
 

 

 

Introducing Constraints into Web Layouts: 

Evaluating the Intuitiveness of Current 

Approaches for Designers 

MASTER’S THESIS 

by 

William Clear, 11101906 

submitted to obtain the degree of 

MASTER OF SCIENCE (M.SC.) 

at 

TH KÖLN – UNIVERSITY OF APPLIED SCIENCES 

INSTITUTE OF INFORMATICS 

Course of Studies 

WEB SCIENCE 

First supervisor: Prof. Dr. Kristian Fischer 

TH Köln - University of Applied Sciences 

Second supervisor: Prof. Christian Noss 

TH Köln - University of Applied Sciences 

Cologne, July 2016 

 



 

2 

 

Contact Details: William Clear 

william.j.clear@gmail.com 

 Prof. Dr. Kristian Fischer 

TH Köln – University of Applied Sciences 

Institute of Informatics 

Steinmüllerallee 1 

51643 Gummersbach 

kristian.fischer@th-koeln.de 

 Prof. Christian Noss 

TH Köln – University of Applied Sciences 

Institute of Informatics 

Steinmüllerallee 1 

51643 Gummersbach 

christian.noss@th-koeln.de 

mailto:kristian.fischer@th-koeln.de
mailto:christian.noss@th-koeln.de


 

3 

 

Abstract 

When it comes to web applications and their dynamic content, one seemingly common 

trouble area is that of layouts. Frequently, web designers resort to frameworks or JavaScript-

based solutions to achieve various layouts where the capabilities of Cascading Style Sheets 

(CSS) fall short. Although the World Wide Web Consortium (W3C) is attempting to address 

the demand for more robust and concise layout solutions to handle dynamic content with the 

recent and upcoming specifications, a generic approach to creating layouts using constraint 

syntax has been proposed and implementations have been created. Yet, the introduction of 

constraint syntax would change the CSS paradigm in a fundamental way, demanding further 

analysis to determine the viability of its inclusion in core web standards. This thesis focuses 

on one particular aspect of the introduction of constraint syntax: how intuitive constraint 

syntax will be for designers. To this end, an experiment is performed involving participants 

thinking aloud while reading code snippets. Also, cursor movements are recorded as a proxy 

for eye movement over the code snippets. The results indicate that, upon first-impression, 

constraint syntax within CSS is not intuitive for designers. 
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Abbreviations 

CSP Constraint Satisfaction Problem 

CCSS Constraint Cascading Style Sheets 

CSS Cascading Style Sheets 

Flexbox CSS Flexible Box Layout Module Level 1 
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1 Introduction 

This thesis looks at the question of whether introducing constraint syntax into Cascading 

Style Sheets (CSS) results in an intuitive development experience for designers creating 

layouts for the web. Phrased as a research question: 

Is constraint syntax in CSS intuitive for designers, relative to current CSS layout 

techniques? 

The paper attempts to answer this question as well as propose and implement a process for 

determining the relative intuitiveness of CSS language features in general. The focus on 

whether the technology is intuitive stems from some of the principles that underlie the 

development and the success of the Web so far; in particular: availability and collective 

empowerment (Open Stand, 2016). This paper suggests that considering the intuitiveness of 

the standards underpinning the Web works towards aligning the Web with these principles, 

as more intuitive standards would allow more people to utilise the Web to a greater extent. 

This is one aspect of the practical relevance of this thesis. The other is establishing a process 

of determining the intuitiveness of CSS language features which might be used to challenge 

or support decisions in the creation of standards; a process that seems to have been largely 

based on opinion during the formative years of CSS (discussed in section 2.3, supported by 

Appendix A). In particular, this paper examines the feasibility of the integration of constraint 

syntax as defined by the Grid Style Sheets 2.0 (GSS) framework (GSS, 2015) into the CSS 

collection of specifications by comparing how intuitive it is for designers compared to current 

layout approaches. Clearly, there is more to consider in the adoption of a standard; however, 

this paper limits its scope to a consideration of the relative intuitiveness of the technologies. 

There are several baseline concepts to establish for this paper: web layouts, web designers, 

constraints, current approaches to web layouts, intuitiveness and the web design process. 

Each of these concepts is defined and described later in the introduction as it is understood 

in the context of this paper. Further, the introduction outlines the scope of the thesis and 

introduces the objectives, relevance and the motivation for writing the paper. Following the 

introduction, related works are considered: this includes both academic work as well as state-

of-the-art material in the web layout space. Next, the analysis section considers the problem 

space from a historical perspective. The analysis section helps relate the paper to its context 

as well at looking at how some fundamental ways of thinking about web layouts arose. An 

experiment section follows, describing and justifying the experiment design, presenting the 

results and discussing the findings. The paper is summarised, key findings are highlighted 

and a critical review is offered in the conclusion. 
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1.1 Core Concepts 

To establishing the ground work for this thesis, web layouts, web designers, constraints, 

current approaches to web layouts, intuitiveness and the design process and environment are 

defined and described as they are understood in the context of this paper. 

1.1.1 Web Layouts 

A web layout, as understood in this paper, is the composition of the graphical and textual 

elements on a web page or in a web application. This is based on definition of layout as a 

general term (Macmillan Dictionary, 2016) and made specific for the web environment. In 

other words, the web layout could also be seen as the compositional result produced by the 

interpretation of a website’s source code by a web browser. (For brevity, the word “layout” 

also refers to web layouts in this paper). For instance, the Holy Grail Layout is a web layout 

utilising a full-width header at the top of the page, a three-columned content section and a 

full-width footer at the bottom of the page (Levine, 2006). Columns, rows, grids, headers, 

footers and navigation bars are common terms used in the description of web layouts. 

Furthermore, many websites utilise a grid-based layout framework such as Twitter Bootstrap 

(Bootstrap)1, ZURB Foundation (Foundation)2 or Ink3 (discussed in detail in section 2.3). 

The grid pattern of arranging content in rows and columns is evidently a de-facto standard 

for web layouts. While the layout is the intended result, this paper focuses on how it is 

achieved by a web designer using CSS. 

1.1.2 Web Designer 

Although the title of the paper refers to ‘designers’, by placing the word within the context 

of ‘web layouts’ it is intended to imply that web designers are the target subject. In this paper, 

a web designer is a person whose profession involves producing and updating web layouts 

and interactions with web technologies (primarily CSS, HTML and JavaScript). The use of 

web technologies differentiates the term web designer from the more established term, 

graphic designer. However, since graphic design generally involves conveying information 

using design elements such as typography and images (Merriam-Webster.com, 2016), a web 

designer is seen as a particular type of graphic designer. More specifically, the web designer 

(subsequently referred to as ‘designer’ for brevity) role includes creating designs (which 

could be sketches, computer-generated imagery or mock ups) and translating those designs 

into code for browsers (Grannell, 2013); in other words, it encompasses the work of a 

                                                      
1 The homepage of the Twitter Bootstrap project is http://getbootstrap.com/. 
2 The homepage of the ZURB Foundation project is http://foundation.zurb.com/. 
3 The homepage of the Ink project is http://ink.sapo.pt/. 

http://getbootstrap.com/
http://foundation.zurb.com/
http://ink.sapo.pt/
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frontend developer. This is not an unprecedented inclusion, as designer Andrew Clarke 

observed: “code became my medium when designing became more than about making an 

artist’s impression of a website” (Clarke, 2014). This is also backed up by survey done by 

Gridset in which 38% of respondents, the largest category, self-identified as being a hybrid 

designer/developer (Gridset, 2014). Both support the idea that being a designer involves 

writing CSS. Therefore, in the context of this paper, a designer implements web layouts using 

CSS. 

1.1.3 Constraints 

The term “constraint” is taken from the constraint satisfaction problems area of research in 

artificial intelligence. A constraint satisfaction problem (CSP) consists of “a set of variables, 

each of which has a value… [it] is solved when each variable has a value that satisfies all the 

constraints on the variable” (Russell & Norvig, 2010, p. 202). A constraint consists of a 

relation defining the values that variables participating in the constraint can take on (Russell 

& Norvig, 2010, p. 202). In particular, this paper looks at how layouts may be treated as CSPs 

using GSS. At face value, it seems quite beneficial to consider a layout as a CSP; for instance, 

one may constrain two elements to have equal heights and widths (perhaps desirable when 

attempting to utilise the Gestalt principle of similarity (Lidwell, Holden, & Butler, 2010)), or 

constrain the width of an element to be always be proportional to its height (useful for 

maintaining a ratio on video elements and image elements with preferred aspect ratios), or 

constrain the centres of two elements to be at the same coordinates on the page, ensuring that 

one element is always neatly centred, vertically and horizontally, within the other element. 

In each of these examples, the constraints are satisfied when the requirements are fulfilled. 

To best explain how constraints can be used for web layouts, an example is offered. Take the 

example of ensuring that a video element always has a particular ratio and always has a width 

at least as small as the window, for which the code may look like that given in Figure 1. In 

this example, a feature video element is being identified by the GSS selector #feature-

video, which functions virtually the same as a CSS selector for most intents and purposes. 

The width of the feature video element is a variable participating in three constraints. On the 

first line, it is constrained to always be less than or equal to 800 pixels. In the language of 

#feature-video[width] <= 800; 

#feature-video[left] == ::window[left]; 

#feature-video[top] == ::window[top]; 

#feature-video[width] <= ::window[width]; 

#feature-video[width] == #feature-video[height] * 1.7778; 

Figure 1: Constraint syntax example stating an element should retain a given width-to-height ratio and be no 

wider than the width of the browser window. 



 

10 

 

CSPs, the scope of the constraint consists solely of the width property of the feature video 

element and “<= 800” dictates the relation for the constraint: the value of the width property 

should either be less than or equal to 800 pixels. Next, on line 4, both the width of the feature 

video element as well as the window width are participating as variables in a constraint. In 

this constraint, the relation is between the variables: it states that the width of the feature 

video element should always be less than or equal to the width of the window. The third 

constraint featuring the width property of the feature video element on line 5 has a relation 

defining that the width of the video element should be 1.7778 times the height of the width 

of the video. In other words, this line is enforcing a size ratio of 1.7778:1 (width to height) 

on the video element, reflecting the common 16x9 video aspect ratio. 

Throughout this description, the phrase “should be” has been used to reflect the particular 

class of CSP that GSS is solving, a CSP with constraint weights. This allows authors to 

prioritise constraints: weaker constraints may be violated when it is not possible to implement 

them in favour of satisfying stronger constraints (GSS, 2015). The strength of constraints in 

GSS is given with the keywords: weak, medium, strong and required; where medium is the 

default strength (GSS, 2015). In regards to the intuitiveness of the constraint hierarchy 

concept in GSS, the use of natural language keywords may help designers quickly adopt the 

concept of the constraint hierarchy in GSS. Further, the GSS constraint hierarchy is 

analogous to two concepts in CSS: the cascade and the important rule. Analogous concepts 

or metaphors help make a system intuitive (Blackwell, 2006) (this is discussed greater detail 

in the analysis). By providing more “weight” to styles specified later and by allowing CSS 

rules to override subsequent declarations with the !important rule (W3C, 2011), CSS has 

established an analogous precedent for the constraint hierarchy concept in GSS. Despite the 

similarities and potential footholds for designers attempting to use GSS, it remains to be seen 

whether the constraint hierarchy concept will be found intuitive or not. 

Indeed, GSS presents quite a paradigm shift from CSS as it stands, where a property value is 

assigned to a property in a unidirectional fashion. A constraint, on the other hand, works in 

two directions. Here, a similar question of intuitiveness arises in the consideration of this 

malleable aspect of constraint syntax semantics. To highlight the bidirectional nature of 

constraint syntax and that the constraint syntax is not simply assigning variables, it is 

#feature-video[width] == #feature-video[height] * 1.7778; 

#feature-video[height] == #feature-video[width] * 0.5625; 

#feature-video[height] * 1.7778 == #feature-video[width]; 

#feature-video[width] * 0.5625 == #feature-video[height]; 

Figure 2: Alternatives, equivalent ways to prescribe an element a 16:9 ratio using constraint syntax. 
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instructive to consider some of the alternative ways in which the last line of the feature video 

example could be have written. These alternatives are shown in Figure 2, each of these lines 

produces an identical result: the video element maintains a size ratio of 1.7778:1. Relating 

this back to intuitiveness, the paradigm-shift from reading the <property>: <property value> 

assignment pattern in CSS to bidirectional constraint syntax in the form <property> 

<relation> <property> may impose a cognitive hurdle for designers new to GSS. 

In summary, it can be seen that treating web layout as a CSP and declaring a layout using 

GSS can be useful for solving common web layout challenges. However, significant 

differences between GSS and CSS raise the question about whether it will be considered 

intuitive by designers and consequently readily adopted. 

1.1.4 Current Approaches to Web Layouts 

The ‘current approaches’ part of the title refers to techniques that designers are currently 

using to accomplish various page layouts. A current approach could refer to a specific layout 

concept or it may refer to how an entire website has its layouts templated. For example, the 

use of syntax from the CSS Flexible Box Layout Module Level 1 (Flexbox) specification to 

create a splash page, the use of floats to position sidebars, and the use of frameworks such as 

Bootstrap to create page templates based on grids are all current approaches to web layouts. 

It is treated as a broad concept; however, this simply reflects the variety of web layouts and 

the flexibility of its definition. The current approaches are looked at in more detail in the 

Related Work section (see sections 2.3 and 2.5 in particular). 

1.1.5 Intuitiveness 

Intuition in this paper is defined as a thought or response that is “reached with little apparent 

effort, and typically without conscious awareness, [involving] little or no conscious 

deliberation” (Hogarth, 2001). In other words, in the mind of the thinker a conclusion or 

understanding might be reached with minimal conscious thought process. This paper 

considers the intuitiveness of designers in particular. This implies familiarity with the basic 

design concepts and the syntax of CSS. For example, CSS allows a user to define the 

background colour of an element like so: 

footer { background-color: blue; } 

From this snippet, it is assumed that a designer could readily understand that a footer element 

will have a blue background with very little thought. This rapid comprehension is considered 

intuitive. In this case, it is perhaps intuitive because it so closely resembles an equivalent 

natural language representation of the same idea that a “footer’s background colour is blue.” 
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On the other hand, not all CSS expressions are intuitive. For example, consider the 

declaration block: 

img + span[data-traits~="blob"]:nth-child(4) { color: #6495ed; } 

In this snippet, the reader of the CSS must consciously resolve that span elements being 

styled by this rule are preceded by an image element and they contain the value “blob” among 

other values of the data-trait attribute. Further, a small amount of counting is involved: it 

is the fourth child within its parent container. Lastly, unless the reader is particularly well 

versed with colour theory and hexadecimal notation, it is hard to visualise the colour being 

used as a background colour in this CSS snippet as it is given by the sRGB colour space and 

the intensities of the red, blue and green values must be combined to determine the resultant 

colour, cornflowerblue4 (W3C, 2011). Counter-intuitive traits of CSS need not be found in 

complex selectors or colour spaces: more specifically to layouts, some CSS authors may find 

it counter-intuitive that the height and width properties do not include the size of the borders 

or padding (unless the box-sizing property is set to border-box) and the complex rules 

dictating margin-collapsing behaviour are known to be confusing as well (Hickson, 2004). 

Therefore, the intuitiveness of CSS is in no-way guaranteed. However, these counter-

intuitive aspects to CSS highlight the importance of making sure new additions to the 

specifications favour intuitive syntax to minimise the introduction of additional points of 

confusion in the future. 

Generally, the use of familiar keywords and the straight-forward way that CSS presents 

property values mapped to properties within declaration blocks with relatively little syntax 

seems to make CSS fairly intuitive by design. This is explored in more detail throughout the 

paper. However, there are aspects of the language, both advanced (such as advanced 

selectors) and simple (such as colour values and sizing with padding and borders) that can 

quickly turn the activities of reading or writing CSS into puzzle solving. This paper looks at 

what is required to accomplish “intuitiveness” as given in the sense of the first example in 

this section (background-color: blue); that is, the characteristics of the CSS language that 

result in an intuitive authoring experience, especially when creating layouts. 

It is recognised that, over time, a web designer develops a sense of intuition for how to use 

CSS, at least at a basic level. While teaching the use of Cascading Style Sheets (CSS) for 

layouts, Rachel Andrew, author of several CSS related books, has observed that there is a 

point where those learning a particular layout technique with CSS “just get it” and it 

“becomes simple for them” (Simmons & Andrew, Laying Out the Future with Rachel 

                                                      
4 One of the CSS colour keywords, w3.org/wiki/CSS/Properties/color/keywords. 

https://www.w3.org/wiki/CSS/Properties/color/keywords
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Andrew, 2016). Comparably, it was found in a study of the intuition of mathematicians that 

knowledge and experience seemed to be the primary contributors to the development of 

intuition (Burton, 1999). Although research on the intuition of web developers is hard to 

come by, it is perhaps reasonable to draw parallels and assume that knowledge and 

experience play a major role in developing an intuition for the syntax designers are working 

with and the effects that it causes. Therefore, an ingredient for intuitiveness, as it is 

considered in this paper, is prior experience with CSS and familiarity with the basic concepts 

and syntax. Although the search for intuitive technology is driven here by principles of 

accessibility and collective empowerment, it would seem unreasonable to expect that 

intuitiveness could be built-in without requiring some learning effort to establish a baseline 

understanding of how CSS works. 

1.1.6 The Design Process and Environment 

The environment in which the designer is working impacts how the designer creates and 

maintains code sources while producing their designs. For instance, considering just the step 

of producing CSS, it is common to debug and tweak CSS using developer tools found in 

popular web browsers. These tools often include features such as: syntax highlighting, 

automatic indentation of code, colour-preview boxes and colour selectors, an ability to view 

all the styles affecting an element, file management and real-time page updates as styles are 

changed. Therefore, in considering how intuitive layout technologies are in real world usage, 

such assistance needs to be accounted for. This means that although a CSS concept may be 

difficult to understand while reading it from specification or implementing it in a plain text 

editor without syntax highlighting, it may still be termed intuitive if common tools exist to 

make working with such a concept easier. For example, composing RGB colours may not be 

intuitive because it may require consciously mixing the hexadecimal values to approximate 

the colour being generated, as noted earlier. However, the click-and-drag colour dialogs 

present in popular browsers such as Chrome and Firefox allow designers to intuitively work 

with colours as they can point and click among hue, saturation, lightness and alpha values 

with little thought as to which colour will be produced. Therefore, the design process and 

environment are included as core concepts for their effect on whether aspects of CSS can be 

termed intuitive or not. 

1.2 Scope 

This thesis limits its scope in several ways due to the limited timeframe of several months 

and virtually no budget. This restricts the scope for the size of the experiment and the breadth 

of the topics being covered. 
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Necessarily, this thesis is intended only as a preliminary usability test of constraint syntax in 

CSS; therefore, only a handful of participants are expected to participant in the experiment. 

However, as noted by Jakob Nielsen, testing usability with just 5 users may yield a significant 

proportion of the results (Nielsen, 2000). On the other hand, the same article proposes making 

many small tests; whereas, the experiment conducted as part of this thesis tests just one layout 

due to the limited timeframe. Experimentation on a scale required to term the results 

indicative for all web designers of all cultures, let alone conclusive, is well beyond the 

resources available and remains beyond the scope for this thesis. Rather, the scope for the 

experiment is generate suggestive findings and a process that could be repeated if more 

research in this area is warranted. 

Further, there are many ways to evaluate artificial languages including characteristics such 

as expressiveness, definiteness, implementability and so on (Khedker, 1997). The scope of 

this thesis is restricted to looking especially at whether CSS is intuitive to read. In other 

words, it is looking at the question: if a designer was to see a code snippet used to generate a 

layout, could the designer quickly comprehend what the approximate outcome would be? As 

stated in the introduction, the outcome of test proposed is intended to support or challenge 

decisions about language features rather than provide a holistic view of them. 

In the same way that not all criteria of good programming languages are being observed, not 

all capabilities are being included either. This paper distinguishes between two major 

applications of CSS: defining layouts and styling elements. While styling elements may 

include defining colours, typography and animation, layout refers only to the positioning and 

sizing of elements. Although the two are related and may overlap, the focus in this paper is 

on CSS features relevant to constructing web page layouts. Even more specifically, it is 

looking particularly at the layout capabilities of GSS and comparable capabilities in CSS. 

The GSS framework also comes with additional capabilities that are not considered within 

the scope of this paper. GSS also provides a Visual Format Language (VFL) and element-

based conditionals (e.g. if the width of element 𝑥 is greater than 𝑦, then implement 𝑧). 

However, this paper focuses on the core concept of constraints and does not consider the 

intuitiveness of these extensions. 

Phrasing the scope positively: the thesis is restricted to considering only the intuitiveness 

constraint syntax as implemented by GSS relative to CSS layouts techniques on a small scale. 

1.3 Objectives and Relevance 

This thesis aims to achieve two objectives: 
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 Produce a preliminary conclusion as to whether designers find constraint syntax for 

layouts in CSS (as defined by GSS) intuitive relative to other CSS approaches. 

 Secondarily, test a method for evaluating the intuitiveness of CSS languages 

constructs that may be repeated and improved upon to test the intuitiveness of other 

language constructs. 

As for the relevance: as covered in the Related Work section, there is a lot of material being 

generated on new layout techniques, including upcoming CSS specifications. An in-depth 

look at the solutions being proposed and how they compare from the perspective of a designer 

could be relevant to many working in the field. Secondly, deciding on whether CSS language 

features are intuitive or not seems to be largely a matter of opinion (as observed in section 

2.3), this paper presents groundwork that could potentially be used to determine whether or 

not language constructs really could be considered intuitive or not based on evidence instead 

of opinion. This may also be of relevance to those involved in the construction of 

programming languages. 

1.4 Motivation 

With a background as a web developer, working in both server-side and frontend 

development, common CSS, JavaScript and HTML concepts quickly became ‘normal’ and 

unquestioned. This thesis provides an opportunity to ask: where did some of these concepts 

come from? Are there alternatives? Could the process of evolving the Web itself be 

improved? 

Furthermore, exposure to a variety of working environments has led to an appreciation of the 

transferability of skills related to the core standards of JavaScript, HTML and CSS, even as 

tools, platforms and frameworks change. Therefore, a Master’s Thesis covering a topic that 

would necessarily involve a greater understanding of the standards and an outlook on their 

future is exactly the sort of thesis I am interested in writing. 

It also seems to be the right context to write such a thesis. It seems that the Web has moved 

from a collection of documents, through a dynamic web and a web of data, to also being an 

interface to intelligent systems and even an intelligent system in its own right in some senses. 

While scoping for topics, I began working through the textbook Artificial Intelligence: A 

Modern Approach (Russell & Norvig, 2010) to discover more potential ways to use the Web 

intelligently. I came across constraint satisfaction problems in chapter 6 and, at around the 

same time, GSS. At this time, this was a personal insight: realising that not only could the 

Web enable interactions with intelligent systems, the web platform itself could become more 

intelligent. This is very exciting, because a more intelligent web platform means the benefit 
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is available to all of over one billion5 websites rather than one or a few proprietary, black-

box intelligent systems. On this scale even small, incremental improvements can have a 

profound impact. 

