this scenario errors are related to the “Neighbor Chat” user story 

[UserStory]. Then in the section below it is possible to see explicitly which test 

failed. This evaluation of tests makes it very fast and comfortable to track the 

error down to its source. 
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Illustration - 4 - Thucydides report in Jenkins 
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Prospects 

Currently the existing FoE Automation framework is used to test the game after 

new features have been implemented, which does not involve the QA in the 

development process.  

“Testing an application after it has been developed has a number of significant 

drawbacks. Most importantly, having feedback about problems raised at this 

late stage of development makes it very difficult to correct bugs of any size. This 

results in costly rework, wasted developer time, and delayed deliveries.” 

[ATDD] 

The FoE Automation framework addresses the above described issue by turning 

the process of game development into ATDD, which basically means that the 

creating of automated acceptance tests begins before the development process 

starts. This kind of development process includes not only the QA team but the 

whole team by creating acceptance criteria. This process adjustment does not 

only increase the efficiency of testing but also ensures that every team member 

knows which feature will be implemented. Once the acceptance tests are 

written Thucydides provides the whole team with a comprehensive progress 

bar. 

“Acceptance tests are also the ultimate progress indicators. An automated 

acceptance test works or it doesn't -- there is no "80 percent done" in ATDD!” 

[ATDD] 

Product Managers will benefit from the high level reports giving a good 

indicator of the project status. They are given indication which feature is 

implemented and which is not, while developers have a clear overview of what 

has to be done from a user perspective. 

Besides all these benefits given, the project will receive a broad set of regression 

tests, that have a great readability and maintainability, once the features are 

implemented. 
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Basic commands/API 

Annotations 

The annotations are documented in the “How to use Thucydides” section. 

 

Methods 

WebElementFacade click() 

- Clicks on an element once it is visible and enabled 

 

boolean isCurrentlyVisible() 

- Returns true/false whether the element is visible on the screen or not. 

 

WebElementFacade waitUntilVisible()  

- Holds the test until the element is visible.  

 

WebelementFacade 

WebElement 

The WebElement is documented in Selenium 2 API 

 

Wrapselement 

Is an interface illustrating that this class is wrapping an element. 

WebElement getWrappedElement() 

- Returns the wrapped WebElement 

 

Webelementstate 

This interface presents the state information about a WebElement. 
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Page Object Pattern 

The PageObject Pattern is a design pattern where each screen of a web app is a 

sequence of objects and encapsulated features, which means that on every 

object or HTML element different methods can be executed. This automatically 

reduces the amount of duplicated code due to reuse in different test cases. 

“A page object is an object-oriented class that serves as an interface to a page of 

your AUT” [POP] (Application under test). 

The PageObject class provided by Thucydides represents the screens of a web 

page as a series of objects. Every class that is extended by the PageObject class is 

used to store WebElements wrapped by the wrapper class WebElementFacade 

as already mentioned in the section “Thucydides/ How to use Thucydides/ 

Pages” (Page 10). 

The PageObjects represent the lowest level of the Page-Object-Pattern and are 

the place where the HTML elements get defined. The well-structured 

PageObjects and levels of abstraction above the PageObjects are used to 

increase the maintainability [ATDD] of the project. For example, if some UI 

element on the web page changes, only that specific PageObject has to be fixed 

and nothing else in the code. All other classes are not affected. 

The following section demonstrates how tests with this type of pattern are 

written. 

 

Tests with PageObjects 

As mentioned above it is possible to reuse code as it is required in different 

tests. The following example will serve to show how it is done in a real test of 

the FoE Automation project.  

@WithTagValuesOf({"feature:army management", "story:basic functionality", 

"level:battle", "top-level:smoke"}) 

public class FOE447 extends SimpleTestTemplate{ 

 

@Test 

public void army_management_era_filters_all_ages_FOE447() throws 

IOException,InterruptedException,TimeoutException{ 

 

        

guest.atLandingPage().logs_in_as_default_user(getClass().getSimpleName()); 

player.atLoginPage().clicks_play_button(); 

player.atWorldSelection().clicks_on_world_button(2); 

        

player.atCityScreen().waits_for_town_hall_to_be_rendered(ScenarioStepsTempla

te.Eras.IRON_AGE); 