                                                      
5 The estimated number of websites at the time of writing is 1,040,100,236, 14 June 2016, from 

http://www.internetlivestats.com/total-number-of-websites/. 

http://www.internetlivestats.com/total-number-of-websites/
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2 Related Work 

The related works are constituted of two significant areas. The first is other academic work 

that looks at the origin of the constraints in CSS concept and determining how the mind works 

while reading, looking especially at what constructs in code might be deemed intuitive and 

how to measure this. The second area considers approaches to developing technologies that 

support web layouts and how certain layout patterns are achieved. This includes the extent to 

which the CSS working group considers the intuitiveness of the standards as they are 

developing based on evidence from the public mailing list, how frameworks handle layouts 

and modern layout patterns. Additionally, in the last few years the CSS Working Group has 

been attempting to address the layout challenges of web developers with specifications such 

as the CSS Flexible Box Layout Module Level 1 (shortened to Flexbox) and, the CSS Grid 

Layout Module Level 1 (CSS Grid), this are also addressed as related work. 

2.1 Constraint Cascading Style Sheets 

In 1999, Constraint Cascading Style Sheets (CCSS) was proposed in the proceedings of the 

12th annual ACM symposium on User Interface Software and Technology (Badros, Borning, 

Marriott, & Stuckey, 1999). CCSS is foundational for this thesis as it provided a detailed 

description of how constraints could be used by CSS. Further, the GSS project is openly 

based on CCSS concepts: an author of the original CCSS paper, Badros, is involved in the 

GSS project as well (GSS, 2015). Given its importance to this paper, the CCSS paper is 

summarised here, and key concepts are highlighted. 

The CCSS paper begins by introducing the state of CSS and notes several areas for 

improvement, including: responding to various browser window sizes and ‘ad hoc’ layout 

restrictions (Badros, Borning, Marriott, & Stuckey, 1999). Both of these issues are addressed 

in this thesis as they seem to have been unresolved in universally accepted way since the 

original paper was written over fifteen years ago, paving the way for GSS other frameworks 

to gain popularity by addressing some these shortcomings. Other issues noted at the time 

such as a complex and vague CSS specification and inconsistent browser support are not 

considered within the scope of this thesis. Naturally, introducing constraints into CSS was 

viewed as the solution to these issues. It was noted that with CCSS ‘we6 can naturally and 

declaratively specify complex behaviour’ (Badros, Borning, Marriott, & Stuckey, 1999, p. 

                                                      
6 Interestingly, from the analysis of the CSS Working Group’s public mailing list (see Appendix A) 

the term ‘we’ may not have been used in such a paper if it were written again in today’s context. Over 

time, the contributors to CSS development have developed an awareness that they are creating syntax 

for web authors rather than themselves; therefore, a term like ‘authors’ or ‘designers’ may have been 

used instead. Distinguishing this subtle difference is important because the audience of CSS readers 

must be considered when determining whether or not it is intuitive. 
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73). Indeed, the ability to ‘naturally and declaratively specifying complex behaviour’ is 

indeed the subject matter of this thesis itself (if one may consider ‘naturally’ as a being 

synonymous with ‘intuitive’ as it is understood in the context of this paper). Interestingly, 

the layout-related parts of the CCSS introduction seem to be as relevant in today’s context as 

they were when the paper was written over a decade ago. 

Following this introduction, the CCSS paper introduces the functionality of CSS at the time 

in more detail and reiterates the key issues given above before introducing how constraints 

would work with CSS. Conveniently, the first aspect considered is page layouts, and how it 

‘can be modelled using linear arithmetic constraints’ (Badros, Borning, Marriott, & Stuckey, 

1999, p. 76). A simple table layout is recreated using CCSS, the syntax governing the 

implementation is given in Figure 3. This example was included to illustrate some key 

concepts beyond the CCSS syntax itself: browsers automatically creating constraints, the 

impact of the strengths of constraints and how the syntax suggests an implementation strategy 

(Badros, Borning, Marriott, & Stuckey, 1999, p. 77). 

In the description of the code snippet, it was noted that constraints 1 through 7 are 

automatically generated by the browser to implement certain table properties: the table width 

should be as wide as its columns (constraint 1), each column should be as wide as the text it 

holds (constraints 2 through 6) and the table should try to minimise its width to 0 (constraint 

7). The given strength of REQUIRED present for constraints 1 through 6 ensures that the table 

and its columns show visible content, while the WEAK constraint that the table width should 

be 0 means that the browser should attempt to meet this constraint by minimising the table 

width. In other words, the WEAK constraint can be violated in favour of meeting the REQUIRED 

constraints and browser instead gives the table a width as close to 0 as possible while 

satisfying the other constraints. The DESIGNER constraint strength present on constraints 8 

and 9 is intended to represent rules created by web page authors. This strength is more strictly 

enforced than WEAK constraints but less strictly enforced than REQUIRED constraints (Badros, 

(1) #t[width] = #c1[width] + #c2[width] + #c3[width] REQUIRED 

(2) #c1[width] ≥ width(\Text1")     REQUIRED 

(3) #c2[width] ≥ width(\Text2")     REQUIRED 

(4) #c3[width] ≥ width(\Text3")     REQUIRED 

(5) #c3[width] ≥ #i2[width]     REQUIRED 

(6) #c1[width] + #c2[width] ≥ #i1[width]   REQUIRED 

(7) #t[width] = 0       WEAK 

(8) #c1[width] = 0.3 * #t[width]     DESIGNER 

(9) #c3[width] = 0.2 * #t[width]     DESIGNER 

Figure 3: Example layout constraints. This figure is based on Figure 6 from the CCSS paper (Badros, Borning, 

Marriott, & Stuckey, 1999, p. 77). 
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Borning, Marriott, & Stuckey, 1999, p. 77). In the given example, the DESIGNER-strength 

constraints produce a table where column #c1 is 0.3 times the width of the table, column #c3 

is 0.2 times the width of the table and column #c2 is left to take up the remainder of the table, 

provided that more strictly enforced constraints do not break these rules. Altogether, the 

example offered a glimpse into a flexible layout system showing the viability of constraints 

syntax for web layouts. 

However, the article did not maintain a thread arguing why such syntax would be found 

intuitive (or ‘natural’ to use its own terminology) by designers despite introducing it as such 

and positioning it as an improvement over the difficult-to-understand CSS 2.0 specification 

with ‘seemingly ad-hoc restrictions on layout specification’ (Badros, Borning, Marriott, & 

Stuckey, 1999, p. 73). Indirectly, the declarative nature of the syntax was emphasised as well 

as the way it implied an implementation strategy (Badros, Borning, Marriott, & Stuckey, 

1999, p. 77). However, when it came to testing the proposed syntax, an Amaya browser 

extension was tested for functionality and performance and underlying constraint-solving 

algorithms were discussed without having designers read and write CCSS to test its usability. 

In effect, the assumption seems to have been made that constraint syntax offered a more 

intuitive solution to layout problems and the ground work for how the constraint syntax could 

work alongside CSS was established. GSS completed a full-scale implementation of the 

syntax (with modifications) and this paper offers evidence as to the supposed intuitiveness 

of constraint syntax. 

2.2 Online Processing During Reading and How Code is Read 

Rather than simply look at what designers report as being intuitive, this paper makes an effort 

to reason with concepts from psychology as to why some programming language concepts 

may be seen as more intuitive than others. In doing so, the relationship between reading and 

information processing is examined. Although it is not specific to reading code, the work of 

Keith Rayner is particular useful in this area, therefore an overview of it is included here. 

Other research, more specific to code reading is included as well, although it does not connect 

reading to cognitive processes to the same extent. 

In 1998, Rayner offered a review, Eye Movements in Reading and Information Processing: 

20 Years of Research, stating that eye tracking and analysis technology as well as 

theories of language processing had sufficiently advanced that it was “possible to use 

eye movement records for a critical examination of cognitive processes underlying 

reading” (Rayner, 1998, p. 372). While introducing an overview of the results of such 

progress, the article first establishes the common terminology of the field. 
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The terms saccade and fixation are introduced here to establish the groundwork of 

the rest of the overview. A saccade is an eye movement from one position to another. 

The time that the eye remains stationary between the saccades is termed a fixation. 

The duration of fixations is about 200 – 300ms, while the duration of saccades 

depended on degree to which the eye moves: a common saccade while reading of 2° 

is about 30 milliseconds whereas a saccade of 5° is about 40 to 50 milliseconds 

(Rayner, 1998, p. 373). The timings and introduced here because, as will be seen, the 

timing of eye movements can reflect cognitive processes. 

The article is quick to introduce the cognitive processes behind the movements. The 

article notes several studies that suggest ‘saccade programming is done in parallel 

with comprehension processing in reading’ and points out that decisions of when and 

where to move the eyes are separate decision processes (Rayner, 1998, p. 374). 

Importantly, evidence is found that ‘cognitive processes can influence the latency’ of 

saccades. For example, voluntarily directing saccades away from a peripheral target 

increased saccade latency, directions to be careful resulted in increased latency and 

increase latency resulting in increased accuracy of eye movements. (Rayner, 1998, p. 

374). Further, a centre of gravity effect was identified whereby a saccade directed to 

targets of two elements landed in an intermediate location, with a pull effect toward 

larger or brighter elements (Rayner, 1998, p. 374). Further on, it is identified that 

about 10 to 15% of saccades are regressions: the eyes traverse back over text that has 

already been passed. The explanation given for regressions is that they occur because 

the ‘reader did not understand the text’ (Rayner, 1998, p. 375). Furthermore, in-word 

regressions may be due to problems processing the currently fixated word (Rayner, 

1998, p. 375). Clearly, there are inferences about cognitive processes during reading 

that can be made by tracking the eye movements of the reader. For this paper, this 

means there is a way to measure what really could be termed intuitive on a relatively 

fundamental level, beyond merely asking designers what they find easy to 

understand. 

The impact of these findings on reading code is applied tentatively here, in lieu of 

more specific work being done in this area. Firstly, the trend appears to be that 

increase cognitive processing slows down eye movements during reading. Therefore, 

comparing two code snippets, the one with longer fixations may be the harder to 
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understand of the two or the less intuitive code snippet in terminology of this paper. 

This is an interpretation that code reading studies have also adopted (Bednarik & 

Tukiainen, 2006). Secondly, a relatively large number of multi-word regressions may 

indicate difficultly understanding what the CSS achieves while a relatively large 

number of in-word regressions may indicate difficulty understanding the semantics 

of keywords in the code. 

There seems to be much less research material looking at what reading patterns imply 

about cognitive processes during the reading of code. Instead, research looking at 

code reading seems to be focused on how code is read and subsequent comprehension 

as opposed to what can be inferred about cognitive processes while reading, 

especially at a novice level (Busjahn, Schulte, & Busjahn, Analysis of Code Reading 

to gain more Insight in Program Comprehension, 2011; Whalley, et al., 2006; 

Busjahn, et al., 2015; Turner, Falcone, Sharif, & Lazar, 2014). Even less can be said 

for research material looking at cognitive process while reading declarative languages 

such as CSS for which no relevant papers were found during the construction of this 

paper. In some ways, it could be said that code reading research appears to be at the 

same level of natural language reading research prior to the 1970s: identifying the 

patterns and comprehension on a surface level (Rayner, 1998, p. 372), yet to look 

deeply into the online processing taking place as code is read and extrapolate 

cognitive processes. Perhaps this identifies the need for a model of code 

comprehension that could be verified, tested and improved in the same way that 

models like the E-Z Reader model have been instrumental in establishing a 

framework for research of eye-movement during reading (Reichle, Rayner, & 

Pollatsek, 2000). It must be noted that there are models for program comprehension 

(for example, a comparison between six is given for software maintenance and 

evolution (von Mayrhauser & Vans, 1995)), although none seem to predict eye 

movements. Nevertheless, some findings from research looking at code reading are 

applicable here. 

In particular, it is interesting to know which programming language features seem to 

support the reading of code. For instance, recent research utilising eye-tracking 

suggests that regularity, repetition of code fragments, provides a better indicator of 

the understandability of code than metrics like lines of code and McCabe’s 
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cyclomatic complexity (Jbara & Feitelson, 2015). This could be interpreted as giving 

CSS an advantage over GSS, as GSS introduces additional syntax, it may dilute the 

regularity which is typical for CSS. Further, another eye tracking experiment 

involving code reading showed that more experienced programmers utilise ‘surface 

language features that facilitate … comprehension’, also known as beacons, to 

navigate and understand programs; although, exactly which language feature acts as 

a beacon may differ from person to person (Crosby, Scholtz, & Wiedenbeck, 2014). 

One might assume that selectors appearing above each declaration block could 

represent beacons in CSS, a pattern shared by GSS. However, as shown in the 

introduction, GSS also utilises syntax outside of declaration block, this may obscure 

beacons and, again, result in CSS being the easier of the two to comprehend. Once 

again, the findings from the research must be applied tentatively here, as although the 

research focuses on code, it focuses on programming languages with an executable 

structure as opposed to declarative languages. 

In summary, particular traits can be looked for from code readers to infer cognitive 

processing: particularly long fixations and regressions may imply additional 

reasoning steps and misunderstanding or unfamiliarity respectively. Furthermore, it 

has been noted that certain programming language features seem to facilitate 

comprehension, although the extent to which these findings apply to declarative 

languages like CSS and GSS is unclear. Therefore, when determining the 

intuitiveness of a GSS relative to CSS, evidence from reading patterns over code 

snippets and the identification of assistive language features via a think-aloud 

experiment component and reflection on the code would be beneficial in arguing the 

case one way or the other. 

2.3 Approaches toward Intuitiveness from the CSS Working Group 

So far, research has been identified that allows us to reason (to a limited extent) about the 

intuitiveness of CSS and GSS based on reading patterns and language features. It may be 

instructive to consider how intuitiveness has been reasoned about during the creation of CSS 

thus far. To this end, the group developing the CSS syntax, the CSS Working Group, 

maintains a public mailing list. According to the CSS Working Group Charter, this mailing 

list is the primary tool for technical discussion and is involved in obtaining consensus for 

decisions (Bos & Lilley, 2016). Therefore, it can be used as a related work to gather insight 

into the approach towards creating an intuitive layout authoring experience. Indeed, an exact 
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match for the term ‘intuitive’ is found among approximately 1% of the mailing list’s 

communications (see Appendix A) indicating it certainly a consideration of the group. 

In order to draw out the approach toward making CSS intuitive, a basic, textual analysis of 

the public mailing list during the formative years of CSS was conducted. The mailing list 

archive interface (W3C, 2016) was used to search for the keyword ‘intuitive,’ filtering for 

the mailing list name: ‘www-style.’ Each of the results was opened in a browser window. 

Using the hotkey Ctrl + F and searching for the term ‘intuitive’ highlighted its usages on the 

page. The context of each usage was read and understood. The context may have been a 

single sentence, such as this example from 2006: 

I can (kind of) see their reasoning for having floats for alpha, since integers aren't 

intuitive for opacity. (Raymond, 2006) 

Or, the context may have required several sentences to understand, as in this extract from a 

2008 email: 

Thirdly, I understand from [1] that clearance was originally implemented as a change 

in margin-top. Superficially this seems intuitive, so there must be some tricky edge-

cases which expose problems with this implementation. (Prowse, 2008) 

In any case, the context of the usage of the term ‘intuitive’ was pasted into the table given in 

Appendix A, along with the year it was used and a link to source. In a fourth column of the 

same table, a categorisation was given as the nature of the usage of the term ‘intuitive.’ The 

four categorisations were: 

 Opinion: the claim of intuitiveness was led by language that suggested it was an 

opinion; for instance: “I think…”, “I believe…”, “It seems to me…” or so on. Or, 

insufficient logic or evidence was presented to support the claim of intuitiveness. 

 Logic: the claim of intuitiveness was backed up with a logical argument. 

 Evidence: the claim of intuitiveness was backed up by some research or test. 

 Irrelevant: the usage of the term intuitive did not actually relate to some aspect of 

CSS being intuitive. 
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As shown in Figure 4, declaring some aspect of CSS as intuitive or counter-intuitive in the 

majority of cases seemed to be based on the opinion of the mailing list contributor and rarely 

on usability studies analysing CSS concepts or detailed reasoning to justify why a particular 

concept is intuitive or not. It is perhaps instructive to highlight the cases where a concept was 

declared intuitive based on some underlying reason, as this may illustrate why it is not more 

often the case. For instance, a loose reference was made to usability studies when discussing 

the intuitiveness of colour notations: 

…in particular, it has nothing to do with HLS, HSB and suchlike polar 

representations of RGB (which are, in usability studies, often shown to be *not* very 

intuitive) (Lilley, Re: CNS colors, 1996). 

In another email discussing a potential default setting of 0 for the volume of an element read 

by a speech synthesiser, an analogy is drawn: 

This seems strongly counter-intuitive. The default is that there is no sound? Perhaps 

a stylesheet for visual presentation could specify that the default is black text on a 

black background, so the screen is entirely dark? (Lilley, Re: T.E.O.'s Draft--

Cascading Speech Style Sheets (txt), 1996). 

In these cases, the justification for terming something as intuitive or not had analogous 

parallels. When discussing colour notation, a general reference was made to usability studies 

that had looked at the topic and when discussion default element volume, an analogy was 

made to the established default background and text colours. Figure 4 indicates logic and 

evidence were used to a greater extent when justifying the intuitiveness of CSS concepts in 
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the early years of its development when it was drawing from existing concepts, for example 

in print media (as will be seen in 3.1 Historical Perspective). As CSS developed, perhaps a 

larger number of unique and novel aspects had to be considered for which there were no 

obvious analogies to draw from. 

Summarising the results, it seems as though the intuitiveness of the CSS standards is certainly 

a recurring a discussion point in the mailing list. This reflects efforts made to produce syntax 

that is indeed intuitive for CSS authors. However, the efforts toward this end are largely 

informal. In the majority of cases where intuitiveness is discussed, the writer asserts some 

aspect is intuitive based on their own opinion rather than research or substantial reasoning. It 

is understandable that this is the case, as mentioned: concepts are being formulated for a new 

domain and styling for the Web has its idiosyncrasies, limiting the material it is able to 

borrow from existing fields. Perhaps this represents an opportunity to increase efforts in 

formally conducting usability testing on CSS itself. 

The basic methodology used here to analyse the CSS Working Group’s consideration of 

intuitiveness could itself be improved. For instance, having a second, independent reviewer 

verify the results would add weight to the results. Further, the methodology could be 

improved by looking further outside of the public mailing lists into how the CSS Working 

Group considers the usability of CSS as it develops. It should be noted that there exists a 

private, member-only mailing list which may have further information unavailable for this 

analysis. Lastly, due to time restrictions, to analysis covers the years 1996 through 2008 

which may obfuscate any more recent efforts from the CSS Working Group in this area. 

Altogether, the results can only be taken as indicative rather than absolute and there may in 

fact be additional deliberations over how intuitive CSS languages features are before they are 

introduced for newer features; although the precedent of basing decisions about intuitiveness 

on opinion is certainly evident. 

In summary, the results from this basic analysis are indicative that intuitiveness is persistently 

considered albeit informally. In defence of the CSS Working Group, producing standards 

that are intuitive is not among the success criteria given in the charter; on the other hand, one 

would assume it contributes towards other success criteria such as ‘achieving multiple, 

independent, interoperable implementations,’ since implementations are made by humans 

who will have their intuitions when interpreting the standards, and having ‘user community 

and industry adoption’ (Bos & Lilley, 2016). Perhaps the methodology testing the relative 

intuitiveness of GSS to CSS could be extended to test the introduction of other new CSS 

language features, so future decisions in this area are based on evidence. There is certainly a 
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significant test effort made to measure CSS’s compatibility with browsers (W3C, 2016), 

perhaps a similar effort could be made to test CSS’s compatibility with designers. 

2.4 Frameworks 

The history of using hacks such as table-based layouts or using floats and images for purposes 

other than those for which they were designed in order to achieve certain layouts has led to a 

demand for a better solution to web layouts. So far, this demand from designers seems to 

have been somewhat fulfilled by the use of frameworks such as Foundation and Bootstrap 

(Shepherd, 2011; Kramer, 2014). Despite the utility of such Frameworks, this paper assumes 

that the movement toward a generic layout component offered as part of CSS is a desirable 

outcome: for the performance benefit (the browser internally calculates the layout without 

relying on interpreting and executing external JavaScript), the ability for designers to transfer 

layout skills from project to project independent of whether projects use particular 

frameworks and to reduce network traffic as less framework code needs to be downloaded. 

(To this end, even though GSS is a framework, the concept considered in this paper is the 

inclusion of constraint syntax in CSS). Nevertheless, the popularity of using frameworks to 

organise the layout of a website demands that they be investigated in this paper. However, 

the CSS modules will be considered in more depth than the frameworks and included in 

experimentation while frameworks are not. 

In recent years, frameworks seem to have played a major role in influencing the layout of 

numerous websites. As an indication, Wappalyzer, a tool that identifies website software, has 

detected Twitter Bootstrap on over three million websites, Ink on over seven-hundred 

thousand and ZURB Foundation on over two-hundred thousand via its users in the last 6 

months (Wappalyzer, 2016). All three frameworks are based on grid systems. Bootstrap and 

Foundation offer a 12 column grid layout whereas Ink determines its columns in percentages: 

multiples of 5% up to 100%, 16%, 33%, and 66% (Bootstrap, 2016; ZURB Foundation, 2016; 

Ink, 2016). Further, all three base their grid system on the usage of floats, floating columns 

to the left by default. Ink and Foundation have alternative builds available that utilise the 

flex display value and Bootstrap has included it in its upcoming version 4 release as a 

replacement for using floats. This indicates a transitory stage from using float to using 

flexbox as the cornerstone for website layouts; however, it seems that using floats is still the 

default approach underpinning grid systems on websites. Furthermore, it is a strong 

indication that grid arrangements are the defacto standard for web page layouts. 

In summary, the implementation of a grid system is a commonality between the frameworks; 

essentially adding a semantic laying for expressing layout in columns and rows although the 

underlying implementation is typically achieved with floats. Although it may be one of many 
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factors underpinning the popularity of the frameworks, this suggests that designers are 

looking for grid semantics to assist producing web layouts. 

2.5 Modern Web Page Layouts 

Here, the current state of layouts on the web is considered. Trends are identified and 

connected to intuitiveness. Although academic material does cover web layouts, it has proved 

difficult to uncover material discussing state-of-art CSS layout techniques. Perhaps this is 

due to the rapid, transformational progress made on the web platform and how it is used. 