        

player.atGameHud().clicks_army_management_button_and_checks_for_opened_windo

w(); 

 

//Checking for bronze age 

player.atArmyManagementWindow().clicks_era_selection_arrow(); 

player.atArmyManagementWindow().hovers_over_close_button(); 
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player.atArmyManagementWindow().clicks_to_choose_era_in_era_selection(Scenar

ioStepsTemplate.Eras.BRONZE_AGE);    

player.atArmyManagementWindow().should_see_units_in_unit_pool(AtArmyManageme

ntWindow.UnitPool.BRONZE_AGE_CHAMPION_ROUGE); 

 

//Checking for All Ages 

player.atArmyManagementWindow().clicks_era_selection_arrow(); 

player.atArmyManagementWindow().hovers_over_close_button(); 

player.atArmyManagementWindow().clicks_to_choose_era_in_era_selection(Scenar

ioStepsTemplate.Eras.ALL_AGES); 

player.atArmyManagementWindow().should_see_units_in_unit_pool(AtArmyManageme

ntWindow.UnitPool.ALL_AGES_UNITS); 

Code 12 – Example of an automated test of the game Forge of Empires 

 

Every test is a sequence of method calls. The naming in combination with the 

PageObject Pattern makes it very easy to understand what happens in the test 

and it is done step by step just by reading the method call. This high level 

implementation does not question the technical details about the feature and 

hides them in the PageObjects. Once the steps are defined the tests can be 

written easily through reuse of the steps, which is occurring very often in game 

testing. Each class consists of only one test (@test) which is named like the test 

it performs plus a consecutive number that is also the class name.  

 

Sikuli 
Sikuli [Sik] is the image recognition tool that is used to automate the test steps 

within the game as it is not possible to use PageObjects. The basic concept of 

this method is to compare pre saved pictures from the tests with pixels on the 

screen. If Sikuli finds a match it performs the requested action, which is in most 

cases a mouse click.  

 

Introduction 

Once the user logged into the game in order to play Adobe Flash takes over. 

Since there are no HTML elements the WebDriver cannot work here. The 

SikuliUtils class provides the commonly used Sikuli methods and is 

implemented in the ScenarioStepsTemplate class which extends every test class. 

The following section will show how Sikuli is used for automated testing in the 

project.   

 

How to use Sikuli 

Since for guest steps WebDriver is used, all Sikuli actions are implemented in 

the player step classes,. Further all player step classes are extended by the 

ScenarioStepsTemplate class that declares the SikuliUtils object sikuliActions. 
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The AtArmyManagementWindow class will serve as an example. The army 

management is the window in the game where you can choose units to defend 

your city or attack other players or NPC’s (Non Player Characters).  

The @Step annotation imported from the Thucydides library is on top of every 

method indicating that this method has to be handled and later reported as a 

step in the evaluation. The first method is named based on the way a user does 

the interaction. In this case the name is 

clicks_close_button_and_checks_for_closed_-army_management_window. As one 

can see this is exactly what happens. First the Sikuli driver clicks on the close 

button and then an assertion is made by checking if the army management page 

header has vanished by calling the sikuliActions().isImageNotPresent(…) 

method. All methods that are implemented in the different step classes can be 

reused in every test.  

public class AtArmyManagementWindow extends ScenarioStepsTemplate { 

 

    @Step 

    public void 

clicks_close_button_and_checks_for_closed_army_management_window() throws 

IOException, TimeoutException, InterruptedException { 

        sikuliActions().clickOnImage(Commons.CLOSE_X_BUTTON); 

        Assert.assertTrue("Army Management window not closed", 

sikuliActions().isImageNotPresent(ArmyManagement.PAGE_HEADER)); 

    } 

 

    @Step 

    public void clicks_ok_button_and_checks_for_closed_window() throws 

IOException, TimeoutException, InterruptedException { 

        sikuliActions().clickOnImage(Commons.Ok_BUTTON_ORANGE); 

        Assert.assertTrue("Army Management window not closed", 

sikuliActions().isImageNotPresent(ArmyManagement.PAGE_HEADER)); 

    } 

 

} 

Code 13 – Example of Step methods 
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Basic commands/API 

The SikuliUtils class is provided by the InnoAutomation Framework and 

provides methods that gather common used Sikuli methods and objects. 