Therefore, academic efforts have been made to capture the zeitgeist of the web such as trends 

in element positioning (Kumar, et al., 2013), analyse the visual complexity of web page 

layout (Harper, Jay, Michailidou, & Quan, 2013) or determine the impact of CSS updates 

across a website (Liang, et al., 2013). In other words, the general focus appears to be on the 

outcome of using CSS as opposed to specific techniques used to create layouts. Therefore, 

the current state of layout techniques has been identified by analysing the leading voices in 

web design, such as Jen Simmons, Rachel Andrew and Eric Meyer, who are known for 

interactions with W3C, browser vendors and web designers. Identifying the concepts that 

leading voices are promoting has been more revealing than academic literature in the process 

of determining the current state of techniques for implementing web layouts. 

In particular, a recent talk from Jen Simmons entitled “Modern Layouts: Getting Out of Our 

Ruts,” summarises prevalent layout patterns and suggests how upcoming expansions to the 

CSS specifications, such as those analysed in this thesis, will impact the future of web page 

layout (Simmons, 2015). The ‘rut’ that Simmons’ refers to is shown in Figure 5. It is a 

common, familiar web page layout featuring a full-width heading at the top followed by 

navigation, content on the left and a sidebar on the right underneath the navigation and full-
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width footer at the bottom. Simmons offers twenty example websites from a range of 

organisations in various industries to indicate the prevalence of this pattern. 

Looking at print seems to offer one way out of the ‘rut’; although Simmons cautions that the 

ideas must “translated not transferred” (Simmons, 2015). In other words, layouts as they are 

being done in print cannot simply be copied for the web, the concepts behind them must be 

understood as well as characteristics unique to the web medium. Similarly, layouts should 

not be copied without sense from one project to another; instead, “layout should serve the 

content” notes Simmons (2015). An example of an online article from the New York Times 

with a full-width, full-height splash cover, like what one would see in a physical magazine, 

is offered; with the caveat that is suitable for a cover story, not for every blog post. Like 

splash covers based on Flexbox, shaping content blocks with interesting outlines using tools 

from CSS Shapes (W3C, 2014) is another suggested technique based on concepts from print. 

Many solutions offered are responses to a predominant “box, box, box way of thinking” 

(Simmons, 2015). However, even when using boxes, especially in form of grids, Simmons 

suggests ideas for using them to support the content. While three, horizontally-aligned, 

equally-sized boxes of content may be ‘orderly and sturdy’ (but perhaps overused and 

commonplace), three boxes growing in accordance with the golden ratio may seem ‘organic 

and dynamic’ and three boxes with chaotic sizing is ‘interesting and a bit unnerving,’ says 

Simmons quoting an article from Nathan Ford (Ford, 2014). The ability to experiment with 

managing columns and rows using concepts from the upcoming CSS Grid specification is 

Figure 5: Simmons’ asserted common layout pattern for web pages (Simmons, Modern Layouts: Getting Out of 

Our Ruts by Jen Simmons, 2015). 
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also encouraged (Simmons, 2015). The techniques offered challenge designers to break out 

of the prevalent, familiar layout pattern shown in Figure 5. 

The impact of this commentary can also be considered in the context of the discussion taking 

place in this paper as well. It identifies the boilerplate effect of the prevalent frameworks and 

design patterns and the resultant similarity between websites. As noted in the introduction, 

experience is a factor when developing an intuition for layouts, and it seems that experience 

is increasingly constituted of the usage of template and framework code which establishes 

layout paradigms like the 12-column grid (see section 2.4 Frameworks). Many of the 

proposed solutions to the ‘rut’ are in the form of new W3C specifications, especially CSS 

Grid, Flexbox and CSS Shapes. Yet during the talk, Simmons notes that ‘it’s going to take 

us all a couple of years to wrap our heads completely around Flexbox’ and proposes the 

Gridset as a third-party tool to create a grid layout and generate a framework (Gridset, 2016). 

On one hand, this may suggest that tools to assist designers in creating layouts are necessary 

to embed design principles and this component of the work may never be intuitively 

embedded into CSS language constructs. On the other hand, it may suggest that the standards 

enabling the creation of modern web page layouts are not yet intuitive and therefore learning 

effort and supportive tools are required to utilise them effectively. This would make room 

for something like GSS which enables layout creation in a way supposedly easier to 

comprehend relative to the construction of layouts based on what is currently available in 

CSS. 

It is clear from the work covering the construction of modern web page layouts that the 

developments of the CSS specifications in this area must also be considered alongside any 

other proposal for an intuitive solution to web page layouts. Towards the end, Simmons notes 

that the “hardest part is changing our thinking, not our CSS” (Simmons, 2015). However, 

CSS is also an artefact constructed by humans and, in a way, this thesis is about determining 

if we can change CSS to suit our thinking. 

2.6 CSS Specifications 

As concluded in the previous section, considering recent developments in CSS specifications 

related to web layouts is necessary when proposing constraint syntax for CSS. Interestingly, 

these specifications have, to a degree, already exposed designers to constraints indirectly. 

CSS Tables (part of CSS2.1), CSS Grid and Flexbox describe implementation details of 

certain language features in way reminiscent of constraints. 

A neat comparison to start with is that of CSS Tables, following the trend established by the 

CCSS paper (see section 2.1 Constraint Cascading Style Sheets) which featured an example 
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showing how constraints could be used to render a HTML table (Badros, Borning, Marriott, 

& Stuckey, 1999). Similarly, the CSS Table specification shows how constraints lie just 

under the surface of CSS syntax. In the section entitled ‘17.5 Visual layout of table contents’ 

the CSS Table specification it is noted that rectangles representing table cells must be ‘as far 

to the left as possible’ (W3C, 2011), prompting one to think of a constraint such as that shown 

in the first code snippet in Figure 6. Here, GSS syntax is used to declare a weak constraint 

that the left edge of table cells should try to be at the left edge of the window. While other 

constraints may push table cells to the right, the above constraint would ‘exert a force’, so to 

speak, always pulling cells as far to the left as possible as required by the CSS Tables 

specification (swapped for right-to-left languages). Likewise, the statement that ‘a cell box 

cannot extend beyond the last row box of a table’ (W3C, 2011) may be achieved by the 

constraints given in the second code snippet of Figure 6. The selector ^ tr:last selects the 

last table row of the table by using ^ to refer to parent selector, table, of the nested td 

declaration block. Subsequently, the left, right and bottom edges of table cells within a table 

are constrained to never be beyond the left, right or bottom edges of the table respectively. 

Evidently, aspects of the CSS Tables specification lend themselves to be defined in constraint 

syntax. 

Such constraints become assumptions for designers working with these specifications. Given 

the CSS Table specification, designers may implement layouts using CSS Tables (not HTML 

Tables) assuming that cells are rendered as far to the left as possible (in left-to-right 

languages) and never lie beyond the last table row. Integrating constraint syntax into CSS 

would reverse this pattern: a designer could determine how they would like a layout to behave 

and write constraints to define it rather than being on dependent on the CSS Working Group 

implementing a collection of properties and property values that would implement the 

constraints as envisaged by the designer. This is a strong indicator that constraint syntax 

/* GSS Based on CSS Tables Specification, Snippet 1 */ 

td[left] == ::window[left] !weak; 

 

/* GSS Based on CSS Tables Specification, Snippet 2 */ 

table { 

    td { 

        left: >= (^ tr:last)[left]; 

        right: <= (^ tr:last)[right]; 

        bottom: <= (^ tr:last)[bottom]; 

    } 

} 

Figure 6: Constraints given using GSS syntax that could be used to implement aspects of the CSS Tables 

specification. 
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could be considered more intuitive than current CSS features: the designer would not have 

to learn what behind-the-scenes constraints accompany various CSS features, they would be 

implementing design patterns based directly on how they reason about them. In other words, 

CSS keywords currently act like a middleman between designers and constraints, giving 

designers the ability to write constraints would cut out the middleman. Writing constraints 

themselves, designers may be able to implement layout behaviours in ways they find more 

intuitive than the keywords provided by CSS. 

A situation similar to that of CSS Tables is present in the Flexbox specification: the CSS 

Tables specification contains the term ‘constrain’ seven times and the Flexbox specification 

nineteen times. Again, constraints lie beneath the surface. The Flexbox specification is made 

to include ‘simple and powerful tools for distributing space and aligning content in ways that 

web apps and complex web pages often need’ (W3C, 2016). However, unlike tables, some 

Flexbox behaviours can be quite difficult to translate to constraint syntax. For instance, it is 

unclear what GSS statements would results in flex items filling the available space in 

proportion to each flex item’s internal content; yet, designers achieve this effect by setting a 

flex property value of auto on flex items (W3C, 2016). Further, it is non-obvious how to 

handle wrapping with constraints in the way that Flexbox achieves. Both these effects may 

be particularly useful when the designer is uncertain of the length of the content. Despite 

some Flexbox layouts being difficult to achieve with constraints; other Flexbox layouts are 

much more straightforward. For instance, a justify-content property value of center 

(Flexbox) is reminiscent of constraints aligning elements using the center-x property (GSS) 

while an align-items property value of center (Flexbox) is reminiscent of constraints 

aligning elements using the center-y property (GSS, 2015; W3C, 2016). This suggests that 

Flexbox and GSS can be treated like tools: it is up to the designer to pick the tool that suits 

the intended layout effect. 
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CSS Grid may also be counted among such tools. CSS Grid is, like Flexbox, offered as a 

collection of tools to ‘control the sizing and positioning of boxes and their contents’ (W3C, 

2016). Where Flexbox is oriented on a single axis, CSS Grid uses column and row concepts 

to enable two-dimensional control over layout (W3C, 2016). Using an example borrowed 

from the CSS Grid specification, Figure 7 shows how the syntax allows for a layout to be 

templated, then various elements may be assigned to areas within the resultant grid. One may 

infer how constraints could produce a similar layout. For instance, that nav, article and 

aside must be the same height or that aside is equal to twenty percent of the width of the 

main element (which presumably wraps the other HTML elements). Despite accomplishing 

the same result, semantic keywords may offer an advantage of CSS Grid over GSS. The grid, 

grid-template-columns and grid-template-rows properties from CSS Grid concisely 

template positions and sizes the parts of the grid, while similar semantics may be lost among 

constraint syntax when accomplishing the same result with GSS. 

It is interesting however, that although Flexbox and CSS Grid have been shown to have some 

advantages over constraint syntax, constraint syntax has been shown to be applicable for 

layouts produced by all three CSS specifications considered here: CSS Tables, Flexbox and 

CSS Grid. This would suggest that constraint syntax could be a versatile tool if it were readily 

available to designers. On the other hand, such versatility may come at the cost of semantics, 

<header>...</header> 

<article>...</article> 

<nav>...</nav> 

<aside>...</aside> 

<footer>...</footer> 

main { 

    display: grid; 

    grid: "h h h" 

          "a b c" 

          "f f f"; 

    grid-template-columns: auto 1fr 20%; 

} 

 

article { 

    grid-position: b; 

    min-width: 12em; 

} 

 

nav { 

    grid-position: a; 

} 

 

aside { 

    grid-position: c; 

    min-width: 12em; 

} 

header (h) 

article 

(b) 

nav 

(a) 

aside 

(c) 

footer (f) 

Figure 7: Example layout based on example from the CSS Grid specification (W3C, 2016). 
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as shown in the case of CSS Grid, and this may result in constraint syntax being less intuitive 

when used for layouts that have built-for-purpose alternatives. 

In summary, it seems that designers are already working with and perhaps intuitively 

reasoning with constraints as they apply to layouts, only they exist under the surface of CSS 

properties and values. As more specifications like Flexbox and CSS Grid are released, 

designers have access to a greater range of implied constraints at their disposal. Yet, perhaps 

enabling designers to write constraints directly would offer a versatile tool which could be 

used more broadly than any one particular CSS specification. However, this thesis looks at 

intuitiveness of constraints rather than versatility. The comparison given in this section 

indicates that simplicity of Flexbox to accomplish advanced layout effects and the semantics 

offered by the built-for-purpose CSS Grid specification may give these specifications the 

intuitive edge over defining similar layouts with constraint syntax. 
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3 Analysis 

3.1 Historical Perspective 

Looking at the history of the Web provides instructive context to the topic of web layouts. 

The story of invention of the Web as an information space is well known, but it is worth 

repeating here with an emphasis on the control over layouts available to web designers as the 

HTML and CSS standards emerged. These developments allowed a way of thinking about 

web page layout design to emerge, helping to shape how it is thought about today. As a 

warning, this section observes the specifications as they were stated at the time of publication, 

many of the features discussed are now obsolete and non-conforming. However, some of the 

design ideas have perpetuated and transcended the methods used to create them. 

When compared to the print industry which started almost 600 years ago, the 27-year-old 

Web7 is still a very recent development. Despite this, it has already had several revolutions 

in the way that content is presented and laid out. Indeed, the Web borrows many design 

concepts from the print industry, building on the work done in print media over the centuries, 

and has subsequently introduced new concepts exploring what is unique to media of the 

screen. For example, much of the typographical concepts in CSS come from a history in print 

media. On the other hand, the concept of responsive design, for instance, has arisen for the 

demands of the Web. However, it took many intermediary steps to go from thinking about 

design on the Web in terms of print, to thinking about design on the Web as a new medium, 

or even as designing for multiple media. 

At the beginning of the Web, there were not a lot of options for the creator of a website to 

consider from a visual design perspective. An email from Tim Berners-Lee in 1991 and a 

linked “HTML Tags” document outlined 19 available HTML tags. A tag for images was not 

yet present. Further, it was noted that a couple of these tags, such as <hp1> for highlighting, 

were unused (Berners-Lee, 1991; Berners-Lee & Connolly, 1992). In these early stages, the 

focus was evidently on textual content and the ability to link documents to one another as 

opposed to flexibility in laying out a webpage. 

The first “design revolution” on the Web could be potentially be attributed to the release of 

the Mosaic browser in 1993. Although it is not technical terminology from the design domain, 

the intent is clear when Berners-Lee states that the Mosaic browser “made webpages much 

sexier” due to the use of embedded images in comparison to earlier browsers where images 

had opened in separate windows (Berners-Lee, 1994-2006). Although it was still hard to 

                                                      
7 The Web officially celebrated its 25th anniversary in 2014 with the publication of the website: 

www.webat25.org. 

http://www.webat25.org/
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define layouts, the ability to include images directly in web pages was an initial concession 

of control to web designers and a lot more was to follow in a relatively short period of time. 

Two years later, the informal HTML specifications, scattered across a variety of sources, 

were collected into a single “Hypertext Markup Language – 2.0” (HTML 2.0) document 

(Berners-Lee & Connolly, 1995). This serves as a coherent and comprehensive primary 

resource for identifying layout techniques available to web designers8 at the time. Although 

overall, the HTML 2.0 specification indicates that a lot of what could be considered web 

design was left up to the user agent or browser. The first CSS specification was still to come 

in the following year (Lie & Bos, 1996) and the table element and other developments in 

HTML were still to come in the year after that with the HTML 3.2 specification (Raggett, 

1997); although, some user agents had implementations prior to the recommendations 

coming from W3C. In the absence of these critical standards, the task of creating layouts for 

the Web was a difficult undertaking. For instance, it was up to the user agent to select an 

indentation for the <pre> tag, decide how to render various typographic elements, decide 

whether to append an icon to an anchor tag and decide whether to include an image or the 

content of its alt attribute instead among various other things that directly or indirectly 

affected the layout of the webpage (Berners-Lee & Connolly, 1995, pp. 24-25,31,33). Despite 

the restrictions, the HTML 2.0 specification conceded some layout options to web designers. 

With the specification, web designers were beginning to see more options to handle the layout 

of images with hints of other forms of flexibility to come. The specification for the <img> tag 

included an align attribute, allowing web designers to align the image to the top, middle or 

bottom with respect to the text baseline (Berners-Lee & Connolly, 1995, p. 35). Furthermore, 

the compact attribute allowed designers to designate a compact rendering for the list tags 

<ol>, <li>, <menu> and <dl> tags (Berners-Lee & Connolly, 1995, pp. 27-29), granting a 

small amount of control over the layout of lists. It could also be said that the list elements 

themselves presented an additional way of controlling layout. Indeed, the standard noted that 

the ability to mix-in form elements with document structuring elements, such as lists or the 

preformatted text element, allowed for “considerable flexibility in designing the layout of 

forms” (Berners-Lee & Connolly, 1995, p. 39). Further, using the image map attribute, 

ismap, on an image element gave designers a way to respond to clicks in different areas of 

an image; a similar function was available by setting the type attribute of an input element 

to “image” (Berners-Lee & Connolly, 1995, pp. 38,42). Since far greater control was 

                                                      
8 Interestingly, usage of the term “web designer” was also beginning to grow at this time, despite the 

discussed limitations in design. Prior to 1992, the term “web designer” had been virtually non-existent 

according to Google’s Ngram Viewer: http://bit.ly/28ItCeX. 

http://bit.ly/28ItCeX
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available over the look of an image, web designers were able to create a layout within an 

image and handle clicks in various regions of the image accordingly9. There was still much 

to come, although the signs from the initial HTML 2.0 specification, even at this early stage 

of the web, suggested a move toward granting additional control over layout to creators of 

webpages; however, a critical issue remained: HTML was not the right place for control over 

the presentation of content. 

Shortly (on a historical timescale) after the inclusion of images embedded directly into 

webpages by web browsers, came what could be considered the second revolutionary period 

for web design, especially from a layout perspective, and that is the 1996 release of the first 

CSS specification (Lie & Bos, 1996) coupled, to a degree, to the release of the HTML 3.2 

specification shortly thereafter (Raggett, 1997). This allowed HTML to focus on defining the 

semantic structure of documents and control over web page presentation was granted to web 

designers via CSS instead. The rule of thumb that structure and semantics belong in HTML, 

while presentation (including style and layout) belongs in CSS has persisted since this time. 

Furthermore, when taken together, it seems that these two specifications introduced a 

common way of thinking about web layouts: in boxes wrapped around the content of 

elements, in grids, in two dimensions and on an infinite canvas. By identifying the 

development of a common way of thinking about web layouts, it becomes possible to argue 

a case for concepts that could be considered intuitive and concepts that could be counter-

intuitive. 

The foundations of this common way of thinking are the box model defined by the CSS 

specification (W3C, 2011) (although it was termed the formatting model (Lie & Bos, 1996) 

at the time) and the table element which was utilised to implement layouts (a technique now 

discouraged). The introduction of the box model promoted an understanding of visualising 

the elements on a webpage as a rectangular box which is surrounded by padding, a border 

                                                      
9 At the time of writing, an early example of the usage of such an image map is available on the Mosaic 

Communications Corporation (circa 1994) website: home.mcom.com/MCOM/index2.html. 

http://home.mcom.com/MCOM/index2.html
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and a margin respectively. Simplifying somewhat, the size of the content in each element and 

the interaction of the margins of the elements forms the layout of the webpage. The 

fundamental concept has changed little in the past two decades, as can been seen in a 

comparison of the graphic presenting the box model in the CSS1 standard in 1996 and a 

graphical representation of the box model from a modern browser in Figure 8. Although the 

core concept seems simple and has remained stable, the interaction between hundreds of 

hierarchically-arranged elements to which various display and positioning characteristics 

apply makes formulating a common standard a substantial undertaking, not to mention a 

standard that could be called intuitive. 

Interestingly, the difference in the treatment of horizontal and vertical margins seems to have 

been implemented with the intuition of designers in mind, as written in the specification: 

“after collapsing the vertical margins the result is visually more pleasing and closer to what 

the designer expects” (Lie & Bos, 1996). Although, there was no obvious justification as to 

why the designer would expect margin collapsing to behave in this way; instead, it seemed 

to have been an intuition about intuitions. Nevertheless, not only were these early 

specifications defining a way of thinking about design for web layouts, they were also 

attempting to cater to how designers might already be thinking about designing for the Web. 

A second instance of this occurring, although not for layouts in particular, is that the 

shorthand syntax for describing the font property is “based on a traditional typographical 

shorthand notation to set multiple properties related to fonts” (Lie & Bos, 1996). Here, the 

standard reflects something analogous to what some designers may have already been 

familiar with. Analogies, along with the use of similes and metaphors seem to be one 

technique used to create intuitive technologies for layout out web pages. 

Figure 8: A comparison between the 1996 representation of the box model, taken from the CSS 1 specification 

(left) and a 2016 representation of the box model as shown in Firefox 48 Developer Tools for a selected element 

(right). It can be seen that this fundamental concept for web layouts has remained largely unchanged between the 

two. 



 

38 

 

An analogous concept that would have likely been familiar to web designers encountering 

the HTML 3.2 specification for the first time is that of the table element. Although tables 

themselves are “a systematic arrangement of data usually in rows and columns for ready 

reference” (Merriam-Webster.com, 2016), they are conceptually not so far from a grid, “a 

pattern of straight lines that cross each other to form squares” (Macmillan Dictionary, 2016). 

Indeed, when tables became standardised with the 3.2 specification, they were used as grids 

for layout out web pages: a method of dividing the page into columns and rows and placing 

content in the rectangles produced by this division. Despite, the now-obvious semantic 

disconnect of using tables as layout grids, it was even a popular method at the time. The 

bestselling web design book “Creating Killer Web Sites” even promoted it; giving an 

extended code example whereby a left-hand sidebar effect is created during a redesign of a 

website10 (Siegel, 1996). Along with tutorials on the web and prominent websites11 utilising 

tables for laying out websites, it quickly became a widespread layout method that persisted, 

in varying degrees for the next decade. 

The point of singling out the table-based layout phenomena of the web in this paper is not to 

show how much has been learned about the importance of semantic HTML since this period; 

instead, it is to observe what web designers found intuitive to use, given the technology 

available. The popularity of the technique and its widespread adoption suggests that web 

designers were comfortable breaking a layout down into columns and rows, and treating the 

cells of such a grid as sections thematically separating content. 

The move toward structure and semantics and away from presentation is most evident in 

the recent HTML5 specification. It is highlighted, for instance, in the difference 

descriptions of the b element. Originally, in the HTML 2.0 specification it was described 

simply as indicating “bold text” (Berners-Lee & Connolly, HTML 2.0, 1995). In the 

HTML5 specification, no specific styling is mentioned. Instead, the focus has shifted to 

semantic meaning of text found within a b element, as can be seen in this excerpt: 

The b element represents a span of text to which attention is being drawn for 

utilitarian purposes without conveying any extra importance and with no implication 

of an alternate voice or mood, such as key words in a document abstract, product 

                                                      
10 At the time of writing, an example of the table-based layout code is still available at: killersites.com/

killerSites/2-sites/stargazer. 
11 For instance, the Apple home page predominantly utilised tables for layouts in 1996: 

(web.archive.org/web/19961022105458/http://www.apple.com) and it seems the utilisation of the 

table for layout purposes on the homepage persisted until June 2008, although, by then it was just used 

for a minor widget (see the news headline ticker on: web.archive.org/web/20070628220543/http://

www.apple.com). Similarly, the table element provided much of the layout for the Yahoo homepage 

in 1997 (web.archive.org/web/19971007020952/http://www9.yahoo.com). 

http://www.killersites.com/killerSites/2-sites/stargazer/index.html
http://www.killersites.com/killerSites/2-sites/stargazer/index.html
https://web.archive.org/web/19961022105458/http:/www.apple.com/
https://web.archive.org/web/20070628220543/http:/www.apple.com/
https://web.archive.org/web/20070628220543/http:/www.apple.com/
https://web.archive.org/web/19971007020952/http:/www9.yahoo.com/
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names in a review, actionable words in interactive text-driven software, or an article 

lede (W3C, 2014). 

Whilst the purpose of using the b element is described and accompanying examples given, 

there is no discussion of how it should be rendered, unlike the early HTML specifications. 

A similar transition has occurred for the i element. Furthermore, other elements which had 

been more presentation-based, as opposed to semantic-based in function have been dropped 

completely with no transition. Specifically, in respect to layouts, the multicol element 

from Netscape 3.0 used to achieve a multicolumn layout (Wilson, 2005), the spacer 

introduced also by Netscape to place spacing between elements (Mozilla Developer 

Network, 2013) and center (described in the HTML 3.2 specification as providing a 

centred horizontal alignment (Raggett, 1997)) elements are now obsolete and non-

conforming. 

Conclusively, HTML is no longer the place to look for layout options. Its historical impact 

with the early introduction of tables may have contributed to the common grid-based 

understanding of webpage layouts; however, the remainder of this paper will focus on CSS 

and GSS as layout technologies. Yet, HTML remains connected to layout by setting an 

important precedent: the visual order that a layout technology produces must respect the 

structure of the HTML document it displays, a principle highlighted in the accessibility 

section of the CSS Grid Layout specification (W3C, 2016). 
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4 Experiment 

The purpose of this experiment is to identify whether or not constraint syntax within CSS is 

intuitive for designers attempting to solve common layout challenges. The hypothesis, 

rephrasing the research question given in the introduction, is that designers find constraints 

more intuitive to use to solve layout challenges than existing CSS. Since there is no direct 

measure of intuitiveness, it must be determined indirectly. In this experiment, web designers 

will be observed talking-aloud while interpreting constraint syntax as well as CSS syntax. 

Designers will be able to choose what they find the most intuitive from four shuffled code 

snippets presenting alternative ways of constructing a simple layout. Cursor data will be 

collected as a proxy for eye movements over each of the code snippets (Huang, White, & 

Buscher, 2012). This offers an indication of how fast the designer was able to understand the 

syntax and to reason with it. The experiment completes with the designers filling in a two-

question survey to determine qualitative characteristics of the code snippets that they felt 

worked towards or worked against their intuitiveness. The experiment produces both 

qualitative data (from the survey given to the designers) and quantitative data (from the cursor 

movement and selection count of the various code snippets). The combination of which 

should provide a solid basis for justifying whether or not designers found constraint syntax 

intuitive. 

4.1 Experiment Design 

An overview of the process of the experiment can be given as follows: 

1. Contact is established with a designer. 

2. The designer is sent a survey regarding their experience and asked when an online 

meeting would be convenient. 

3. Optional: The designer is sent a confirmation email. 

4. A video call is established with the designer. 

5. The designer views an example layout. 

6. The designer is shown four code snippets which produce the layout given in the 

example. They think aloud while interpreting the code snippets. Simultaneously, 

cursor movements over the code snippets are recorded. 

7. The designer selects the code snippet they find the most intuitive. At this point, they 

complete the think-aloud component of the experiment. 

8. The designer completes a follow-up survey asking what they found intuitive and 

counter intuitive in the code snippets. 

9. The experiment is concluded. Optionally, the designer is shown implementations of 

the code snippets and the data collected. 
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The remainder of this section describes and explains each step in its own subsection. 

4.1.1 Establishing Contact 

The target group for the experiment is designers, as defined in the introduction. Participants 

are sourced via the networks of the author and the supervisors. This provided some level of 

quality assurance as well as efficiency. 

However, it would be assumed that sampling a greater number of web developers, 

particularly across several countries would produce more robust and reliable results. Given 

the time constraints for the thesis, and time required with each participant to record the think-

aloud component as well as analyse cursor data having quick access to participants through 

existing networks was a critical factor. 

4.1.2 Pre-experiment Survey 

The survey included the questions: 

 What is your age? <20, 21-25, 26-30, 31-35, 36-40, 41-45, 46-50, 51-55, 56-60, 61-

65, 66+ 

 What is your gender? 

 How many years have you worked with CSS? 

 How much of that work has involved designing web page layouts in particular? Very 

little (<15% of projects), little (15%-35% of projects), somewhat (36%-65% of 

project), a significant amount (66%-85% of projects), virtually all of it (>85% of 

projects). 

 How many hours per week do you estimate you have spent working with CSS? 

 Do you use a CSS pre-compiler such as SASS or LESS for most of your work? Yes, 

or no. 

 How many years have you worked with design in general? 

 Please write down the languages you know and your proficiency with respect to 

reading and writing skills in each language using the scale: basic comprehension 

(able to work with very common words and short, simple sentences; reading and 

writing are very slow processes, relying heavily on support material such as 

dictionaries), moderate comprehension (able to work with more complex sentences 

regarding common topics; reading and writing are slow processes but achievable 

with support material such as dictionaries), high comprehension (able to work with 

complex sentences featuring advanced topics; reading and writing rely occasionally 

on support material such as dictionaries) or fluent (able to work with complex 

sentences featuring advanced topics with ease). 
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The first two questions regarding age and gender are basic demographic questions in order 

to understand to whom the results may apply. For anonymization purposes, the responses to 

age of the participants is grouped into fives. The question asking for the number of years 

spent working with CSS is recorded as a gauge of how much experience the participant has 

with CSS. As seen in the introduction, experience leads to intuitions about the technology. 

The hours per week in the last month question attempts to identify whether this knowledge 

is current and readily available. Since pre-compilers might put a layer of abstraction between 

the designer and the CSS, thereby changing how participants may understand raw CSS, a 

question about whether the participant uses such tools is also included. The next two 

questions are more to do with design experience. They are included since the authoring of 

CSS is usually just one step in a broader design process. Therefore, experience with 

conceptualising designs, such as page layouts, in general must also be taken into account. 

The combination of demographic and experience questions was inspired by a similar 

experiment measuring eye movements in code reading (Busjahn, et al., 2015). The data from 

these questions offers a way to reason with the results by understanding the backgrounds of 

the participants undertaking the study. 

4.1.3 Confirmation Email  

The confirmation email is an administrative aspect to the experiment: it ensures that the 

participant has a calendar entry readily available by including an invitation with the email. It 

is an optional step, since some runs of the experiment were arranged within a short enough 

timespan that no reminder was necessary. 

Originally, this step also included sending an introduction to GSS. However, it was decided 

that first impressions of constraint syntax should be measured instead. Therefore, no clue as 

to the content of the experiment was given to the participants in advanced, aside from the 

fact that it involved CSS and layouts. 

4.1.4 Establishing a Video Call 

The use of Google Hangouts or Skype (since they both enable screen sharing, the use of one 

tool or the other comes down to whichever is more readily available for the participant) is 

used to establish a video call with the participant. At the beginning of the call, verbal consent 

is obtained for the recording of audio track of the video call. Once consent has been given, 

the record button within the Callnote12 program is clicked, and the remainder of the call 

recorded. 

                                                      
12 The Callnote program being referred to is the one based at the website here: https://callnote.net/. 

https://callnote.net/
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Additionally, in this initial stage of the video call, the participant is given an overview of the 

up-coming experiment and examples of thinking aloud. This introduction reads as follows: 

Have you participated in or conducted a think aloud usability session before? 

(If no, share link to example think aloud video) 

Through-out the experiment, please try to think out loud and verbalise your thoughts 

as much as possible. For example, beginning sentences like “I am now looking 

for…”, “I wonder why…”, “I like that…”, “I can see that…” and completing them 

with your current thoughts is a possible way to share your thoughts and reasoning.  

In the experiment, you will first be shown a picture of the intended simple layout, 

followed by some HTML which structures the elements in the layout. Please start 

thinking out loud as from the time you see the example layout picture. Further down 

the same page, there will be three CSS snippets and one Grid Style Sheets snippet. 

Please read each, then select the one you feel most intuitively represents the described 

layout. Once you have selected a code snippet, you may stop thinking aloud. 

Following the code snippet selection, there is a two question survey. Please answer 

the two questions given there and click the “Submit” button to complete the 

experiment. There is no time limit, please take as long as you would like. We would 

like to find out how understandable CSS and Grid Style Sheets can be, so please be 

open about what does and does not make sense. Do you have any questions? 

This introduction attempts to set a baseline of what is expected of the participants as concisely 

as possible. The included description of thinking aloud as verbalising your thoughts is 

borrowed from a definition given by Jakob Nielsen (Nielsen, Thinking Aloud, 2012). 

Additionally, Nielsen’s website is the source of the example think aloud video (Nielsen, 

2014). The examples of thinking aloud are deliberately restricted to the beginning of the 

sentences to avoid biasing the thoughts of the participant. An earlier example sentence was 

“I can see that margin: 0 auto; will centre the element,” an attempt to keep the experiment 

as layout-specific as possible, however it was decided against as it may have primed the 

participants to look for elements centred in this way. 

The abbreviation of GSS for Grid Style Sheets was avoided because it is expected that it is 

still a relatively unknown acronym for most designers. A rough measure for this relative 

unfamiliarity with GSS was determined by comparing the gridstylesheets.org website’s 

Alexa global site ranking of 1,278,389 with the w3.org website (technically the home page 

of CSS) ranking of 1,857 and the csszengarden.com (a popular website specific to CSS to 

counter the effect of w3.org featuring a range of topics) website ranking of 139,274. It is 
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clear that GSS is a large margin behind having the same visibility as CSS (Alexa, 2016; 

Alexa, 2016; Alexa, 2016). 

The last couple of sentences focusing on the absence of a time limit and the concept of 

evaluating CSS and GSS attempt to dissuade participants from thinking of the experiment as 

a test of their skill and instead encourage them to be open with their thoughts. 

Overall, the sense of this script is conveyed to the participant; it may not be delivered 

identically to each participant depending on their prior experience. 

4.1.5 Designer Views Example Layout 

During the video call, the designer is given a web address pointing to a web page containing 

an example layout, shown in Figure 9. An explanation is provided with the image, detailing 

that the intention is to position the element found by the selector #inner-element in the 

centre, both horizontally and vertically, of the element found by the selector #outer-

element. Further, it is noted in each of the upcoming code fragments the height and the width 

of each of the elements is virtually identical to that given in the example layout image. 

Additionally, the underlying HTML being styled is provided as well, it reads as follows: 

<div id="outer-element"> 

  <div id="inner-element"> 

    <p>Content.</p> 

  </div> 

</div> 

The HTML snippet has cursor tracking enabled. It is assumed that part of understanding the 

code that produces the layout requires reading and understanding HTML that is being styled 

by the CSS or GSS. Cursor tracking helps infer how much time the design spends looking at 

the underlying HTML compared to time spent looking at the CSS and GSS. Furthermore, it 

Figure 9: A simple layout involving two elements, one positioned in the centre of the 

other. 
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may provide insights into aspects of the HTML that act as beacons: key locations in the code 

the designer refers to most often while conceptualising the design. However, by using cursor 

tracking in lieu of eye tracking and a small sample size, results to this effect are expected to 

be indicative or suggestive rather than conclusive. 

Furthermore, basic syntax highlighting was implemented within the HTML snippet. This is 

done to aid readability in a way that replicates real world usage of HTML. 

The example layout image was tested for various types of colour blindness to ensure that 

participants with protanopia, deuteranopia, tritanopia, protanomaly, deuteranomaly, 

tritanomaly, achromatopsia or blue cone monochromacy would still be able to distinguish 

between the two boxes given in the example layout. The online Coblis tool13 and the 

downloadable Color Oracle14 tool were used to conduct these tests and cross-check the 

results. 

4.1.6 The Designer is Shown Four Code Snippets 

By scrolling further down the page from the layout example and its description described in 

the previous step, the designer finds a selection of four code snippets as shown in Figure 10. 

The code snippets feature solutions to the simple layout described in the previous step. The 

solutions are based on methods utilising CSS Tables, Flexbox, CSS Grid and GSS. There is 

one method per code snippet. Like the HTML code snippet, each of the styling code snippets 

has syntax highlighting to replicate elements of the real-world web design environment. 

Additionally, there is a colour-preview window next to the colour declarations. Along with 

the selectors given as labels in the example layout diagram, this should assist designers in 

determining which element each of the declaration blocks is styling. 

Each of the four styling snippets is automatically pulled via an XMLHttpRequest from a 

functional example of a corresponding implementation that has been tested in multiple 

browsers. This guarantees that the code is functional and achieves the intended effect. The 

code snippets are shuffled randomly to offset the impact that the order of the snippets may 

have on participant responses. The shuffling occurs after all snippets are loaded to ensure 

time to load the resources on the network does not influence the order of the code snippets. 

To ensure readability, the code snippets are all the same height, have the same indentation 

and syntax highlighting and prevent line-breaks for as long as possible as screen width 

                                                      
13 The Coblis tool is a shortening of Color Blindness Simulator. It was downloaded from 

http://www.color-blindness.com/coblis-color-blindness-simulator/. 
14 The Color Oracle creates a full screen filter for three different types of colour blindness; it was 

obtained from http://colororacle.org/. 

http://www.color-blindness.com/coblis-color-blindness-simulator/
http://colororacle.org/


 

46 

 

reduces. This layout was achieved with a Flexbox implementation which respected the inherit 

width of the code snippet widths as given by the longest line (this is especially visible in the 

last three lines of the GSS code snippet in Figure 10) and vertically stretches all the code 

snippet elements to be an equal height. Further, the elements wrap as the page width 

decreases, ensuring that the participant does not need to horizontally scroll to see the code 

snippets, only vertically, avoiding a well-known usability problem (Nielsen, Scrolling and 

Scrollbars, 2005) and avoiding overly-preferential treatment for any particular code snippet. 

For future intuitive layout tests, this layout arrangement could also be the subject matter of 

an intuitive layout test similar to the one being presented here. 

Figure 10: A screenshot of code snippets presented during the experiment. Each snippet accomplishes the same 

result: positioning a light green element containing text content in the centre of a dark blue element. This is one 

possible arrangement of the snippets; they are presented in a random order each time the experiment is run. The 

select button moves the participant to the next step in the experiment. 
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Like the layout of the code snippets, the content of each code snippet is also deliberately 

structured. As much as possible, the same order has been retained across the examples. For 

instance, all examples present declarations in the same order of the elements given in the 

HTML: #outer-element, #inner-element, then #inner-element p. The selector 

#inner-element p could have also been written as p; however, so the designer participating 

in the experiment would more readily comprehend where the paragraph element would be 

appearing within the structure of the document, the selector was written as 

#inner-element p. Furthermore, where possible, the order the properties are given is also 

same across the examples: one can see that the #outer-element declaration block begins 

with background-color, height and width and the #inner-element p declaration block 

begins with text-align, padding and margin in all four code snippets. The effort to 

maximise the consistency between the snippets has been undertaken with respect to the 

finding that small differences in code (albeit Python code) can lead to different interpretations 

(Hansen, Goldstone, & Lumsdaine, 2013). Furthermore, it is also based on the reasoning that 

when the code snippets are mostly the same, the greatest amount of time will be spent 

analysing the differences between them; that is, the differences most analysed by participants 

are specific to how layouts are generated by the given GSS and CSS. Although, it must be 

considered that the first code snippet viewed may take additional time to comprehend as the 

common components are viewed for the first time. 

The remainder of this section describes the CSS present in the code snippets from which the 

designer can select. 

CSS Common to all Snippets 

In order to avoid repetition, CSS common to all the snippets is covered here before 

highlighting the distinguishing features of each snippet in its own section. This includes some 

including basic reset CSS (intended to generate a common look among the browsers) and 

CSS intended to assist designers identify the relationship between the snippets and the layout 

example. 

The reset CSS sets the font-family to be sans-serif, the colour of the text to be white and the 

body to have a margin of 0. It is common to all code snippets. It is excluded from the code 

snippets because it has virtually no impact on the resulting layout, apart from the fact that it 

should appear at the very top, left of the browser viewport rather having an eight-pixel margin 

(the recommended default value for the body (W3C, 2016)). The removal of the eight-pixel 

margin ensures that it is clear the layouts begin at the same location when using multiple tabs 

to compare implementations of the code snippets. 
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Some CSS is common to all code snippets, yet included within the snippet rather than 

refactored into its own style sheet as it is intended that the designer views it. For example, in 

all four code snippets, the #outer-element declaration begins by setting the background-

color property to #024675 (a dark blue), the height property to be 294 pixels and the width 

property to be 480 pixels, before setting other properties that are more specific to the layout 

implementation. The use of the background colour here is to help designers identify to which 

element of the layout it belongs to, like an indirect colour coding. A similar effect is intended 

through setting the background colour of the #inner-element to the green shown in the 

layout in each of the code snippets (except in the Tables snippet, for reasons explained in the 

next section): it provides a colour code mapping from the CSS snippet to the example layout. 

Lastly, aligning the text to the centre, giving it top and bottom padding of 1.5rem and left 

and right padding of 0 is included in each of the code snippets as, unlike the reset CSS, it is 

relevant to the layout: centring the paragraph text and ensuring that it has padding above and 

below, making the element a bit taller than the text it contains. 

CSS Tables 

This code snippet is based on CSS Tables which are included in the CSS 2.1 specification 

(W3C, 2011). The key features are that #outer-element is given a display value of table 

and #inner-element is given a vertical-align value of middle and display value of 

table-cell. This results in the browser treating the layout as a table with one cell and the 

cell has its content vertically aligned in the middle. As will be seen, this approach is slightly 

different to the others: since the table cell’s background-color fills the whole table, the 

paragraph element was instead given a green background. Alternatives were considered such 

as using the border-spacing property or adding padding to the cell; however, unlike the 

other solutions, this would not have allowed #inner-element to expand and accommodate 

a larger amount of content. Thus, the behaviour of the table display forced a solution that 

deviated from the pattern found in the other solutions where #inner-element is sized and 

displays with a green background as opposed to the paragraph element within it. Essentially, 

although the paragraph element is being given the green background in this snippet, the 

behaviour of the layout as more content is added is visually identical to the other 

implementations. 

Although the usage of tables for laying out web pages is discouraged (Kistner, 2004), it has 

been observed that CSS Tables can be ‘cherry-picked’ for their layout benefits, such as 

vertical centring, while many of the problems with using HTML Tables for layouts can be 

avoided (Toh, 2014). Further, being part of CSS 2.1, CSS Tables are supported by a large 

number of browsers, Can I Use reports almost 98% of browsers are able to use CSS Tables 
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with Internet Explorer 6 and 7 being the notable exceptions (Can I Use, 2016). Therefore, 

CSS Tables have been included as a code snippet in this experiment. 

Flexbox 

The key features of the Flexbox code snippet include an #outer-element display property 

value of flex and a width of 70%; and margin of auto for #inner-element. The auto value 

vertically and horizontally centres #inner-element, as defined in the Flexbox specification. 

Specifically, “positive free space is distributed to auto margins in that dimension” (W3C, 

2016) and #outer-element consists only of free space and #inner-element, it is therefore 

positioned centrally. The 70% value gives #inner-element a width 0.7 times the size of 

#outer-element. The paragraph element within #inner-element has a margin of auto; 

although, this could have been set to 0 for consistency with the CSS Grid and Grid Style 

Sheets implementations. However, experimentation had already begun once this was noticed 

and it was decided to keep the experiment as identical as possible for all participants. Only 

the CSS Tables code snippet relies on the paragraph having a margin of auto, as it is required 

to centre the paragraph block, as opposed to the #inner-element block in this case. 

Flexbox, although still a work in progress (W3C, 2016), has been positioned as a solution to 

various layout problems (Walton, 2016). Its adoption may have been hindered by significant 

changes after it was first introduced and varying browser implementations (Coyier, 2012; 

W3C, 2011). However, it now has global browser support of almost 97% (Can I Use, 2016) 

and its usage is encouraged by some leading voices in the web development community 

(HTML5 Please, 2016). Therefore, it is included among the code snippets, similarly to CSS 

Tables, as something that is likely to be familiar to web designers. 

CSS Grid 

This code snippet is based on the upcoming CSS Grid layout specification. Importantly, the 

line: 

grid-template-columns: 3fr 14fr 3fr; 

creates a grid of three columns within #outer-element using flexible space. The formula to 

calculate the size of an fr unit is given as: 

<flex> * <free space> / <sum of all flex factors> (W3C, 2016) 
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In the code snippet, this results in column sizes of: 

Column 1 Column 2 Column 3 

3 × 480 𝑝𝑖𝑥𝑒𝑙𝑠

20
 

= 72 𝑝𝑖𝑥𝑒𝑙𝑠 

14 × 480 𝑝𝑖𝑥𝑒𝑙𝑠

20
 

= 336 𝑝𝑖𝑥𝑒𝑙𝑠 

3 × 480 𝑝𝑖𝑥𝑒𝑙𝑠

20
 

= 72 𝑝𝑖𝑥𝑒𝑙𝑠 

In other words, the second column of #inner-element is given a width of 336 ÷ 480 =

70% of #outer-element, just like the implementations of the other code snippets. 

Therefore, placing #inner-element in column 2 using: 

grid-column: 2; 

has the effect of giving #inner-element a width 70% the size of #outer-element’s width. 

Unlike CSS Tables and Flexbox, CSS Grid is currently only available in popular web 

browsers if certain configuration flags are set to enable it: layout.css.grid.enabled in 

Firefox and “Experimental web platform features” in Chrome. Therefore, along with GSS, 

this is expected to be unfamiliar to designers since it is unlikely to be used for client work. 

In this way, it provides a convenient control test: although designers may be familiar with 

Flexbox and CSS Tables, the novelty of GSS is compared side-by-side with CSS Grid. 

GSS 

The code snippet featuring a GSS implementation of the layout is the most idiosyncratic 

because it introduces the most novel syntax, constraint operators. Most of the constraint 

operators given are intended to act like assignments, to make the code as familiar as possible 

to the designer. For instance, setting height, width, top and left of #outer-element and the 

height of #inner-element all read as unidirectional value assignments. The real test of the 

experiment is the final three lines constraint properties between elements: 

#inner-element[width] >= #outer-element[width] * .70; 

#inner-element[center] == #outer-element[center]; 

#inner-element[height] == (#inner-element p)[height]; 

These three lines represent layout techniques unique to GSS (when compared to the CSS 

code snippets); that is, constraining one element’s property values against the values of the 

properties of other elements; especially, aligning the centres of two elements. A “greater-

than or equal to” constraint as well as an “equals” constraint is used as a hint to the designer 

than these are not assignments; rather constraint operators. Further, some math is included, 

making the width of #inner-element proportional to #outer-element. No more than three 

lines of constraints are included so as to not overwhelm the designer with the new syntax. 

Rather, the majority of the code snippet has retained syntax resembling that of CSS in an 
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attempt to test the intuitiveness of the concepts of GSS rather than the ability to interpret a 

large number of constraints given in a new syntax. 