 

SikuliUtils.java 

void clickOnImage(String) 

Clicks on the center of the image that is passed with the “String”, which has to be 

the path to the image. Within that method a “Mouse” object is created and 

instantiated which performs the “.click()” method. 

public void clickOnImage(String imageName) throws IOException 

    { 

        // Click the center of the found target 

        Mouse mouse = new DesktopMouse(); 

        mouse.click(getImage(imageName).getCenter()); 

    } 

Code 14 – The clickOnImage() method is used to simulate a mouse click 

 

void doubleClickOnImage(String) 

Double clicks on the image that is passed with the “String”, which has to be the 

path to the image. Within that method a “Mouse” object is created and 

instantiated which performs the “.doubleClick()” method. 

public void doubleClickOnImage(String imageName) 

            throws IOException 

    { 

        // double click the center of the found target 

        Mouse mouse = new DesktopMouse(); 

        mouse.doubleClick(getImage(imageName).getCenter()); 

    } 

Code 15 – The doubleClickOnImage() method is used to simulate two fast mouse clicks 

 

void clickOnSideOfImage(String, SideOfImage) 

Clicks on the side of the image that is passed with the “String”, which has to be 

the path to the image. SideOfImage is an enumeration and enables Sikuli to click 

in every corner of an image. Within that method a “Mouse” object is created. The 

SideOfImage enumeration gets passed to a “switch-case” statement where it gets 

evaluated. 

public void clickOnSideOfImage(String imageName, SideOfImage sideOfImage) 

throws IOException 

    { 

        Mouse mouse = new DesktopMouse(); 

        switch(sideOfImage) { 

            case CENTER: mouse.click(getImage(imageName).getCenter()); 

                break; 

            case LOWER_LEFT_CORNER: 

mouse.click(getImage(imageName).getLowerLeftCorner()); 
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                break; 

            case LOWER_RIGHT_CORNER: 

mouse.click(getImage(imageName).getLowerRightCorner()); 

                break; 

            case UPPER_LEFT_CORNER: 

mouse.click(getImage(imageName).getUpperLeftCorner()); 

                break; 

            case UPPER_RIGHT_CORNER: 

mouse.click(getImage(imageName).getUpperRightCorner()); 

                break; 

        } 

 

    } 

Code 16 – The clickOnSideOfImage() method is used to click in a specific region of an image 

 

void hoverMouseOver(String) 

Hovers over the image that is passed with the “String”, which has to be the path 

to the image. Within that method a “Mouse” object is created and instantiated 

which performs the “.hover()” method on the center of the image. 

public void hoverMouseOver(String imageName) throws IOException { 

        Mouse mouse = new DesktopMouse(); 

        mouse.hover(getImage(imageName).getCenter()); 

    } 

Code 17 – The hoverMouseOver() method is used to hover over an image 

 

boolean imageIsPresent(String)  

Checks if the image is present on the screen. Returns “true” or “false”. A 

ScreenRegion object from Sikuli calls the “getImage()” method where the image 

of the passed String source is compared with the current screen. Once there is a 

match the method returns true or after five seconds without finding a match it 

returns false. 

public boolean isImagePresent(String imageName) throws IOException 

    { 

        ScreenRegion region = getImage(imageName); 

        return region != null; 

    } 

Code 18 – The imageIsPresent() method asserts if the searched image is currently displayed 
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2.2 Class Structure 
This section will give a look into the folder structure of the project and 

document its content and purposes for the automation.   

The following illustration shows the folder structure of the FoE Automation 

Project. 

 

Illustration - 5 - Folder Structure of the InnoAutomation Framework 

 

com.innogames.qa.foe 

elements 

The elements folder consists of different classes that represent specific parts of 

the game. Within these classes are Strings that hold a path of an image resource. 

Sikuli accesses these Strings to compare the images with the pixels on the 

screen. If the pixels match the test step succeeds. Putting these image resources 

in objects enables code reuse and clears the code.  

 

pages 

The pages folder consists of different classes that represent the FoE landing 

page or parts of it. Within these classes are the already introduced 

WebElementFacade objects and methods to interact with them.  

 

steps 

The steps folder consists of the guest, the player folder and the 

ScenarioStepsTemplate class that hand down the common functionalities for the 

player- and guest step classes. Furthermore there are the GuestSteps and 
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PlayerSteps class which provide getter methods for the classes that are in the 

guest- and player folder.  

guest 

The guest folder consists of different classes that provide the reusable steps 

(@Step) for the tests in the tests folder, which are executed as a guest e.g. 

logging in on the landing page.  

 

player 

The player folder consist of different classes that provide the reusable steps 

(@Step) for the tests in the test folder, which are executed as a player e.g. 

clicking the army management button.  

 

testcommon 

The testcommon folder consist of different classes that serve as a template for 

all test classes in the tests folder providing basic functionality for every test as 

for instance starting and closing the browser or logging into the game. 

 

tests 

The tests folder consists of several subfolders that organizes the contained test 

classes according to their feature. For example all tests related to the battle are 

in the battle folder which also has subfolders that specifies the features 

functionalities such as army management and continent.    

util 

The util folder consists of several classes that are useful helper and can be 

extended on demand. 

ClipboardUtil 

Provides methods to interact with the system clipboard. 

EmailChecker 

Provides methods to interact with the email account that is used for registering 

the accounts like logging in, removing all messages, getting the latest email, etc.  

RandomStringGenerator 

Provides a method to generate a random String.  

WindowTools 

Provides methods to interact with the browser window as for instance 

switching tabs or windows, handling the window size, etc.  
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Annotations 
The InnoAutomation Framework uses JUnit annotations for the test template 

SimpleTestTemplate.java 

@BeforeClass 

Methods with the @BeforeClass [BeforeClass] annotation are executed right 

before every test sequence. This can save the computation of expensive setups 

but might compromise the independence of tests. 

@Before 

Methods with the @Before [Before] annotation are executed right before every 

test. This annotation can be used to avoid code repetitions in every test. In the 

InnoAutomation projects it is mainly used to start the browser, maximize the 

browser window and clear the test email account. 

@Test 

Methods with the @Test [Test] annotation are run as a test. If exceptions are 

thrown Thucydides will report a failure within the test.   

@After 

Methods with the @After [After] annotation are executed right after every test. 

This feature is used for taking screenshots in case of failing tests and shutting 

down the browser when finishing a test. 

@AfterClass 

Methods with the @AfterClass [AfterClass] annotation are executed right after 

every test sequence. This can save the computation of expensive setups but 

might compromise the independence of tests. 

Example: 

This illustration demonstrates how the workflow of these annotations. 

 

Illustration - 6 - Workflow of test execution using JUnit Annotations 
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@Managed(uniqueSession = true|false)  

@Managed lets Thucydides take care of the following WebDriver. 

“uniqueSession” decides whether the browser should be restarted after every 

test case or if all tests shall be run in the same browser. 

 

ScenarioSteps 
The ScenarioSteps class provides a set of reusable steps for web tests. For 

example it implements the getDriver() method that returns the WebDriver from 

the pages that are used. 

 

2.3 TestLink 

“TestLink is a web-based test management system that facilitates software 

quality assurance.” [TestLink] The FoE Automation Project uses it to organize 

tests. A plugin enables Jenkins to collaborate with TestLink in order to exchange 

the status of tests. Every test case is registered in TestLink and is ordered in the 

same structure as in the automation project itself. This enables the team to have 

a proper overview about the test coverage.  

 

2.4 Jenkins 
“Jenkins is an open source continuous integration tool written in Java.” [Jenkins] 

The QA of InnoGames uses Jenkins to monitor the execution of repeated jobs 

like the nightly execution of the automated test cases. A plugin integrates Git 

into Jenkins and allows to manage the source codes including merging of code 

and building of new versions. 

In the illustration below shows the Build Pipeline used in the FoE Browser 

Automation Project. Every row is an apposition of different jobs that need to be 

done in order to execute the tests. The first job (TestRestoreWorld) is to restore 

the test accounts on the server to their initially prepared state to ensure the 

independency of the test. The next job (Smoke Test) is a selection of test cases 

that are supposed to ensure the basic functionality of the test. The feedback is 

much faster than the last job (Master List) which makes it possible to react 

quicker to errors and bugs. The Master List covers all parts of the game and 

tests its functionality on a very detailed level. This regression test checks if parts 

of the game are affected by code changes or merges. 
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Illustration - 7 - The visualization of the automated browser test automation workflow in Jenkins 
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2.5 Configuration 

Slave Server 
InnoGames uses Jenkins to manage the servers which execute the test cases, 

which makes it possible to access the server and execute the tests anywhere. All 

that is needed is a Notebook with a VPN connection and access to Jenkins.  