Further, this code snippet involves positioning the layout relative to the window, else the 

design may be under-constrained and may render #outer-element with negative top and 

left margins, pulling part of the layout off-screen (GSS, 2015). This is not required in any of 

the other code snippets. 

4.1.7 Cursor Movements Over Code Snippets Are Recorded 

This step of recording cursor movements over the code snippets by the participants occurs 

simultaneously with the previous step as the participant moves their mouse over the code 

snippets. Only cursor movements over the code snippets is recorded. There were several 

characteristics to consider in the when establishing the mouse tracking system: 

 The page is dynamically generated. Specifically, the code snippets are retrieved via 

a XMLHttpRequest and shuffled. 

 The page responds to changes in browser window size; therefore, code snippets may 

be different widths when viewed by the participants. 

 As it is a scientific experiment with only a small set of participants, as many mouse 

movements as should be recorded as possible. Some mouse tracking systems only 

collect samples. 

In consideration of the situational requirements given above, a cursor movement recording 

system that was aware of this context was developed to ensure they were all adequately 

addressed. Further, this aids the analysability of the results since the implemented system 

also distinguishes between interactions with each code snippet and records mouse 

coordinates relative to the code snippet block: beginning one interaction when the mouse 

enters the code snippet and ending that interaction as the mouse exits the code snippet. 

Additionally, it offered considerable flexibility in the presentation of the results as will be 

seen in later sections. 

The implementation of the cursor recording software is written in JavaScript and runs directly 

in the browser as the participant views the code snippets. Two event listeners are added to 
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the example layout image, the HTML snippet and each of the code snippets. The first event 

listener listens for a mouse entering the element and begins recording the interaction, the 

second listens for the mouse exiting the element and concludes the interaction. It is possible 

for multiple interactions to occur on each element during the experiment. During an 

interaction, a third event listener is added to the element to the recording of handle mouse 

movements. Each mouse movement causes the script to save a mouse step in memory. A 

mouse step consists of a timestamp and x and y coordinates recording the position of the 

cursor at the timestamp. In JavaScript, the mouse step is an object with these properties, 

named with the single letters ‘t’, ‘x’ and ‘y’ respectively to minimise space required when 

the data is sent back to the server or downloaded. 

Altogether, the mechanism handling the recording of interactions and their constituent mouse 

steps produces the structure shown in Figure 11. It can be seen that an array, interactions, 

stores a sequential record of the interactions. Each interaction features the title of the 

{ 

    ... 

    "interactions": [ // A sequential record of interactions during experiment 

        { 

            "title": "CSS Grid element centring", // Element title 

            "width": 314, // Width of element currently tracking mouse steps 

            "height": 433, // Height of element currently tracking mouse steps 

            "interactionSteps": [ // Sequential record of mouse steps 

                { 

                    "t": 1468506743538, // Timestamp from Date.now() 

                    "x": 313, // Pixel distance from left content edge 

                    "y": 94 // Pixel distance from top content edge 

                }, 

                { 

                    "t": 1468506743569, 

                    "x": 311, 

                    "y": 93 

                }, 

                ... 

            ] 

        }, 

        { 

            "title": "Flexbox element centring", 

            "width": 251, 

            "height": 433, 

            "interactionSteps": [ ... ] 

        }, 

        ... 

    ], 

    ... 

} 

Figure 11: An abbreviated sample extract of the interaction data collected during the experiments. 
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element subject to the interaction, as well as its height and width. The height and the width 

are recorded, so the exact shape of the code snippet can be replicated when analysing the 

mouse movements after the experiment. By using the timestamp given by JavaScript’s 

Date.now() function, the mouse step’s timestamp records “number milliseconds elapsed 

since 1 January 1970 00:00:00 UTC,” as measured by the participant’s browser (Mozilla 

Developer Network, 2015). Generally speaking, since the Date.now() function uses a clock 

on the client side which may be unreliable, its usage is advised against for data that will be 

processed further on the server. Further, it has been noted that the system time as reported by 

the browser may be off by an average of 7.5 milliseconds, up to 15 milliseconds (Resig, 

2008). Although, this test is somewhat outdated at the time of writing and accuracy to the 

nearest 100ms acceptable in this experiment as it is only intended to approximate where 

participants direct their gaze and for how long. As to the issue of doing further processing on 

timestamps generated by the client machine, for this experiment the timestamps are treated 

relative to one another, so long as the participant does not make changes to system time the 

results should be sufficiently reliable. 

As well as clock performance, consideration of space usage for this record-all-movements 

approach is required, since the number of mouse steps recorded can quickly move into the 

thousands. As a rough indication, moving the mouse reasonably consistently and recording 

the corresponding mouse steps for 4659 milliseconds in the Firefox 49 browser resulted in 

379 mouse steps being recorded. As a minified JSON file, this array of mouse steps takes up 

about 15 KB of space. The net effect may cause lag to affect the participant’s experience 

during the experiment: around 4 MB of data could be generated during a twenty-minute 

session with consistent mouse movement over the elements that recording it. Despite the 

challenge of the large amount of data being generated, it is critical that the results are recorded 

the first time a participant engages with the experiment, since the participants  

4.1.8 The Designer Selects a Snippet 

Once the designer has viewed all the code snippets while talking aloud, they select a code 

snippet they believe most intuitively creates the given layout example by clicking its ‘Select’ 

button. Once a ‘Select’ button has been pressed, a two-question follow-up survey revealed 

on the page, and the browser scrolls down to its position. At this point the designer is advised 

they may stop thinking aloud. 

4.1.9 The Designer Completes a Follow-up Survey 

This step aims to capture qualitative aspects of the code snippets that relate to how intuitive 

the designer found them. The questions are: 
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 Explain why you chose {title of selected snippet}. Please try to include specific 

details about what you found intuitive in the code. 

 Describe characteristics you found counter-intuitive or required additional thought 

in some of the code snippets. 

The placeholder {title of selected snippet} is filled in with the title of the code snippet the 

designer selected in the previous step. This step gives respondents a chance to reflect on the 

code they had just read, rather than drawing all the information from the initial reaction to 

the code during the think-aloud component of the experiment. 

At this step, the participant is also asked for their survey code. This helps connect the survey 

results with the experiment results without the need to use personal identifiable information. 

The results are then sent as a JSON file to the server. The data included in the JSON file and 

an explanation is given in the table. 

Data Reason for inclusion 

Survey Code Used to connected the experiment results with a survey submission. 

Browser Width Recorded so that the layout of the experiment as seen by the participant 

can be recreated later on when viewing the results. 

Code Snippet 

Order 

Records the order that the code snippets were presented to the 

participant so it is possible to match up phrases like ‘the first 

example…’ and ‘I found the third code block…’ to their corresponding 

code snippets. 

User Agent Indicates the browser used during the experiment so that the same 

browser may be used when viewing the results (if it is available). 

Selection 

Explanation 

Stores a written explanation from the participant stating what they 

found intuitive about the code snippet they selected. 

Non-selection 

Explanation 

Stores a written explanation from the participant stating what they 

found counter-intuitive in the code snippets. 

Interactions A chronological, timestamped record of mouse movements over the 

code snippets, to approximately visualise how the participant read the 

code snippets. 

Table 1: Data included in the results of the experiment sent from the participant’s browsers to the server. 

Additionally, notes are taken during each experiment and included in Appendix B and the 

audio during the session is recorded (if permission has been granted during the experiment). 

If there is a technical issue preventing the data from being to the server, the participant has 
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an option to download the data captured during the experiment as a JSON file which can then 

be emailed. 

Once the data constituting the experiment results for the participants is stored on the server, 

it can be analysed. 

4.1.10 The Results Are Combined 

Qualitative and quantitative data is collected during each run of experiment with a participant. 

The quantitative data includes: 

 The count of selections of each code snippet made by the participants 

 The timestamped mouse movements over code snippets recorded during the 

participant’s participation. 

The qualitative data includes: 

 The content of what the participant stated during the think-aloud component. 

 The content of the textual description of what the participant found intuitive. 

 The content of the textual description of what the participant found counter-intuitive. 

 The content of the experiment notes. 

Most simplistically, the count of the selections of each code snippet provides an indication 

of which code snippet designers found most intuitively represented the given layout. The 

mouse movements may also support this by signalling what the participant was focusing on 

and for how long. Figure 12 shows a sample of a visualisation generated by the experiment 

system interpreting the mouse movement data. Each line represents an interaction. The lines 

begin with a blue hue and ends with a red hue. The hue in between is generated proportionally 

to how far through the interaction a given timestamp lies. 

ℎ = 234 − (𝑝 ∗ 234)  

ℎ is the hue as represented on a scale of 0 to 255 as specified for in the hue, saturation, 

lightness and alpha (HLSA) CSS color value (W3C, 2011); 𝑝 is percentage of the way 

through the current interaction the mouse step lies. A limited number of hues (0 to 234) was 

Figure 12: A sample of the visual generated from the collected mouse movement data. 
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chosen because of the similarity of high value hues to low value ones: both appearing red. 

As it stands, the spectrum covered ranges from 234 (blue) to 0 (red), both clearly identifiable, 

primary colours. 

Labels are also present to assist in interpreting the mouse movement visualisation. Each 

interaction has a label at its start showing where the interaction starts and how many seconds 

after the very first interaction it started. Likewise, a label at the end of the interaction displays 

when the interaction ended in seconds since the very first interaction. In Figure 12, it can be 

seen that the bottom line began as the very first interaction. The mouse was moved reasonably 

consistently from left to right, before leaving the snippet two seconds later. The mouse 

returned to the snippet 10.2 seconds after the very first interaction to begin the second 

interaction at the top of Figure 12. In the second interaction, a second label stating ‘4.7s’ is 

present next to a circle slightly larger than the others; this indicates that the mouse remained 

stagnate at this location for 4.7 seconds. To avoid cluttering the screen with labels, only 

mouse stagnations longer than 1 second are labelled. 

As noted, the circles indicating the mouse steps have difference sizes. The is proportional to 

the amount of time the cursor stagnated at each position. For instance, the large, light blue 

circle labelled 4.7s is the largest in Figure 12 indicating that the cursor remained at this 

position the longest. The size of the radius is given in the following equation: 

𝑟 = 𝑚𝑖𝑛(log(𝑑), 1) 

where 𝑟 is the radius in pixels and 𝑑 is the duration of the mouse step in milliseconds. A 

minimum radius of one pixel is enforced on the circles so each step remains visible. Since 

the mouse step durations can range from several milliseconds to tens of thousands of 

milliseconds, the logarithm of the duration. This visually distinguishes between the mouse 

steps that last only a few milliseconds and likely part of the mouse gliding from one position 

to another, from those that last several seconds and those that last 10 or more seconds. 

Drawing on the mouse-step data visualisation, it is possible to determine which parts of the 

code snippet were read several times, and which parts were focused upon for a large amount 

of time. As seen from the related works, this may indicate beacons in among the code snippets 

(repeated views of a particular aspect) or increased cognitive load due to counter-intuitive 

aspects of code snippet (longer fixations) respectively. 

In summary, a lot of data is generated from the mouse step tracking, and this visualisation 

diagram uses lines, color, circle size and assistive labels to make it possible to interpret. While 

interpreting it can be see how the participant moved through the code snippets identifying 

possible code beacons as well as aspects in the code that induce a higher cognitive load. 
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4.2 Results 

The experiment intended to provide evidence as to whether or not designers found constraints 

in CSS intuitive or not. The results come in two parts: the results to the participant survey, 

which identifies to what extent the participants could be considered designers as understood 

in the context of this paper. The second part presents the data collected during experiment 

itself. 

4.2.1 Participant Survey 

This section looks at who is participated in the experiment. In total there were 7 participants 

in the experiment. As can be seen in Figure 14 and Figure 15, a range of ages and languages 

were presented. Figure 12 shows that there was 1 female and 6 males participating in the 

experiment. Additionally, the ratio of those 30 or under to 31 or older, is 5:2, weighting the 

results toward a slightly younger demographic, when considering the career lifespan of a 

designer. Figure 15 shows that English was spoken by all 7 participants; however, only 4 

Figure 14: The age and gender of experiment 

participants. 

Figure 15: The languages spoken by the participants, 

divided by fluency. 

Figure 13: Graph comparing the proportion of CSS work involving layouts of the participants. 

0

1

2

3

4

21 -

25

26 -

30

31 -

35

36 -

40

C
o

u
n

t

Age Group

Age/Gender of 

Participants

Female

Male0

2

4

6

8

10

German English Spanish French Italian Russian

Languages Proficiency of 

Participants

Fluent

High Comprehension

Moderate Comprehension

Basic Comprehension

0

2

4

6

a) Very little (< 15% of

projects)

b) Little (15% to 35%

of projects)

d) A significant amount

(66% to 85% of

projects)

e) Virtually all of it (>

85% of projects)

C
o

u
n

t

Response

Proportion of Work Involving Layouts



 

58 

 

reported they were fluent while 3 reported high comprehension of English. Fluent speakers 

of German and Russian were also present during the experiment. Although several languages 

are involved, they all lie within the Late Indo-European family of languages as shown by the 

MultiTree project (MultiTree, 2014). 

All participants recorded a long-term engagement with CSS and design, as reflected in 

Error! Reference source not found. The participants noted an average of 7.7 years of e

xperience with CSS (from a minimum of 4 to a maximum of 11) and 7.3 years of design 

(from a minimum of 4 to a maximum of 13). Although this may seem to indicate strong 

familiarity, the result for hours per week spent working with CSS in the last month offset 

this. For this metric, an average of 6.1 hours of CSS per week, with a minimum of 0 suggests 

that CSS is not a core part of many participant’s work and it may not be fresh on their minds. 

Despite the semi-inactive CSS status, 5 of the 7 participants responded that 66% (termed ‘a 

significant amount’ in the survey) or more of their projects involved layouts. This goes some 

way to validating that the participants represent the intended group of designers. 

The participants also used some form of help while using CSS. Figure 16 shows that all 

participants had assistance from at least a framework or a precompiler. 3 of the 8 participants 

use both. Precompiler were slightly more popular, used by 6 participants compared to 5 

participants using frameworks. 

To sum up, the participants did reflect to intended target group to a significant degree: all 

reported at least several years of experiences with CSS and most reported that at least 

significant amount of their work involved layouts. However, the present engagement with 

CSS of many of the participants may be considered a bit low. 

Figure 16: Answer groups to the pair of questions asking participants whether they use frameworks for the 

majority of their work and whether they use precompiler for the majority of their work. 
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4.2.2 Experiment Results 

The experiment has yielded quantitative results in the form of the count of selections made 

by participants for the most intuitive code snippet and cursor movements as well as 

qualitative data as participant’s thought aloud during the experiment and wrote down what 

they found intuitive and counter-intuitive. Appendix B includes transcripts and notes taken 

during the experiments while Appendix C shows visualisations of cursor movements. 

The most direct answer to whether GSS could be considered intuitive relative to other layout 

CSS techniques is given by a combination of Figure 18 and Figure 19. Only one participant 

favoured GSS over the alternative layouts as shown in Figure 19. Further, an approximation 

of the proportion of time spent engaging with code snippets based on cursor movement data 

suggests that participants spent most time interacting with the GSS snippet and an about an 

equal amount of time interacting with the other snippets, as shown in Figure 18. Using the 

visualisations from Appendix C, it is possible to focus-in on points of interest in the GSS 

snippet. The result of this is shown in Figure 17. There was significant variety in the amount 

of cursor movement data collected. However, concentration points toward the bottom and 

the top left are visible. These correspond to the positions of the constraint syntax and the GSS 
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participants spent looking at each code snippet based 

on a visual assessment of the cursor movement data. 

Figure 17: The sum total of the code snippets chosen 

as the most intuitive during the experiment. 

Figure 18: Cursor movements over the GSS-based layout snippets. 
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::window keyword respectively. The second and fifth cursor-movement visualisations in 

Figure 17 from users highlight this especially. 

The transcripts suggest a similar pattern of additional though being record for constraint 

syntax. The think-aloud results showed that many of the participants expressed confusion 

when encountering the GSS syntax for the first time. Especially, the double equals sign was 

noted as confusing and uncertainty as to the effect it would have was expressed by several 

participants. Despite this, some participants noted redeeming features about the GSS syntax. 

One participant found the ability to define relationships between the properties of elements 

compatible with thinking about layouts. At least two participants noted that Flexbox worked 

like ‘magic’; while implying that being able to see exactly what was happening as shown by 

constraints instead might be beneficial. The syntax of GSS struck most of the participants as 

being irregular in a CSS context, despite its similarities. 

The responses to the last two questions asked of participants during experiment provides 

further evidence consistent with the results covered given so far. The aspects of GSS 

considered counter-intuitive in this responses included: the use of math symbols, increased 

line lengths, the combination of ‘:’ and ‘==’ when defining values, the verbosity of GSS, the 

keyword intrinsic-height and generally confusing syntax. Further, one participant noted 

that they did not need to jump between selectors with the choice of Flexbox, implying that 

identifying all the constraints a property participated in was unwanted cognitive load. As a 

counter-point, a respondent familiar with GSS syntax noted that the ‘code speaks for itself’ 

observing that using constraint syntax to express relationships between element properties 

reflected a way of thinking about layout. A couple of other comments were supportive of 

GSS as well. One participant noted it was ‘expressive’, another participant found the idea of 

defining the relationships between elements interesting. However, the majority of comments 

about the constraint syntax were unsupportive of the idea that it was intuitive relative to other 

CSS layout techniques. 

In sum, the results indicate that constraint syntax in CSS is not an intuitive approach for 

layouts relative to alternative CSS layout methods. 

4.3 Discussion 

On the surface, the results counter the hypothesis that constraint syntax is intuitive for 

designers relative to other CSS layout approaches. However, the nature of the experiment 

means that this conclusion is not infallible. The selection of the of the participants and the 

experiment method itself could be improved to make generate more concrete results. 
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The survey showed that the target group of participants was reached. All participants reported 

more than several years or more of both CSS and Design experience. However, this was a 

self-reported figure with no validation of its truth. Further, CSS and design may not be the 

core work tasks of the participants and this measurement may not be an accurate reflection 

of CSS ability. Indeed, this is indicated by an overall low average number of hours spent 

doing CSS work per week, 5.5. On the other hand, the definition of designer in this paper 

refers generally to those who use CSS to produce layouts professionally, it is not clear 

whether this must be the central task of their professional work. In today’s context of 

increasingly cross-functional, multi-skilled teams, the survey results may actually reflect the 

reality of the role of a designer. In other words, designers have a long-term involvement with 

CSS but it is only involved a fraction of their day-to-day tasks. However, determining the 

extent to which this is true is out of the scope of this thesis. 

Indeed, the scope of this thesis was noted as being ‘small scale’. It is self-evident that a group 

of 8 participants cannot produce conclusive findings for designers around the world. It was 

noted in the results section that all the languages were Late Indo-European languages and it 

involved mostly those fluent in German or English, to the exclusion of thousands of others. 

Age groups younger than 20 and over 40 are also not represented and only one female 

participated in the experiment. Each of these demographic shortcomings would need to be 

addressed in order to draw findings that could be considered relevant for designers around 

the world, as CSS is implemented on a global scale. However, for the small scope of the 

thesis, the multiple age ranges and multiple cultures of the participants is a starting point for 

generating suggestive findings. 

As for the results themselves, there is also room for improvement. Due to time constraints 

and due to the unexpectedly poor quality of the cursor data in its capacity to act as a proxy 

for gaze, the cursor was not analysed to the originally envisaged extent. Instead, it was only 

visually assessed for where participants spent the most time concentrating, increasing the 

possibility of errors. The poor quality of the cursor movement could be rectified in future 

#outer-element { 

    /* ... */ 

    grid-template-columns: 3fr 14fr 3fr; 

} 

 

#inner-element { 

    /* ... */ 

    grid-column: 2; 

} 

Figure 20: A combination of properties that was found to be intuitive. 
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versions of this experiment with an eye tracking system. However, in current experiment the 

poor quality of the cursor movement data was made up for by the qualitative data collected.  

In generally, all participants were able to effectively think out loud during the experiment. It 

was particularly insightful to see moments where they suddenly understood how something 

was working. For instance, from these observations, it could be said that the combination of 

lines in Figure 20 was intuitive as it is understood in the context of this paper. Although some 

participants expressed that they had not seen CSS Grid before, they were able to determine 

that the inner element would lie in a column whose width was 14fr (although what the fr unit 

could mean proved to be a bit more puzzling). Likewise, once they had acclimatised a little 

bit to the GSS constraint syntax, some participants were able read statements such as the one 

aligning the centres of the inner and outer elements, or the statements aligning the outer 

element to the top left of the window and determine their effects. 

That highlights an area of further investigation. This experiment was interesting because it 

captured, in several cases, the first impressions of people using both CSS Grid and GSS. 

However, it became clear through the course of the experiment that there is a difference 

between considering something intuitive on first impression and considering something 

intuitive after having learnt as foundational set of rules. In this experiment, this gave CSS 

Grid an advantage over GSS because it only introduced new properties and property values, 

whereas GSS introduced new syntax into CSS. Several participants commented positively on 

CSS Grid and were able to relatively quickly determine what its properties and property 

values meant. On the other hand, the introduction of the double-equals sign and the double-

colon prefix prepended to the window selector in GSS drew comments of confusion. Yet 

once the confusion passed, the majority of designers were able to determine the effect of the 

constraints. Therefore, the experiment could be improved by comparing the relative 

intuitiveness of layout implementations once a designer had learnt foundational concepts of 

constraint syntax to give it equal footing with CSS. Nevertheless, comparison between first-

impressions of CSS Grid and GSS has been useful to produce such a finding. 

In summary, the results suggest that constraint syntax is not intuitive when compared to other 

layout approaches in CSS. As shown by the comparison to the relatively unknown CSS Grid 

specification, this may be largely to do with the introduction of new operators into CSS. 

Further, the caveat applies that constraint syntax is not considered intuitive on a first 

impression. Re-testing other layout scenarios after introducing the foundational concepts 

would be a future direction for this investigation. Lastly, the results are suggestive, repeating 

and improving the experiment, with eye tracking for example, for a broader set of 

demographics would help solidify the results. 
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5 Conclusion 

5.1 Summary and Key Findings 

This thesis set out to look at using constraints for web layouts, evaluating how intuitive they 

are for designers compared to other, current approaches to web layouts. Here the flow of the 

document is recapped and key findings are highlighted. 

The introduction defined the key concepts as they are used in this paper. This included 

defining the work of a designer to involve working with CSS by definition. The particular 

strand of CSP that is used for layouts was introduced, along with key features of GSS. The 

scope section established a precedent for the rest of the paper: the experiment was being 

treated like a small-scale usability study and there would be a heavy emphasis on layouts and 

constraints to the exclusion of other CSS and GSS capabilities. Next, the objective of 

answering the core question and the relevance is established. 