Standalone machine 

The standalone machine is a mac mini and can be accessed via an URL in a web 

browser that redirects the user to the Jenkins login page. Once logged in it is 

possible to run Jenkins jobs as described in the “Jenkins” section. 

Cloud Service 

The Grepolis Automation Team uses Browserstack [browserStack], a cloud 

service, which makes it possible to use all available browsers with different 

versions and operating systems, for testing the project.  
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Tutorial – How to write a test case 
This section will use an example to illustrate how a test in the FoE Automation 

project is conducted.  

The generic test case that will be automated has the purpose to check if an error 

message will appear during registration process when the user types in a user 

name with adjacent spaces like “A  B”.  

All automated and manual tests are listed in the web-based test management 

system Testlink 

 

Creating a test in TestLink 

Follow the subsequent steps to create a test case in TestLink: 

1. Login to https://testlink.innogames.de/login.php with your account. 

2. Choose “FoE” as the Test Project 

 

Illustration - 8 - Choosing the project in TestLink 

3. Click on Test Specification in the Test Specification bar on the left. 

 

Illustration - 9 - Clicking the Test Specification to access all tests in TestLink 

4. Choose a fitting Folder for the test case in order to create it there. For the 

given example the Folder “Login & Registration” is a fitting section.  

https://testlink.innogames.de/login.php
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Illustration - 10 - Choosing an accurate folder to create the test 

5. Click on the small gear icon in the main section to expand the possible 

test case operations. 
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Illustration - 11 - Expanding possible test case operations 

6. Click on the “Create” Button to create a test case. 

 

Illustration - 12 - Creating a test 

7. Choose a suitable title for the test case. In the example the title 

“Registration – username with adjacent spaces” was chosen.  

8. Optional: Write a short summary that describes the test purpose.  

9. Click on the “Create” button to create the test. 

10. The Test will now appear in the left navigation bar with an ongoing 

number and the chosen name.  In this case it is: “FOE-1337: Registration 

– username with adjacent spaces.” 

11. When the test case is created in the FoE Automation project use the path 

and its name in the following style and put it in the field “TAP file name”: 

com.innogames.qa.foe.tests.loginAndRegistration.FOE1336#registration_

with_adjacent_spaces_in_username_FOE1337 . The “TAP file name” 

enables TestLink to access the test results. 

 

Illustration - 13 - Creating the “TAP file name“ 

12. Click on the small gear icon and then the “Add to Test Plans” button. 

13. Do a checkmark at the “Test automation” Test Plan. 



 

 

-34- 

 

 

Illustration - 14 - Adding the test to the test plan 

14. Click the “Add” button. 

Once these steps are done it is time to create the test class in the FoE 

Automation project.  

Creating a class in the FoE Automation Project 

 

1. Create a class in the accordingly folder and name it like the ongoing 

number in TestLink. For the example it is “FOE1337” in 

“com.innogames.qa.foe.tests.loginAndRegistration” 

 

Illustration - 15 - Creating the test in the IDE 

2. Extend the class with “SimpleTestTemplate” 
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3. Add the @WithTagValuesOf({“feature:login and registration”, “story: 

registration”, “level:basic”}) (Use fitting tags for every test. You can 

compare tags with related tags and copy them.  

4. Within the class create a method with the @Test annotation on top and 

give it a comprehensible name with the ongoing number at the end. In 

this case its “registration_with_adjacent_spaces_in_username_FOE1337”.  

@WithTagValuesOf({"feature:landing page", "story:registration", 

"level:homepage", "top-level:smoke"}) 

public class FOE1337 extends SimpleTestTemplate { 

 

@Test 

public void registration_with_adjacent_spaces_in_username_foe1337() 

throws IOException { 

Code 19 – Creating the method 

5. The first real step that needs to be done in the test is typing a user name 

into the register name field that has two adjacent spaces on the landing 

page. To define a step on the Landing Page the “LandingPage” PageObject 

needs to be created in the “pages” folder. 