The subsequent related work section draws on academic work as well as work from current 

material from leading voices in web design. Firstly, a paper introducing CCSS, upon which 

GSS is based, is summarised. It is noted that the paper positions constraints as a solution to 

a difficult-to-understand, restricted CSS 2.0 specification (Badros, Borning, Marriott, & 

Stuckey, 1999), although it does not explain why constraints might be easier for designers to 

understand. This is an early instance of an assumption being made that some technology is 

intuitive without adequate testing, a theme repeated later in this paper. Despite this, it is 

foundational, along with the GSS documentation for understanding how constraints could be 

applied to web layouts. 

Switching from looking at code and technical implementations to looking at the mind, the 

next related work identifies key concepts to do with online processing during reading and 

looking at how code is read. This is a deliberate attempt to break the cycle of assuming 

intuitiveness, and look for bottom-up ways to reason whether something was intuitive or not. 

In particular, it was noted that longer eye fixations and an increased number of regressions 

indicated hard-to-understand material based on Rayner’s work (Rayner, 1998). It was 

tentatively assumed that one could look for such patterns during the reading of code as well 

as some related studies had done. Applications of eye tracking to code readers were also 

covered, determining that some code characteristics could contribute to quick comprehension 

of code: for instance, the use of beacons and a high level of regularity. 

After establishing constraints and reading patterns to reason about intuitiveness, the related 

work section stepped outside of academic papers and looked at the W3C Mailing List as a 

related work to see how intuitiveness was reasoned about during the foundational years of 



 

64 

 

CSS. After analysing emails from 1995 to 2008, it was found that the decision as to whether 

or not some feature of CSS is intuitive mostly comes down to opinion. 

Frameworks were briefly assessed as the next non-academic related work as their popularity 

seems to be underpinned by the easy in which they allow designers to manager layouts 

compared to CSS. It was found that the most popular frameworks implemented a grid system 

and columns and rows may play a large role in how designers think about layouts. 

Moving on from the mainstream frameworks, state-of-the-art web page layouts were 

considered based on a recent talk from Jen Simmons. The talk was constructed in a problem-

solution way: the problem was the frequency at which a boilerplate web layout pattern was 

found across the web; the solution was some of the recent and upcoming CSS specifications 

as well as to consider alternative layouts; for example, translating ideas from magazine 

layouts (Simmons, 2015). Although the intuitiveness of the technologies was not considered 

directly, commentary on Flexbox and the note to use tools to assist with grid creation 

suggested intuitive use of these technologies was yet to come. 

Last of the related works were the CSS specifications. It was found that specifications CSS 

Tables, Flexbox and CSS Grid indirectly give designers access to constraints, they are just 

separated by a layer of syntax. It was shown that constraint syntax could be used to implement 

several concepts across the specifications, making constraint syntax quite versatile. However, 

it was also observed that constraint syntax may quickly become verbose while trying to 

capture layout behaviours that are concisely expressed in purpose-built CSS specifications. 

Such an effect would reduce the capability of constraint syntax to be intuitive. 

A brief analysis places the paper in a historical context. It looks at the development of HTML 

and CSS, with a focus on layouts and how the early development shaped current thinking 

about web layouts, especially the impact of table-based layouts. 

The experiment forms a substantial part of the paper, and results in primary evidence refuting 

the hypothesis that designers find constraint syntax intuitive for layouts relative to other CSS 

approaches. An attempt was made to use cursor movement data as a proxy for reading, 

insufficient quality (due to trackpads) meant it was incomplete. Although, taken at face-

value, it suggested the greatest amount of time was spent looking the novel syntax introduced 

by GSS so it nevertheless contributed to the results. Improvements for future research were 

identified such as switching from mouse tracking to eye tracking and the inclusion of a 

broader demographic to better represent the diversity of the designer population. 

Furthermore, it was realised that testing intuitiveness upon a first-impression, as was done in 

this experiment, may yield different results to testing intuitiveness once a participant has 
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familiarised themselves with foundational concepts. Nevertheless, the experiment 

accomplished what it set out to within the scope of this paper. It both suggested that constraint 

syntax could not be considered as intuitive as existing CSS approaches as well as 

implemented a process for testing for relative intuitiveness. 

5.2 Critical Review 

This paper set out to achieve two objectives. The first being to produce a preliminary 

conclusion as to whether designers find constraint syntax for layouts intuitive relative to other 

CSS approaches. The second was to test a method for evaluating the intuitiveness of language 

constructs. This critical review looks at the extent to which they are fulfilled within the given 

scope and identifies areas for improvements. 

A task that seemed relatively straightforward at the beginning of the thesis, to determine the 

relative intuitiveness of various syntax (including constraint syntax) for web layouts, turned 

out to require a lot of work in the details. Although core definitions given in the introduction 

were relatively simple, the extrapolation of ideas from the related works revealed the 

complexities of the thesis topic. The CCSS paper (Badros, Borning, Marriott, & Stuckey, 

1999) showed there are many aspects when applying constraints to CSS: how they handle 

cascading, weighting constraints, establishing the syntax to use, the interaction of designer 

and user stylesheets and so on. This paper focused on a bare minimum of constraint syntax: 

positioning relative to the window and a few bare-metal positioning constraints, with one 

mathematical operator are used in the experiment. However, any of the other concepts from 

the CCSS paper could have been tested for its intuitiveness. Further, GSS features constraint-

based extensions, such as its VFL, representing other areas skipped by this paper. Instead, 

this paper focused on only included a few examples in its experiment to avoid overwhelming 

the participants (although many participants seem to have been overwhelmed with the small 

amount of constraint syntax given). As far as could be determined, assessing relative 

intuitiveness of CSS language features had not been done in a way similar to the method 

presenting in this thesis previously. Therefore, the scope limited testing to a small scale and 

attempting to draw out findings that were suggestive meant that focusing on just a couple of 

concepts available with GSS was appropriate for this paper. 

Like the question of how deep into constraint syntax should the paper, it was also difficult to 

determine the extent to which the workings of the mind should be investigated in ordered to 

support the categorisation of intuitive for constraint syntax. It could have gone much further 

than what was presented in this paper; however, just a few basic reading patterns that allow 

cognitive load to be inferred were identified. Further, in order to include these concepts in 

the experimentation, it was decided to use cursor movements as a proxy. This obscured the 
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results even more, especially since a large portion of respondents used trackpads which 

resulted capturing very little of the participant’s reading pattern. Again, the scope can be used 

to justify this degradation. If the scope of similar experiments were to be grown with 

correspondingly larger budgets for such research, eye tracking systems and perhaps brain 

scans could be utilised to look more deeply and what participants struggled to understand. 

Within the current scope and despite the poor quality, the recorded cursor movements were 

able to show a large amount of time spent looking at GSS relative to the other code snippets 

as well as indicate two points of concentration within the code snippet on the novel features 

of GSS. This was enough detail given the scale of this paper and that it was supplemented 

with the think-aloud component of the experiment as well. 

Altogether, the findings from this paper may have been made more substantial by digger 

further into the topics that are already presented here: further into constraint syntax and 

further into what can be termed intuitive based on how the mind works. Nevertheless, it is 

believed that within the given scope of the paper, the set objectives have been achieved. A 

process for testing the relative intuitiveness of various CSS language features was established 

and tested during the course of the thesis. This lead to sufficient evidence to suggest that 

constraint syntax, on a first-impression, is not intuitive relative to existing CSS layout 

approaches. 

5.3 Future Directions 

From its beginning to its upcoming standards, this paper has shown CSS is changeable (or at 

least extendable). Assessing the usability of such changes using think-aloud tests and some 

way to measure the user’s gaze results, especially during a comparison of language features, 

reveals insights about how designers think about the code. Such insights may have avoided 

counter-intuitive behaviours, such as some margin-collapsing rules, which are now set in 

stone. Testing new CSS features in demographic groups around the world could help ensure 

future changes to this global specification simply make sense. 
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Appendix A: Uses of ‘Intuitive’ in the WWW-Style Mailing 

List 

The table below presents the uses of “intuitive” found in the www-style mailing list. The 

mailing list archives are available at: https://lists.w3.org/Archives/Public/www-style/. A total 

of 934 emails containing “intuitive” were found (which may include duplicates as it is 

included in responses as well), an indication that the intuitions of people using CSS are 

considered in its design. The term is found in about 1.127% of the 82,838 messages present 

in the archive. This covers the time range from May 1995 until June 2016. However, only 

messages up to and including 2008 are analysed. The purpose of this table is to ascertain the 

reasoning behind determining whether something is intuitive or not by examining the context 

of its usage. Each usage is categorised into “opinion”, “logic”, “evidence” or “irrelevant” 

based on how the reference to something being intuitive is justified. For the most part, 

spelling and grammatical errors have been included as they were given in the original 

documents; however, autocorrect may have fixed the occasional word. To the interpretation 

of the author, usage of mailing list content is granted given the following statement appears: 

Copyright © 1995-2016 World Wide Web Consortium, (MIT, ERCIM, Keio, Beihang). 

http://www.w3.org/Consortium/Legal/2015/doc-license. 

Message Year Link Categoris

ation 

…Howeverm I'm sure you can make something more 

intuitive to allow authors to change properties of capitals… 

1995 Link Opinion 

… I would prefer the style sheet language to be a bit more 

intuitive. "@archform" isn't… 

1995 Link Opinion 

…While coding, a couple of issues that I didn't resolve 

intuitively came up. I've described one of them below. Input 

is welcome…. 

1995 Link Opinion 

… The problem with this solution is <DOC> or <SOURCE> 

may appear as real HTML tags one day and the style sheet 

language will become ambiguous. 

If anyone has a clear vision of how one can get out of this 

with an intuitive notation in place, please let me know... 

1995 Link Opinion 

…Yes, I like your [] syntax.  It's much cleaner and more 

intuitive than what I came up with… 

1995 Link Opinion 

https://lists.w3.org/Archives/Public/www-style/
http://www.w3.org/Consortium/Legal/2015/doc-license
http://www.w3.org/mid/9505222209.AA03453@eitech.eit.com;list=www-style
https://lists.w3.org/Archives/Public/www-style/1995Jun/0000.html
https://lists.w3.org/Archives/Public/www-style/1995May/0004.html
https://lists.w3.org/Archives/Public/www-style/1995May/0004.html
https://lists.w3.org/Archives/Public/www-style/1995Jul/0039.html
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…Whether the default properties are inherited or not depends 

on the property. Making it depend on the element instead is 

rather counter-intuitive… 

1995 Link Opinion 

…I seem to understand you, by using this notation, to mean 

that if "[.]font[.]" were anywhere within the classification, 

then the current class should have its attributes cascaded 

from "font".  I do NOT find it intuitive to say that… 

1995 Link Opinion 

…So the notion of 

 HTML_ELEMENT : SPECIFICATION 

would be better rendered as 

 CLASS_NAME { SPECIFICATION } 

where SPECIFICATION may be a multi line set of 

elememts. This makes a complex element like the EM.first 

much more intuitive (and easier to parse too)… 

1995 Link Opinion 

…Instead of making subclassing mandatory, the CSS 

proposal takes advantage of the existing "subclasses" (H1, P 

etc) and overlays styles based on these. For me, that's 

intuitive, and Peter's extra level of indirection is not. What do 

other people think? (I fear my intuition is somewhat damaged 

after thinking about these issues for some time :-)… 

1995 Link Opinion 

…the value of the <STYLE NOTATION> attribute is 

apparently restricted to the values listed in the DTD.  This 

seems counter-intuitive to me… 

1995 Link Opinion 

…Or do you want separate properties for URL's, such as 

`text-background' vs `text-background-url'? The problem is 

that this may not be very intuitive either…. 

1995 Link Opinion 

…"*" is not a synonym for "HTML", it's a synonym for the 

top-level element. In HTML, this happens to be "HTML", 

but many authors omit it and I believe "*" is more intuitive… 

1995 Link Opinion 

…While CLASS would be "usable", it is not the least bit 

intuitive… 

1995 Link Opinion 

…My guess is that the most intuitive reading will be that 

everything is relative to its enclosing environment… 

1995 Link Opinion 

https://lists.w3.org/Archives/Public/www-style/1995Jul/0044.html
https://lists.w3.org/Archives/Public/www-style/1995Jul/0064.html
https://lists.w3.org/Archives/Public/www-style/1995Jul/0090.html
https://lists.w3.org/Archives/Public/www-style/1995Jul/0092.html
https://lists.w3.org/Archives/Public/www-style/1995Sep/0005.html
https://lists.w3.org/Archives/Public/www-style/1995Sep/0021.html
https://lists.w3.org/Archives/Public/www-style/1995Oct/0007.html
https://lists.w3.org/Archives/Public/www-style/1995Nov/0010.html
https://lists.w3.org/Archives/Public/www-style/1995Nov/0017.html
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…Then there are some not-so-obvious factors like how 

"mature" a property is, how "intuitive" it is and how "useful" 

it is… 

1995 Link Irrelevant 

…True, and even more so, I feel future authoring tools need 

to present the stylesheet functionality in an intuitive manner.  

That will, I believe, influence authoring styles more than 

anything else… 

1995 Link Opinion 

…#x65y or "x56y"? #x65y. Definitely. Using quotes in a 

way that has a syntactic meaning (other than encapsulation) 

is pretty anti-intuitive… 

1995 Link Opinion 

…For font-weight and font-size, I appreciate that you've 

moved from absolute numbers to relative ones.  I'm a little 

concerned, though, that it may not be intuitive that a bare 

positive number means an increase… 

1996 Link Opinion 

…I know which printer fonts link to which screen fonts - but 

a name searching system is going to be more cumbersome 

and less intuitive… 

1996 Link Opinion 

…Obviously CNS (which I'd never heard of before) is a 

subset of the HSB (hue-saturation-brightness) color model, 

widely used and intuitive… 

1996 Link Opinion 

…In particular, it has nothing to do with HLS, HSB and 

suchlike polar representations of RGB (which are, in 

usability studies, often shown to be *not* very intuitive) … 

1996 Link Evidence 

…HSB is a spectacularly bad idea as it is non intuitive. It 

claims for example that yellow (RGB 00FFFF) and blue 

(RGB 00FFFF) have the same "brightness" which is clearly 

false. It is extremely non linear, the hue circle is not at all 

even ..  generally, it is a mess.… 

1996 Link Logic 

…The tags <em> and <strong> have more intuitive 

meanings than <i> and <b> for people who work aurally 

rather than visually… 

1996 Link Logic 

…This seems strongly counter-intuitive. The default is that 

there is no sound? Perhaps a stylesheet for visual 

presentation could specify that the default is black text on a 

black background, so the screen is entirely dark? ... 

1996 Link Logic 

https://lists.w3.org/Archives/Public/www-style/1995Dec/0004.html
https://lists.w3.org/Archives/Public/www-style/1995Dec/0056.html
https://lists.w3.org/Archives/Public/www-style/1995Dec/0118.html
https://lists.w3.org/Archives/Public/www-style/1995Dec/0152.html
https://lists.w3.org/Archives/Public/www-style/1996Jan/0063.html
https://lists.w3.org/Archives/Public/www-style/1996Feb/0016.html
https://lists.w3.org/Archives/Public/www-style/1996Feb/0019.html
https://lists.w3.org/Archives/Public/www-style/1996Feb/0019.html
https://lists.w3.org/Archives/Public/www-style/1996Feb/0035.html
https://lists.w3.org/Archives/Public/www-style/1996Feb/0063.html
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…I do not discuss physical values for these attributes, as 

these cannot be translated as simply to values of multimodal 

attributes as can the less precise (but more intuitive) natural 

language or numerical values… 

1996 Link Opinion 

…Space should be tied to the visual attribute of padding or 

margin; I picked padding, but I think that either could be 

chosen.  Possible mnemonics: none (a bit counter-intuitive at 

1) | narrower | narrow | normal | wide | wider | widest… 

1996 Link Opinion 

…Physical values obviously should be allowed, to give 

authors detailed control over document formats; however, 

the allowed values were selected to be as useful and intuitive 

as possible, to encourage casual authors to use them rather 

than physical values… 

1996 Link Opinion 

…allowing numbers, e.g. [1-7], to be used to represent the 

values of multimodal attributes for which this procedure 

seems to be intuitively reasonable… 

1996 Link Opinion 

…as authors are probably more likely to prescribe visual 

style than audio style.  In this case, the name would be a bit 

less intuitive than before… 

1996 Link Opinion 

…are also useful goals for unimodal styling language 

designers (as are the first and seventh, but they are so 

intuitive that they are almost universally followed) … 

1996 Link Opinion 

…The "immediate predecessor" idea Hakon brings up would 

seem more intuitive to me using '+' … 

1996 Link Opinion 

…The user is presented with a color spectrum arranged in a 

circular pattern, with a slider bar beside it to specify the 

lightness/darkness of the particular color chosen.  This 

system is simple, intuitive, and generates RGB codes without 

forcing the user to delve into the wonders of hexadecimal… 

1996 Link Opinion 

…it may not be correct, but it is simple and intuitive… 1996 Link Opinion 

…that is not how MSIE applies the style properties applied 

via a STYLE attribute (anything inside a STYLE attribute on 

an element is immediately applied to the element, before 

anything else.  Otherwise, it could be overridden by a rule 

1996 Link Opinion 

https://lists.w3.org/Archives/Public/www-style/1996Mar/0001.html
https://lists.w3.org/Archives/Public/www-style/1996Mar/0001.html
https://lists.w3.org/Archives/Public/www-style/1996Mar/0001.html
https://lists.w3.org/Archives/Public/www-style/1996Mar/0001.html
https://lists.w3.org/Archives/Public/www-style/1996Mar/0001.html
https://lists.w3.org/Archives/Public/www-style/1996Mar/0001.html
https://lists.w3.org/Archives/Public/www-style/1996Apr/0005.html
https://lists.w3.org/Archives/Public/www-style/1996Apr/0032.html
https://lists.w3.org/Archives/Public/www-style/1996Apr/0032.html
https://lists.w3.org/Archives/Public/www-style/1996Jun/0045.html
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with a higher specificity (e.g., "#ID1 #ID2 {}" ), which 

doesn't seem intuitive at all)… 

…The major problem with SPACER, outside of any 

discussion of compliance with standards and Netscape vs. 

Microsoft, is that it's not intuitive. If one thinks of it like a 

blank image, you expect to give it WIDTH and HEIGHT 

attributes. But this only applies if you choose 

TYPE=block… 

1996 Link Logic 

…The main difficulty of learning the X resource system is 

that very few people have a good intuitive understanding of 

what a widget is, or a window. On the other hand, most 

people have a very good intuitive understanding of what a 

hierarchy is, and they also understand the meanings of text, 

background, shadow, and many other words employed by 

CSS… 

1996 Link Opinion 

…I like to think of leading as added space after the line. I've 

never seen it referred to as space above and below the line. 

Its counter-intuitive… 

1996 Link Opinion 

…Also, we are not changing the rules for comments – this is 

all within the bounds of SGML. (I, like many other people, 

find those rules to be less than intuitive, but there we are) … 

1997 Link Opinion 

… My feeling is that left/right is a little ambiguous while 

front/back is a bit more intuitive and less ambiguous… 

1997 Link Opinion 

… Really, they're just two different interpretations of how 

intrinsic HTML support is handled, but I believe IE4's is 

much more intuitive… 

1997 Link Opinion 

… The only evidence at the moment is that two authors 

confronted with the same problem found the same solution 

intuitive… 

1997 Link Opinion 

… This is a simple solution useful in simple situations, 

syntactically no less intuitive than the shorthand, yet 

functionally a superset… 

1997 Link Opinion 

…a conceptual change that adds an intuitive bit of 

functionality at no practical cost… 

1997 Link Opinion 

https://lists.w3.org/Archives/Public/www-style/1996Jul/0091.html
https://lists.w3.org/Archives/Public/www-style/1996Aug/0143.html
https://lists.w3.org/Archives/Public/www-style/1996Nov/0025.html
https://lists.w3.org/Archives/Public/www-style/1997Jan/0027.html
https://lists.w3.org/Archives/Public/www-style/1997Jul/0114.html
https://lists.w3.org/Archives/Public/www-style/1997Jul/0175.html
https://lists.w3.org/Archives/Public/www-style/1997Jul/0219.html
https://lists.w3.org/Archives/Public/www-style/1997Jul/0220.html
https://lists.w3.org/Archives/Public/www-style/1997Jul/0227.html
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… Not everyone will find it intuitive to lump default 

properties and user-defined attributes… 

1997 Link Opinion 

… Should the new value be clipped (if this is necessary) 

before or after it is passed on to children? It is easier to clip 

first, but I think that this is the less intuitive interpretation… 

1997 Link Opinion 

… If I'm understanding you, all that you want is a shorthand 

for the left, top, width, and height properties.  This might not 

be a bad idea, but I think as an author it's simpler and more 

intuitive to specify these properties separately… 

1997 Link Opinion 

…Of course, if I actually cared to contribute to the debate, I 

would point out that the issue of RGB vs HSL vs YUV vs 

CMYK is irrelevant, since _ALL_ of those color models are 

counter-intuitive and generally bogus, from the non-techie-

nerd's point of view… 

1997 Link Opinion 

…"Teach Yourself Web Publishing with HTML 3.2 in 14 

days" (SamsNet, 1996): 

"The Hue, Saturation, and Brightness model is sometimes 

called the subjective or perceptive color, because this model 

intuitively describes how we preceive color and changes 

from one color to another." 

I just spent 15 months at Carnegie Mellon University getting 

my Masters in Human-Computer Interaction and color 

models were discussed in several classes. The Hex numbers 

required by RGB were never intuitive and the only way to 

adjust them was by random trial and error unless you had a 

color picker tool. On the other hand you could make changes 

to an HSL value and see the color change in the direction 

desired… 

1997 Link Evidence 

…RGB hexadecimal is what we designers call the RGB 

notation that you are referring to. 

Yes  - it is far from intuitive! … 

1997 Link Opinion 

…Unfortunately HSL is not intuitive either. It requires that 

one know all the hue values… 

1997 Link Logic 

…In truth, I and many other designers I know can tell 

approximately what a color looks like or is with plane #RGB 

values. I can also look at those values and know if it will 

1997 Link Opinion 

https://lists.w3.org/Archives/Public/www-style/1997Aug/0062.html
https://lists.w3.org/Archives/Public/www-style/1997Nov/0059.html
https://lists.w3.org/Archives/Public/www-style/1997Nov/0151.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0028.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0054.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0071.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0071.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0071.html
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work on a NTSC display or "WebTV" HSL can not provide 

me with that intuitive knowledge… 

… Don't use HSL, please it is far from intuitive for a 

designer. We might as well just have the RGB hex… 

…I'm not convinced your examples are intuitive, but 

something along those lines would be better than unmatched 

bracketing with forward slashes and tildes with context-

sensitive meanings… 

1997 Link Opinion 

… Both of these notations are simple transformations of the 

RGB color space, but represent more intuitive spaces for 

general use by the average non-technologist. For example, 

consider the following activities: … 

1997 Link Opinion 

…specifying RGB colors is non-intuitive for people who do 

not have significant experience with RGB or computers… 

1997 Link Opinion 

…I urge you to read the archives of this mailing list [1] for 

previous discussions about the non-intuitive nature of HSL 

(and HSV) … The corresponding activity, of changing the 

hue but keeping the lightness the same, does not give the 

intuitively expected results using HSL… 

1997 Link Opinion 

…In my own work, I've always included HSL 

because it is significantly more intuitive that RGB… 

1997 Link Opinion 

…I think that part of the problem is that separating document 

structure from document display is not a process that is 

intuitive for many people… 

1998 Link Opinion 

… I confess I was wrong to refer to them as positioning 

properties--that's just intuitive… 

1998 Link Opinion 

… The selector syntax is already getting complex… can we 

come up with intuitive syntax? 