6. Extend that class with the “PageObject” class. 

7. To access the register name field on the landing page create a 

WebElementFacade object and name it registerNameField.  

8. Add the @Findby(xpath = "//input[@name='register_name']") 

annotation on top of the element to declare it. To find the xpath source 

go on http://yy.forgeofempires.com/ and do a right mouse click on the 

register name field and chose the “investigate element” option.   

public class LandingPage extends PageObject { 

    @FindBy(xpath = "//input[@name='register_name']") 

    WebElementFacade registerNameField; 

Code 20 – Creating WebElementFacades 

9. Write a method that makes it possible to send input to that field and 

name it properly. Hand over a “String name” as a parameter and use it 

for the “.sendKeys(name)” method on the “registerNameField” object.  

public void sendKeysToRegisterNameField(String name) { 

        registerNameField.sendKeys(name); 

} 

Code 21 – Writing a method to type text in a field 

10. Create a class named “AtLandingPage” in the “steps.guest” folder of the 

project. 

11. Extend the “AtLandingPage” class with ScenarioStepsTemplate. This 

class contains all steps related to the landing page that can be reused in 

every test related to the landing page. 

12. Create a “LandingPage” object and name it “onLandingPage”. 

13. Create a method with the @Step annotation handing over a String 

“username” and access the “registerNameField” object through the 

http://yy.forgeofempires.com/
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“onLandingPage” object using the 

“.sendKeysToRegisterNameField(username)” method. 

public class AtLandingPage extends ScenarioStepsTemplate { 

 

    LandingPage onLandingPage; 

    RuntimePropertiesLoader runtimePropertiesLoader = new 

RuntimePropertiesLoader(); 

 

@Step 

public void logs_in_as(String username, String password) 

throws IOException { 

Code 22 – Creating a class to collect steps related to the Landing Page 

14. Add a getter method in the “GuestSteps” class of the “steps” folder to 

make the “AtLandingPage” class accessible in the test classes. 

public class GuestSteps extends ScenarioSteps { 

 

    private StepFactory stepFactory; 

 

    public GuestSteps(Pages pages) { 

        super(pages); 

        stepFactory = new StepFactory(pages); 

    } 

 

    public AtLandingPage atLandingPage() { 

        return stepFactory.getStepLibraryFor(AtLandingPage.class); 

    } 

Code 23 – Adding a getter method to the GuestSteps class 

15. Now everything is prepared to write the test easily in the test class.  

16. Type “guest.” and chose from the offered methods the “.atLandingPage()”  

17. Chose the method that does the correct user interaction, which is in this 

case “.types_username_to_register("A  B");” 

18. Repeat steps 7-17 for the other steps. ( Clicking the register button and 

checking for the correct error message) 

@WithTagValuesOf({"feature:landing page", "story:registration", 

"level:homepage", "top-level:smoke"}) 

public class FOE1337 extends SimpleTestTemplate { 

 

@Test 

public void registration_with_adjacent_spaces_in_username_foe1337()     

throws IOException { 

   guest.atLandingPage().types_username_to_register("A  B"); 

   guest.atLandingPage().clicks_register_button(); 

   guest.atLandingPage().should_see_error_message_invalid_username(); 

    } 

 

} 

Code 24 – Writing the test 
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Refactoring: From Spaghetticode to PageObject Pattern 
This section describes the refactoring of the FoE Automation Project and writing 

new test cases in PageObject Pattern as part of a practical work of the thesis. 

The term Spaghetticode [Spaghetti] is referring to code that has little structure 

which leads to a difficult maintainability and gives no opportunity for code 

reuse.  

The illustration below shows a test case written in the above mentioned style. 

As one can see the code is not clear at first sight and it would take some time to 

understand the logic used. Though, the biggest disadvantage of that “style” is the 

non-existing possibility to reuse code, furthermore the missing ability for 

Thucydides to report detailed step information. Thucydides would only be able 

to report that an image has been clicked or that the mouse hovered over 

something. It would not be clear where the failure has occurred. 

 

Illustration - 16 - „Spaghetti Code“ 

The great difference can be seen while comparing the Spaghetticode directly 

with the formatted PageObject Style. Almost like a normal text it is possible to 

read what actually happens. Step by step. Furthermore it is very efficient to 

repeat test steps through reusing the methods. This style of coding reduces the 

danger of careless mistakes and enables unexperienced programmers to write 

automated test cases.  