1998 Link Opinion 

…One idea would be to examine the different ways it is 

implemented and find the most intuitive one. It has to be said 

that so far, the attr selector system hasn't been the most 

intuitive… 

1998 Link Opinion 

…Remember, the main advantage of HTML is that it's 

simple enough to teach to almost anyone, and most of the 

tags are their own mnemonics. Style sheets are slightly more 

1998 Link Opinion 

https://lists.w3.org/Archives/Public/www-style/1997Dec/0074.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0182.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0182.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0193.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0194.html
https://lists.w3.org/Archives/Public/www-style/1998Feb/0033.html
https://lists.w3.org/Archives/Public/www-style/1998Feb/0056.html
http://www.w3.org/mid/Pine.LNX.3.93.980307150043.231A-100000@charlotte.inria.fr;list=www-style
https://lists.w3.org/Archives/Public/www-style/1998Mar/0033.html
https://lists.w3.org/Archives/Public/www-style/1998Mar/0059.html
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complicated, but the properties are generally named after the 

effects they (should) create, so they're easy to understand and 

remember… Regexps are just about the exact opposite… 

(This is where I have trouble; my intuitive side keeps getting 

in the way and I lose concentration.) … 

…My two thoughts so far were to link from the title-- not 

necessarily intuitive-- or adding a "[Spec]" link, which isn't 

much more obvious… 

1998 Link Opinion 

…Also, each property page has a link to the appropriate part 

of the specification, with a "[Spec]" link in the nav bars.  I'm 

still taking any suggestions for ways to make this more 

intuitive… 

1998 Link Opinion 

…As someone who is in the middle of translating a fairly 

simple intuitive ordering algorithm over ISO Latin-1 from 

hand waving into computer code I know just how important 

(and difficult) these things are… 

1998 Link Opinion 

… (Since the default value of background-color is 

transparent, setting { background: white } or whatever for 

the OBJECT where the text/html object itself doesn't set a 

BODY background-color will have the intuitive effect.)… 

1998 Link Opinion 

…So now the background-color of the parent of the OBJECT 

would shine through. (At least in the way I've always 

interpretted (sic) it to work – which seems fairly intuitive to 

me.) … 

1998 Link Opinion 

… say that background-attachment on inline elements is 

relative to the containing block (which is CSS2-speak for in 

most cases) the "parent element") 

No. This is counter intuitive at best… 

1998 Link Opinion 

… I would guess that the first is what is closest to the original 

intent. It's the easiest to implement, and the most intuitive… 

1998 Link Opinion 

… The effect was that the interpretation of 'border: medium 

red' changed from producing a solid red border to producing 

no border at all. Not very intuitive maybe, but consistent with 

its new role as a shorthand property… 

1998 Link Opinion 

https://www.w3.org/Search/Mail/Public/advanced_search?keywords=intuitive&hdr-1-name=subject&hdr-2-name=from&hdr-3-name=message-id&index-grp=Public__FULL&index-type=t&type-index=www-style&resultsperpage=20&sortby=date-asc&page=4
https://lists.w3.org/Archives/Public/www-style/1998Apr/0020.html
https://lists.w3.org/Archives/Public/www-style/1998Jun/0007.html
https://lists.w3.org/Archives/Public/www-style/1998Aug/0021.html
https://lists.w3.org/Archives/Public/www-style/1998Aug/0022.html
https://lists.w3.org/Archives/Public/www-style/1998Sep/0009.html
https://lists.w3.org/Archives/Public/www-style/1998Sep/0012.html
https://lists.w3.org/Archives/Public/www-style/1998Oct/0005.html
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…This anonymous box also has the font properties of the 

block-level element, so all other inline boxes are vertically 

aligned within it. 

The above makes the spec much closer to the 'intuitive' 

expectations… 

1998 Link Opinion 

…nest your DIVs, add a class "section" to them and use the 

following rule: 

DIV.section { margin-left : 2px } 

which is IMHO simpler and more intuitive, works on 

existing browsers, but implies a rewriting of your document 

in a more structured way… 

1998 Link Opinion 

…The CSS1/CSS2 approach is the more intuitive approach 

for replaced elements, and the IE approach is the more 

intuitive for non-replaced elements… 

1999 Link Opinion 

…I'd suggest that it makes the most sense to put the columns 

on "bottom" with row groups and rows on top of them. While 

this proposal is largely arbitrary (it just seems most intuitive 

to me this way), a possible rationale is that COL and 

COLGROUP come before the rows in the table 

description… 

1999 Link Opinion 

…Should the background image cover only half the element 

(the right one), or should it cover it all? IMO controlling the 

position of the tiling boundary while covering the whole 

element is more important/useful/intuitive then covering just 

a part of the element, but the CSS2 specifications aren't clear 

on this… 

1999 Link Opinion 

… This means that paragraph's can't be 'backed up' on top of 

previous elements and have the background overlap previous 

content. Too bad, as that 'might' be useful (and maybe more 

intuitive?) … 

1999 Link Opinion 

…It is also far more intuitive, and I cannot see any area in 

which the existing spec is better… 

1999 Link Opinion 

… Letterspace and word space are common terms. Linespace 

seems most intuitive… 

1999 Link Opinion 
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… The zoom value would impy a zoom not only on font 

stuff, but also on images, vector graphics, etc.  I think this is 

a more intuitive and reliable approach then deferring to the 

CSS cascade and hope for the use of percentages, ems, or 

other relative sizing… 

2000 Link Opinion 

…'text-align' positions the HR horizontally within the 

available space. 

This is sort of intuitive, unless you're a CSS expert, in which 

case it is quite confusing… 

2000 Link Opinion 

… That's counter-intuitive to me, since overlapping elements 

generally overwrite previous elements in the flow… 

2000 Link Opinion 

…I see not reason to have an attribute like box-sizing.  It 

seem counter-intuitive to change the definition of sizing… 

2000 Link Opinion 

…The basis of my argument was that 'box-sizing' is not an 

intuitive solution, and this is a better solution… 

2000 Link Opinion 

…No, the box-sizing thing doesn't do what I want.  The 

problem with it is that it is not intuitive.  Say you are trying 

to explain this to someone new… 

2000 Link Opinion 

…The basis of my argument was that 'box-sizing' is not an 

intuitive solution, and this is a better solution. What isn't 

intuitive about it? … 

2000 Link Opinion 

… And yes, I am advocating "changing the rules" of CSS 

because, as I have repeatedly said, they are counter-intuitive.  

There should ABSOLUTELY be a way to specify the 

ENTIRE WIDTH of a box WITHOUT having to resort to an 

ugly hack like "box-sizing: border-box"… 

2000 Link Opinion 

…IE5 renders the second one in what is, IMO, a most 

intuitive way; it uses the height it /can/ calculate (from the 

other cell) as the basis for 100%... 

2000 Link Opinion 

…Names of properties are clickable and colour-

differentiated so navigation is intuitive and easy… 

2000 Link Irrelevant 

…The number of columns an element with 'column-span: 

none' is split into is the number specified for column-span in 

the *next* element that doesn't have 'column-span: none', or 

2001 Link Opinion 
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all remaining columns if there isn't a spanned element before 

the end of the multicol. 

I'm not saying this is inconsistent, it just didn't seem 

very intuitive at first… 

… Is there any reason not to include a pattern language into 

CSS… A standards committee could no doubt come up with 

something cleaner, more pleasing to the eye, and more 

intuitive to use… 

2001 Link Opinion 

…A good language implements a small set of principles that 

fit naturally to the domain and that can be combined in an 

intuitive way to express what one wants to express… 

2001 Link Opinion 

… I totally agree ! cron-style notation is by far easier to read. 

I also think it's generally far more intuitive than the an+b 

notation… 

2001 Link Opinion 

…Putting a web author in front of nth-child(2,5,8-11) and 

nth-child(1,2-*/3) didn't bring up a strange face. It brought 

up a "Cool !" and he could figure out what it meant 

immediately. Otoh, nth-child(-5n+6) didn't seem to be as 

intuitive. Linear sequences aren't hard to understand (at least 

in France everybody has been through them, I don't know 

about other educational systems), but for many people it's far 

behind… 

2001 Link Opinion 

…so counting would be done from behind if the *first* 

number is negative. Unfortunatly the last two rules aren't 

very intuitive (but IMHO more logical then the current 

meaning of -3n+1) … 

2001 Link Opinion 

…However, this is IMO more intuitively addressed by using 

the range proposition in a second selector: :nth-

child(3n):nth-child(1..15)… 

2001 Link Opinion 

…Measuring a percentage value for "left:" from the right 

edge of the screen is inconsistent with the intuitive behavior 

when using a pixel value. left:30px intuitively means start at 

30px from the left edge of the screen… 

2001 Link Opinion 
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In trying to implement his tool he has discovered that the de 

facto browser implementations of transparency are not of the 

intuitive form he expects 

2001 Link Opinion 

The obvious goal of these media rule tricks is to select rules 

based on the CSS version supported. Why not allow authors 

to do the same thing in an intuitive way? 

2001 Link Opinion 

I believe that @media rules and other non-standard ways of 

selecting the CSS version are more bug-prone, less intuitive, 

and generally "worse" than a standard @version rule. 

2001 Link Opinion 

…I did the "granny test" with this one. The result: it's not at 

all intuitive to people that scroll bars remain scroll bars after 

they change color... 

2001 Link Opinion 

…Judging from the discussion here, people don't fully 

understand how the spec deals with centering elements and 

the size of the top-level element. "margin:auto" is non-

intuitive, and it behaving differently horizontally and 

vertically is downright confusing... 

2001 Link Opinion 

…This is even more off-topic than the original post, but I feel 

obliged to point out that, as counter-intuitive as it might 

seem, closed-source products have occasionally been 

successful in mass markets… 

2001 Link Irrelevant 

… I am fully convinced of W3's method of using a value 

from 0 to 1. It seems neither easy (intuitive as in 0 to 100%) 

or exacting (as in the standard 256) … 

2001 Link Opinion 

…Curious, why do you need to set the outer columns right, 

left to 75%? That does not seem intuitive to me… 

2002 Link Opinion 

…It is easy to set "width: 100%;" or "height: 100%;", 

difficult / not intuitive to use margins to determine the width 

/ width, especially to center a block.  Don't waste your time 

trying to figure out how to vertically center one block within 

another, you can't do it period using margins… 

2002 Link Opinion 

… I am a bit doubtful that CSS1 compatibility and intuitive 

behavior with an exposed counter can be achieved 

simultaneously… 

2002 Link Opinion 
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I can't see any way to define behavior consistent with that of 

the unexposed counter that won't be clumsy and unintuitive 

when combined with the new, exposed counter. 

2002 Link Opinion 

"RGB is oriented to light rather than (what people find more 

intuitive) print. For instance, yellow is red+green in RGB… 

RGB is non-intuitive. People can learn how to use RGB, but 

actually by internalizing how to translate Hue, Saturation and 

Lightness, or something similar, to RGB. " 

2002 Link Opinion 

…My vote is with Joe on the hanging indents. Yes, they 

can be done with CSS1, but the method is 

counter-intuitive… 

2002 Link Opinion 

…Since 1996 there have been numerous proposals to 

improve the named colors to be more intuitive, or to allow 

one to specify the naming scheme used… 

2002 Link Opinion 

…Well, the HTML colours almost pass the "high school" 

test, with the addition of orange. 

I know it sounds simplisitic, but with orange added they do 

make a pretty good "intuitive" base set… 

2002 Link Opinion 

…Some folks don't find RGB intuitive, and find (at least 

some of) the color names more intuitive. The addition of HSL 

colors should help as well, as its use seems much more 

intuitive than RGB… 

2002 Link Opinion 

…I respectfully disagree with the suggestion to do away with 

named colors. While one may become  accustomed to using 

number values when creating Web content, it is neither 

intuitive nor easy to maintain… 

2002 Link Opinion 

…But I have to memorize or look up tables; with a color 

naming system like the one you once recommended [2], I 

would only have to memorize around 20 keywords, declare 

no entities, start up nothing than my text editor, and get a nice 

range of colors, readable, intuitive, convenient… 

2002 Link Opinion 

… The margin/border/padding values then continue to mean 

(in an intuitive sense) what they mean in any other context… 

2002 Link Opinion 

…XSL is already in XML format, while CSS has it's own 

unique one. I find the syntax of CSS to be much much more 

2002 Link Opinion 
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intuitive for what it does, and would strongly object to it 

being rewritten in xml. Apasrt from anything else it would 

be much more verbose, and harder to learn. I also believe it'd 

be less intuitive, create much larger file sizes than necessary, 

and of course it wouldn't work in current browsers which 

already do a good job interpreting it as it is… 

…I see two schools of thought : the style sheet syntax must 

be terse and intuitive for human conception or the style sheet 

syntax should be in XML to be easily processable, verbosity 

is of no consequence since style sheets are more and more 

produced automatically or through an GUI interface (my 

case at least)… 

2002 Link Opinion 

…How about "both intuitive syntax *and* straightforward 

processability are important"? … 

2002 Link Opinion 

…The :hover state is a useful tool to provide visual 

indication to the user that an element accepts input from a 

pointing device such as a mouse, and the :active state is 

useful for indicating that a particular element is currently in 

the activation state. These visual indications are naturally 

intuitive to the user… 

2002 Link Opinion 

…Imagine, if you will, someone new to web design.  What 

would be more intuitive for them to do?  Add an empty div, 

or use a defined CSS property like the proposed float-

overflow which says exactly whose name implies the exact 

desired effect?... 

2002 Link Opinion 

… While the above examples are contained in the margin, 

there might also be another reference to a *picture*; which 

might be wider than the margins, so that the text would have 

to flow around it.  None of this is particularly unusual layout; 

and --- at least to me --- it seems very much like the concept 

of a "float"; yet, as far as I can tell, neither the float model, 

nor anything else in CSS, could be used in an intuitive way 

to generate this presentation. 

What I draw from these examples (others' and mine) is that a 

"float" (as one would think of it intuitively for layout 

purposes) has both a position in the flow and a container 

2002 Link Opinion 
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…Consider the definition I suggested elsewhere in this 

thread: 

A "non-CSS presentational hint" is information which is 

derived from the document and is translated into CSS 

properties by the user agent through some mechanism other 

than CSS style rules… 

Is this definition reasonable, and reasonably intuitive? … 

2002 Link Opinion 

…how do I collapse the section to show only the heading? 

Here is a solution, but it is not a very intuitive one:  

    section:0 > h {display: block} 

    section:0 > * {display: none}… 

2002 Link Opinion 

…Let's use strings to represent the characters that correspond 

to normal keys, let's keep keywords for special keys, let's use 

whitespace as the <key> separator, and let's use the comma 

as the <key-press-combination> separator.  Incidentally, this 

makes dealing with the "space" key more intuitive: it's simply 

" "… 

2002 Link Opinion 

…Nonetheless, that they would need to do this for the quirky 

behaviour to make sense seems to indicate that perhaps a 

more intuitive solution exists--and should be used… 

2002 Link Opinion 

…padding, border-spacing: 1em 2em; 

would have very unintuitive results. Authors are allowed to 

express information in a form that is intuitive to them.  It is a 

valid declaration, but behind those property names is a 

detailed description that sufficiently describes what role the 

values to take on. 

2002 Link Opinion 

… My intuitive bet is that 90+% accurate algorithms 

probably already exist, even we aren't aware of them… 

2002 Link Irrelevant 

… The transformation into ACTUAL values of the style of 

the DOM, is owned by the View, but since it is one-to-one 

correspondence to the CSS-OM, then exposing that 

properties (also) in DOM using OO techniques is a 

convenience and intuitive… 

2002 Link Opinion 

…I agree that the call should be very simple and intuitive to 

do simple things, just not that it is anywhere close to 1:1 if 

2002 Link Opinion 

https://lists.w3.org/Archives/Public/www-style/2002Aug/0263.html
https://lists.w3.org/Archives/Public/www-style/2002Sep/0147.html
https://lists.w3.org/Archives/Public/www-style/2002Oct/0013.html
https://lists.w3.org/Archives/Public/www-style/2002Oct/0037.html
https://lists.w3.org/Archives/Public/www-style/2002Oct/0118.html
https://lists.w3.org/Archives/Public/www-style/2002Dec/0130.html
https://lists.w3.org/Archives/Public/www-style/2002Dec/0143.html
https://lists.w3.org/Archives/Public/www-style/2002Dec/0143.html


 

89 

 

you expect to expose information on the view and 

formatting. … 

…If someone wanted all methods to be in View, so that it is 

not possible to do node.Property, then I have no major 

qualms with that.  I just think it is more intuitive to stick with 

the DOM hierarchy. 

In the general sense, this is a false intuition, because it 

involves questions that cannot be properly answered… 

2002 Link Opinion 

…What CSS2 has, is what seems the most intuitive to me. Is 

the change in CSS3 a mistake or have they changed the 

behavior on :first-line from CSS2 to CSS3? … 

2003 Link Opinion 

…Let me try and make it more concrete with two examples: 

Example 1: unintuitive(?) boxes… 

2003 Link Opinion 

…The text-height property of CSS3 allows the second case 

to render the way i see as more intuitive, using the value max-

size… 

2003 Link Opinion 

…I am uncertain about the syntax, things like foo:lang(), 

foo:lang(""), foo:lang(-), foo:lang(none()), etc. aren't that 

intuitive… 

2003 Link Opinion 

…A better workaround than using tables in many cases is 

using something like <div><span>...</span></div>, and 

styling the span. I do think that there should be a more 

intuitive way of doing this though… 

2003 Link Opinion 

…Christoph, who thinks "position: relative parent 1em 2em 

1.5em 1.5em;" would be [more] intuitive… 

2003 Link Opinion 

… (There's also the fact that having a property named 

"glyph-orientation" reorder content instead of just rotating 

glyphs is IMO just not intuitive.) … 

2003 Link Opinion 

…I can't use CSS-P because I have content that sits under the 

columns and must be automatically positioned underneath 

which ever column is longest. Plus the CSS-P approach is 

counter-intuitive… 

2003 Link Opinion 

…John suggested applying CSS table syntax to the three-col 

problem. This is a solution, but the content is not tabular data 

2003 Link Opinion 
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and presenting it as such is a non-intuitive, if effective, 

method for layout… 

The host of other acronyms aside, that's what /works/, and 

that's how web pages /have/to/ be written if they are 

addressed to a general audience.  But these languages fail to 

address many basic web layout problems in a direct, simple 

and intuitive way. 

2003 Link Opinion 

…If we want to get people to stop using depreciated HTML 

attributes like "align", having *intuitive* css equivalents 

makes sense… 

2003 Link Opinion 

…This is a special case of the more general parameterization 

case discussed a few weeks ago.  One of the problems is that 

it is likely to invovle non-intuitive interactions with 

cascading rules… 

2003 Link Opinion 

…Looking at the syntax closely, I see one must define an age 

in order to use a generic voice (eg, voice:family: child male), 

so I can conclude 'announcer' is intended as a specific voice 

name. This doesn't seem very intuitive… 

2003 Link Opinion 

…I fail to see how it would make that task _more_ difficult 

if @import rules had their intuitive meaning and no artifical 

restrictions… 

2003 Link Opinion 

…Didn't someone once say that CSS brought an elegant 

solution that replaced kludgy HTML tables? 

Yes this certainly is worth addressing. Why isn't there a 

simple way of doing this in CSS? Neither approach to center 

is straightforward (the margin: auto; approach for horizontal 

center is far from intuitive) … 

2003 Link Opinion 

…Some of the things that people seem to want, like liquid 

layouts as good as handcrafted layouts, that work whatever 

the display technology and user preferences and overrides 

are still research topics.  Especially if you also want them to 

be intuitive to an 18 year old arts student… 

2003 Link Opinion 

…Many people using margin: auto for centering. It is not an 

obscure feature, indeed it appears in several CSS FAQs and 

2003 Link Opinion 
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Wikis, and while I agree it is not intuitive, it is not 

complicated either… 

…It is also non-intuitive to have a block display:table-cell 

outside of another block display:table-row and so on… 

2003 Link Opinion 

…But it's less obvious what's natural if the picture is on the 

left. My intuitive feeling is that the two cases would differ 

more visibly… 

2003 Link Opinion 

…My personal opinion is however that positioning outside 

by border-edge is slightly more intuitive and yields slightly 

better results in some edge cases… 

2003 Link Opinion 

…I don't think that the way the definition makes colors of the 

underline work is very intuitive either, probably because i see 

underline and friends as text-features rather than box 

properties of the ancestor setting the text-decoration? … 

2003 Link Opinion 

…It's really much more intuitive, to me, to put it on the 

DocumentStyle interface or extension thereof… 

2003 Link Opinion 

…I think the behavior specified here for 'scroll' is counter-

intuitive. As an author, I would expect the background to 

scroll with the element's content just like it does for the 

<body>… 

2003 Link Logic 

…Constraining the background to the padding area would 

allow CSS to define "background-attachment: scroll" more 

intuitively… 

By locking the proposed clarifications of "background-

attachment: scroll" and the background's boundaries 

together, we get a   background model that is both more 

consistent and more intuitive than the one drafted in 

CSS2.1… 

The behavior of "scroll" would be most intuitive if the 

background scrolled with the content, as it's called "scroll" 

and as is how the setting behaves when specified for the main 

canvas… 

2003 Link Opinion 

…This leads to mostly intuitive results when writing  

documents and marking them up with CSS… 

2003 Link Opinion 
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…In the meantime, it's quite hard to match against colonized 

names, which are frequently used in XML. It's certainly not 

intuitive… 

2003 Link Opinion 

…Authoring tools could provide an intuitive interface for 

XHTML+CSS, which has the technical potential of replacing 

the what-you-see-is-not-what-you-want text processors we 

use today… 

2003 Link Irrelevant 

…In my opinion the path CSS3 takes is to keep (and expand) 

the model but make most things any browser currently 

implements defined through a property. IMVHO this might 

be a misstake, since the model is not quite good enough (not 

because it doesn't work, but because it is to difficult and thus 

introduce differences and has what i see as unintuitive 

parts)… 

2004 Link Opinion 

…In addition to what i see as issues with the 

implementations of the inline rendering, i think the model is 

not quite intuitive compared to the box model used for 

blocks… 

2004 Link Opinion 

…Also, having the height of a non-replaced box being 

defined by the font(or fonts, a 'should' changed into a 'may' 

which i dont think the major browsers implement, except IE 

due to using a different model) of its textual contents seem 

unintuitive… 

2004 Link Opinion 

…i'm just trying to say that it seems more intuitive to me that 

the link box covers the area which you can click to activate 

it, not claiming that the current model stops links from 

working… 

2004 Link Opinion 

…There's no guarantee that the document type will have a 

language attribute.  CSS has to deal with more than just 

HTML.  I agree it at least seems more intuitive, though… 

2004 Link Opinion 

In that case the specification is so counter-intuitive as to be 

dangerous (it encourages naive authors to default line-height, 

as a relatively obscure property …) … 

2004 Link Opinion 

…It's counter-intuitive because people expect to be able to 

control font-size using only font-size properties… 

2004 Link Opinion 
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…This effectively negates the specified inherit default on 

line-height, but line-height is the more technical parameter, 

so is where any counter-intuitive behaviour should go… 

2004 Link Opinion 

…The reason i prefer to view the content value as replaced 

is probably that i dislike the concept of having a pseudo-

document-fragment in the content value, but also because it 

seems to create more intuitive results in most sane cases… 

2004 Link Opinion 

…If replacement is set, content computes to something 

appropriate (there is precedent with the way float affects 

display, eg). I _think_ that's more intuitive for authors… 

2004 Link Opinion 

…I find this idea interesting, and potentially useful, but I 

don't think %% is a very intuitive unit…. 