@WithTagValuesOf({"feature:campaign map", "story:basic functionality", "level:battle", "top-level:smoke"}) 

public class FOE5 extends SimpleTestTemplate { 

 

@Test 

public void campaign_map_is_shown_FOE5() throws IOException { 

        

guest.atLandingPage().logs_in_as_default_user(getClass().getSimpleName()); 

player.atLoginPage().clicks_play_button(); 

player.atWorldSelection().clicks_on_world_button(2);        

player.atCityScreen().waits_for_town_hall_to_be_rendered(ScenarioStepsTempla

te.Eras.STONE_AGE); 

player.atGameHud().clicks_campaign_map_button(); 

player.atGameHud().hovers_over_global_chat_button(); 

player.atCampaignContinentMap().clicks_back_to_city_button(); 

player.atGameHud().should_see_game_menu_bottom();}} 

Code 25 - A test written with the Page Object design pattern 
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3. Conclusion 
 

This thesis discussed general advantages and drawbacks of test automation in 

software projects and introduced an existing test automation framework 

implementation for an online strategy browser game. This test case has shown 

advantages as well as disadvantages of the introduced testing techniques. Those 

are discussed in the following. On the one hand there are the following benefits: 

- Reuse of automated test cases: Once implemented the test cases can be 

repeatedly the same way without changing the conditions. 

- Reproducibility of Errors: Often it is not possible to reproduce errors 

when the test cases are executed manually. With a good reporting system 

that serves as a good documentation test automation allows the 

reconstruction of errors. 

- Regression testing: Once the code has changed, side effects can lead to 

errors in functionality that already has been tested. With manual testing 

it is often not possible to reiterate over all tests. Automated tests run 

much faster while causing nearly no additional human effort. 

- Simulation of non-functional requirements: Performance tests must be 

automated in most cases, because manually, they are either too costly or 

impractical. 

- Test coverage: Test automation can cover much more content in a 

shorter amount of time than manual testing can.  

On the other hand there is a lot of decisions and planning that has to be done in 

the first place. In addition there are some drawbacks that should be taken into 

account: 

- Test automation does not exclude human failure: The automated tests 

are still created by human beings so the possibility of failure is still given, 

even if it is just a false positive or wrongly evaluated test results. 

- There is no guarantee that automated tests will find more bugs or that 

the total costs will be lower. Often the initial costs are underestimated 

and the only pay-off is only utilized after a long period. 

- The creation of an automated test tool is difficult and requires skilled 

developers to set up the framework. In addition the creation of test cases 

has often to be done manually and the maintenance of them can be time 

consuming. 

- The costs of refactoring the test framework and its tests can be 

underestimated, once the test software has changed. 

- The evaluation of automated tests can lead to bottlenecks when there are 

differences in the target-performance comparison, because it causes a lot 

of manual evaluation. 
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All in all one can say that test automation is in most cases just reasonable in big 

or long-term software projects, but with a structured planning and a vision that 

maintains the motivation of the team it is possible to benefit from the 

advantages of test automation. 

Applying these considerations to the FoE Automation project, one can say that 

the effort of developing this framework is worth it, even so the benefits are not 

yet measurable. Test automation in that sense has to be seen as a long term 

investment. The reason for this is the still low test coverage. Since FoE is a long 

term project it is very likely that the QA team will benefit from that investment 

of time and workforce. The reward will be a lot more time to focus on important 

features and test cases that are not possible to automate. Nevertheless the 

automation framework will need to be maintained and updated. This will 

require a lot of time when it comes to GUI changes, because the image database 

for the image recognition approach has to be updated. The decision to use the 

Page Object Pattern design was clearly a good one since it supports the reuse of 

code and simplifies the maintenance. In addition this comprehensible code will 

facilitate the access to software development for QA testers, who want to do 

further studies. Although Thucydides provides all tools and functionalities to 

turn the development process in ATDD, the FoE project does not utilize this 

opportunity. This, however, is already planned. Soon it will be possible to 

integrate the testing in the whole development process from the beginning. In 

the end one can say that state of the art browser games need test automation to 

stay maintainable.  
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