2004 Link Opinion 

…And if anonymous elements do count, the relative 

positioning is far from "intuitive"… 

2004 Link Opinion 

…Overall I believe something like 'previous', 'next' and 

'different' would be more useful, more intuitive and more 

portable than absolute integer indices… 

2004 Link Opinion 

…Frankly this makes my head spin. Intellectually I can see 

that each of these does a distinct useful thing, but trying to 

intuitively grasp which one to use in a document would take 

a lot of practice… 

2004 Link Opinion 

…I'm sorry but i don't understand that having those two 

definitions gives more intuitive results, and it seems that 

Mozilla 1.7, Opera 7.50 and IE6 disagree so much on this 

behavior that i cannot make sense of what that point is… 

2004 Link Opinion 

…Sounds to me more intuitive than the current draft, if 

nothing else… 

2004 Link Opinion 

…body { background: url(foo), url(bar); } 

seems more intuitive: you pass a list of items to something… 

2004 Link Opinion 

…IMO a more intuitive way to do the "9-area" button is with 

just one image… 

2004 Link Opinion 

…Using multiple, indexed attributes is advantageous over 

the proposed comma-separated list as it permits use of the 

background-xxx attributes in a more intuitive manner… 

2004 Link Opinion 
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…I feel if would be preferable to declare backgrounds with 

indexes and make this sort of referencing more intuitive… 

2004 Link Opinion 

…I've scratch my head about a rendering problem and it 

turned out that most browser (I've tested Mozilla and 

Konqueror, IE is said to do the same) collapse the margin of 

the last element and the margin of it's parent even if the 

parent has a zero width margin. I find it weird and counter 

intuitive… 

2004 Link Opinion 

…Personally i find the whole concept of nested collapse (and 

even more so, collapse-through) unintuitive… 

Note: Ian Hickson replied to this noting that margin 

collapsing is confusing but too late to change here. 

2004 Link Opinion 

…The only option here is Intuitive UI. Make it semantic, 

don't tell it… 

2005 Link Irrelevant 

…There's no intuitive way to do that. At least !required is a 

timeless syntax that does not depend on the author… 

2005 Link Opinion 

…in the case of 'scroll', the background does not scroll with 

the element's content. This seems counter-intuitive… 

2005 Link Opinion 

…Once the existence of a universal authoring tool is 

postulated, one can only too easly dismiss any suggestion 

which is intended solely to make the work of an author 

simpler and more intuitive… 

2005 Link Opinion 

…:alt and its related suggestions seems a bit odd and un-

intuitive to me… 

2005 Link Opinion 

…The above @require-all-properties { } would cause failure 

on superfluous properties (or cause the author to split their 

CSS styles into less intuitive blocks, I think)… 

2005 Link Opinion 

…How would this work? !exclude? That seems kinda 

counter-intuitive… 

2005 Link Opinion 

…I agree that you do gain some clarity from the block 

naming there, but I don't think it's as intuitive to use… 

2005 Link Opinion 

…My reservation remains as before, that consciously 

thinking about which styles /don't/ matter (so as to exclude 

them from a @require-all block) is more difficult and less 

intuitive than thinking about which styles /do matter/… 

2005 Link Opinion 
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…However, I do still think that specifying a particular 

property as being !required within that block (opt-in) is more 

intuitive than doing the reverse… 

2005 Link Opinion 

…I found Mikko Rantalainen's !not-required idea very 

intuitive indeed… 

2005 Link Opinion 

…Computed values can not be uniquely identified by 

selectors, just like you described. Moreover, I also believe 

referencing rules is more intuitive to the CSS designer… 

2005 Link Opinion 

…It seems to be an intuitive author feature as suggested by 

the amount of usage of legacy HTML constructs such as 

<center> and <td align="..">… 

2005 Link Opinion 

…It very frustrating as someone who has to work with these 

standards every day. They are not intuitive and overly 

complex. I came here to try and understand… 

2005 Link Opinion 

…I think the discussion has fallen in to a religious debate 

about whether your proposal is "easier" or more "intuitive" 

than the equivalent CSS, which is an unwinnable, irrelevant 

(and terribly uninteresting) debate IMHO… 

2005 Link Opinion 

…Thought: "opacity" should support percents and floats, 

while rgba() would support percents, floats and integers? Not 

consistent, but more intuitive… 

2005 Link Opinion 

…I can kinda see their reasoning for having floats for alpha, 

since integers aren't intuitive for opacity… 

2005 Link Opinion 

…Then again, if they allow all values for opacity, and just 

accept that integers, being counterintuitive for opacity, are 

going to be little used, then we'd probably be fine… 

2005 Link Opinion 

…As typical J2EE developers that have used CSS for years, 

with most of our knowledge coming from simple online 

tutorials, and online references, but having never really 

studied CSS from front to back we used the following 

"intuitive" approach… 

2005 Link Opinion 

…however, it still applies because for some authors it is more 

intuitive to say, position based on element x or element y… 

2005 Link Opinion 
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…This would resolve the ambiguity squarely in favor of 

IE/Win and Safari; however, I think this resolution makes the 

most intuitive sense… 

2005 Link Opinion 

…In CSS percentage has always been relative to the whole 

width (or height) of the containing block. I find it less 

intuitive. 

2006 Link Opinion 

… :not(foo[bar]) could be written as :not(foo):not([bar]), but 

that's not very intuitive for authors… 

2006 Link Opinion 

…Our aim has been to provide a syntax and semantics which 

would be as intuitive to web designers as possible… 

2006 Link Opinion 

…Coupled with max-width and min-width this is pretty 

intuitive to use… 

2006 Link Opinion 

…When it comes to zooming images, however, the "scaling" 

property seems more intuitive to me… 

2006 Link Opinion 

…Instead, the borders, background and contents are stacked 

according to the complex rules laid out in Appendix E, 

dispersed among descendants with different, specified stack 

levels. I had a feeling it would have been too much to ask to 

have an intuitive and logical stacking system… 

2006 Link Opinion 

…One of the solutions I considered for something like this 

(because it is un-intuitive right now) was to let percentages 

of min-height and max-height be calculated from min-height 

or max-height of the containing block if height is auto… 

2006 Link Opinion 

…Are the numbers right-aligned, or are they in the center of 

the column? Positioning them in the center of the column 

would already be more intuitive, because now I have the 

option to align my column header neatly above the values in 

that column… 

2006 Link Opinion 

…It avoids the horizontal/vertical direction coupling  

problems of direction.  It's also more intuitive than the 

direction property imo. 

2007 Link Opinion 

…I feel that up/down/left/right is more intuitive for glyph 

orientation than specifying an angle… 

2007 Link Opinion 
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…But I thought the term 'contextual kerning' was not 

intuitive for Japanese punctuation processing and 

'punctuation-trim' was better for it… 

2007 Link Opinion 

…I'm wondering if we shouldn't add keywords 'top' and 

'bottom'. They would technically be aliases for 'left' and 

'right', but maybe more intuitive for users… 

2007 Link Opinion 

…Hm ... that's one of those strange ideas that's counter-

intuitive through naming… 

2007 Link Irrelevant 

…as there is no mean for me to distinguish between them, it 

will be counter-intuitive and frustrating to have different 

copy-paste behaviour… 

2007 Link Opinion 

…It would be easy enough to add support for this to CSS3 

'text-emphasis' property by adding something the following 

values (not intuitive names and prone to typographic errors) 

… 

2007 Link Opinion 

…If this is the case, the code could be made more 

intuitive by adding keywords. For example: 

@media screen and (aspect-ratio: portrait) … 

2007 Link Opinion 

…We have a proposed 

last-line-align: size 

whose naming isn't as intuitive as we'd like but which means 

that the UA adjusts the font size so that the text of the block 

fits exactly on one line. Maybe 'text-align: justify; text-

justify: size' is more intuitive. 

2007 Link Opinion 

…They put any empty element exactly at the same position 

where it would be if it wasn't empty (as long as adding 

content doesn't prevent its top margin from collapsing with 

any children). That has continuity, and it is more intuitive (at 

least for me). If the spec says otherwise there must be a 

strong reason - what is it? 

The strongest reason is that this was what we agreed to. If we 

change these rules it could have very subtle effects that might 

not be understood for years, at which point we'd be back to 

the same position as we are in now: thinking the rules are 

unintuitive and wanting to change them in another subtle 

way. 

2007 Link Opinion 
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…We could either allow only degree measurements (which 

would be odd because all other angle properties accept all 

angle units, just like all other length properties accept all 

length units) or accept all angle values and simply round to 

the nearest 0deg/90deg/180deg/270deg angle. The WG, to 

avoid changing parsing behavior and because it seemed more 

intuitive, opted for the latter. 

2007 Link Opinion 

…I'm thinking that "end-count" or "max-count" might be a 

more intuitive keyword than "total-count"… 

2007 Link Opinion 

…This vector should be normalized (have a length of 1), 

otherwise the results are typically non-intuitive… 

2007 Link Opinion 

…I guess if it is the SVG one there is a precedent, but it isn't 

the standard coordinate geometry space, where y is positive 

upwards, and I would have though z positive into the paper 

was more intuitive… 

2007 Link Opinion 

…A line saying that references to the dimensions of the   

image refer to the size after background-size has been 

applied would suffice I think. For -o-background-size we 

currently implement the non-intuitive version and are 

planning to change this… 

2007 Link Opinion 

…"None" would still be useful as a handy and intuitive way 

to kill the transition, I would think, either in JavaScript or if 

you wanted to prevent the transition in certain elements that 

were part of a class that received transitions… 

2007 Link Opinion 

…I would have thought that in order to be usable, a site has 

to be accessible; if it's pretty as well, that's a bonus (for 

sighted users) but in the greater scheme of things, I'd look for 

"accessible", "navigable", "consistent", "coherent", 

"intuitive" and any one of a half-dozen or so similar concepts 

before "pretty"… 

2007 Link Irrelevant 

…> How about 'background-position: 0 0 calc(100%-15px) 

calc(100%-15px)'? Not very intuitive, but it does make a 

background image of 15 x 15 px using your model :-)… 

2007 Link Opinion 

…Borders can be big, though often not, so drawing the 

shadow only for the box/background-color itself might hide 

2007 Link Opinion 
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the shadow when I would expect the border to "cast" it as 

well. But, this has problems. If the background color is 

rgba(), the shadow might show through, which is counter-

intuitive… 

…I like that idea. A bit selfishly, perhaps, since English is 

my primary language. I understand the need to support 

writing directions other than Roman-style, but I find terms 

"start" and "end" (and their perpendicular counterparts) non-

intuitive. 

2008 Link Opinion 

…For an element that is height:10%, setting center-y:5% 

should have the top edge lined up with that of the parent 

element. This seems more intuitive for me… 

2008 Link Opinion 

…I suppose a very careful reading might reveal to authors 

what those values do for position:center and how they differ 

from position:absolute. I don't think it is as intuitive, though. 

2008 Link Opinion 

…I think background-size or background-sizing would be 

the more intuitive for most designers and developers for the 

reason that background-stretch or resize implies that you 

must be stretching or resizing when that simply isn't the true 

meaning of the property… 

2008 Link Opinion 

…background-fill  (this one is pretty darned intuitive)… 2008 Link Opinion 

…I will go with the others who have replied. I like 

background-size because more intuitive… 

2008 Link Opinion 

I'd like to add a few notes on "alignment" proposals: 

First, I have mixed feelings on the goals of the new property. 

It appears to have multiple reasons to exist: … Provide a 

more intuitive alternative to "margin:auto"… 

2008 Link Opinion 

…If I specify a top, bottom, right and left of 0, then why on 

earth should the object's intrinsic width or height override?  

It's completely counter-intuitive that you can't use this 

pattern to stretch an iframe or image in CSS2.1. 

2008 Link Opinion 

…CSS already has a way to center blocks, but many authors 

find it (use of 'auto' margins) confusing and/or non-

intuitive… 

2008 Link Opinion 
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…The intuitive behavior of 200% or 2 as a line-height value 

would have been to be twice the value of 'normal.'… 

2008 Link Opinion 

…I still think background-fill is more intuitive to the 

designer mind, but given the example you showed re: fit, I 

think that would work as an option, too… 

2008 Link Opinion 

…Isn't it a bit odd that of one block is wider than its parent, 

and the parent is set to "overflow:scroll", that the margins of 

the child are shown on the top, bottom, and left, but not on 

the right? … Perhaps there is something in the spec that says 

it should do this? Does it also say why? It seems counter-

intuitive to me. 

2008 Link Opinion 

…There may be reasons that it is the way it is, but as a 

designer, I find it counter-intuitive that one is missing, 

especially when the other three are present. 

2008 Link Opinion 

…You are entitled to your opinion. I do not share it. I would 

rather it be intuitive to the author, even if it complicates the 

calculations that the programmer puts into the software. 

2008 Link Opinion 

…An author would find it easier (and more intuitive) to 

change text-shadow "red" and background "url(a.png)" since 

they both would occur first… 

2008 Link Opinion 

…My intuition says that overloading ':checked' is dangerous 

and not very intuitive… 

2008 Link Opinion 

…Even if you didn't call it "checked" (I think "checked" is 

as good as any other, and no more overloaded than it is for 

radio buttons), if you made it operate the same then it would 

be intuitive to set and change… 

2008 Link Opinion 

…I made a different proposal entirely, mostly based on the 

fact that calling a property 'background-origin' and then 

having its intended effect have little or nothing to do with 

defining an origin point seems counter-intuitive at best.  Thus 

my suggestion to completely redefine that property and shift 

what its currently-drafted values do to a new property with a 

(slightly) more intuitively descriptive name. 

2008 Link Opinion 

…it's intuitive and simple enough so web authors can edit 

w/o having to hire an expert to understand the spec… 

2008 Link Irrelevant 
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…Bert: it does seem we want a separate property 

Steve: we are going to need it for vertical 

Steve: and not having the same thing for horizontal would be 

confusing 

Bert: are there any other values? 

Anne: left and right 

Bert: that's handled by margin auto 

Tantek: unintuitive and hard to teach people 

… 

Jason: because margin auto is not an intuitive way to do it 

… 

Jason: again it gets back to the intuitiveness of margin auto - 

that's the problem. 

2008 Link Opinion 

Fantasai: Concerned about difference in white space syntax 

of nth-child() and calc(). 

… 

Daniel: "7n + 3" looks very intuitive, is used in many other 

places that people now. 

2008 Link Opinion 

…As I said, I don't care what we define, either way will be 

non-intuitive to some people… 

2008 Link Evidence 

…I would suggest using Anne syntax for consistency. A 

forward slash "/" would indicate either a fall back or a fall 

forward. like. 

content: "hello" / url(hello.png); 

The fall back to the left I think is more intuitive for authors. 

Also using commas would mess with multiple background 

strings. This would be better. 

2008 Link Evidence 

…I think the intuitive way to look at the problem is; that no 

matter how or where you break inside the child of element 

you also break that element… 

2008 Link Opinion 

…you should find the best place to break, i.e. or the place 

that break as few rules as possible… 

I believe this produces the visually best most intuitive 

results… 

If you have elements with borders stacked inside each other, 

and you are forced to break the topmost of them, the most 

2008 Link Opinion 
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intuitive thing to do is to try to break between the next level 

of bordered elements. 

…<body style='position:relative' 

onload="alert(a.offsetParent == document.body)"> 

<div id=a style='position:relative'>a</div> 

</body> 

The intuitive outcome of the display would be an alert with 

the value 'true'. However, CSSOM would make it so that the 

outcome would 'false' in the alert… 

2008 Link Opinion 

…I agree the 'background-origin' name isn't very intuitive. 

Not sure what would be better, though, given that we also 

have 'background-clip' which can be set to a different value. 

2008 Link Opinion 

…With enough imagination, one can even imagine a 

positive value on the blur being reduced a pixel at a time, 

until it passes zero and jumps into being a shadow of the 

negative space (also called "white space" or page 

background). Minus sign = negative space shadow; has a 

certain (only slightly convoluted) logic to it, even if the 

"blur" value is not the most intuitive place to put it… 

2008 Link Opinion 

…Quote: "In graphic representation, an artist uses intuitive, 

artistic, scientific, or technical skills to represent the 

phenomenon of the visual perception of perspective. In 

simpler terms, these skills are used to add a suggestion of 

depth to what is ultimately a flat image or drawing."… 

2008 Link Irrelevant 

…The draft makes no mention of whether variable lookups 

occur using every variable defined on the document or only 

variables that occurred earlier in a depth first parse of the 

stylesheets.  I believe it's much easier (and more intuitive 

for authors) if lookups occur using every variable available 

for the current media (since dynamic re-evaluation when 

methods like setVariable get called would be much more 

problematic otherwise).… 

2008 Link Opinion 

…because once this is implemented, how could we ever 

add any new features. I suggested highlight initially 

because the word *high* would seem intuitive for authors 

in what the property is actually doing. 

2008 Link Opinion 
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…"content: inhibit" or 'content: ""' should serve just as well 

as your "visibility: background".  "visibility: foreground" 

appears equivalent simply to "background: none", possible 

in any browser that supports a CSS background in the first 

place. 

These solutions seem more intuitive to me… 

2008 Link Opinion 

…I agree.  I think the model of just allowing variables to be 

defined at the document-level is simple and intuitive.  It 

allows for centralized variable definition and reuse… 

2008 Link Opinion 

…As for whether to use the sigil in the declarations as well, 

I don't think there would be any difference in terms of 

parsing it, in the syntaxes that have been contemplated so 

far.  I think it's more intuitive to use the same name in 

declaration and use, not require an extra character for one 

but not the other. 

2008 Link Opinion 

… Column rules are only drawn between columns that have 

content in the normal flow 

With my designer hat on, the WebKit implementation 

seems more intuitive. 

2008 Link Opinion 

…I think displaying the marker makes the most sense from 

an authoring perspective. Treating the marker as the 

principal block box's child and clipping it is neither useful 

nor intuitive… 

2008 Link Opinion 

…I don't think it is intuitive for the outside marker to affect 

the height of a line and then not scroll with the line… 

2008 Link Opinion 

… The spec says that the ellipsis should be rendered before 

the overflow boundary, but this is not the browser behavior 

(rendered after the last non-removed character), and also 

not the intuitive behavior (in written text, the ellipsis is 

always placed right after the text that is truncated). I think 

the correct behavior is to visually remove grapheme clusters 

until enough space is available for the ellipsis, or until a 

block boundary is met (from an inline block, or the 

boundary from the overflowing block), and to then render 

the ellipsis at the insertion point of the last removed 

2008 Link Opinion 

https://lists.w3.org/Archives/Public/www-style/2008Jun/0316.html
https://lists.w3.org/Archives/Public/www-style/2008Jun/0364.html
https://lists.w3.org/Archives/Public/www-style/2008Jul/0424.html
https://lists.w3.org/Archives/Public/www-style/2008Jul/0439.html
https://lists.w3.org/Archives/Public/www-style/2008Jul/0578.html
https://lists.w3.org/Archives/Public/www-style/2008Jul/0582.html
https://lists.w3.org/Archives/Public/www-style/2008Aug/0006.html


 

104 

 

grapheme cluster. That's intuitive, and mostly consistent 

with the behavior as implemented… 

…This would correspond to @define after being blessed by 

an official w3 recommendation I guess. I quite like "define" 

as its name is quite intuitive wrt its behaviour, and it avoids 

any overloaded interpretations of what to expect from 

something named as variable… 

2008 Link Opinion 

…This problem certainly exists, but I'm not sure how much 

attention we should give to it. I would prefer a short and 

intuitive syntax like $ and would welcome that some kind 

of "damage estimation" be performed for the most popular 

alternatives. 

2008 Link Opinion 

…The intuitive mind is a sacred gift… 2008 Link Irrelevant 

…Peter: My concern is what happens when we start getting 

rich fonts with multiple weights. 

Peter: I want to be sure that result is intuitive for fonts with 

more than two weights… 

2008 Link Opinion 

…Steve: The alternative is that 'last-line-align' doens't 

apply. 

Fantasai: The 'last-line-align' applies because there is a 

forced line break. 

Steve: I wouldn't call that an inline element (because it 

contains a line break). 

David: Maybe the term [inline] is not fully intuitive, but it 

*is* precisely defined. 

2008 Link Opinion 

Elika: border-corner-shape: [ sides | corner ] || [ round | 

sharp ] 

Alex: border-length is a little more intuitive… 

2008 Link Opinion 

…david: another way to solve same problem is calc() 

alex would find it more intuitive to have a separate property 

that defines alignment direction… 

2008 Link Opinion 

…No, I think we are again in a case when 8.3.1 excludes 

collapsing (used height NOT equal to what it would have 

been if min-height were its initial value). 

2008 Link Logic 

https://lists.w3.org/Archives/Public/www-style/2008Aug/0184.html
https://lists.w3.org/Archives/Public/www-style/2008Aug/0184.html
https://lists.w3.org/Archives/Public/www-style/2008Aug/0222.html
https://lists.w3.org/Archives/Public/www-style/2008Sep/0073.html
https://lists.w3.org/Archives/Public/www-style/2008Sep/0073.html
https://lists.w3.org/Archives/Public/www-style/2008Sep/0074.html
https://lists.w3.org/Archives/Public/www-style/2008Sep/0075.html
https://lists.w3.org/Archives/Public/www-style/2008Sep/0085.html
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Really?  That seems counter-intuitive. Compare these 2 test 

cases: http://lachy.id.au/dev/css/tests/adhoc/collapsing-

margins-02.html 

http://lachy.id.au/dev/css/tests/adhoc/collapsing-margins-

03.html 

…Variables as Daniel and I specified them can remain 

unresolved until you end up using those rules in a specific 

medium.  This "global soup" approach is simple and 

intuitive for authors, since the variable names always cross   

stylesheet boundaries (without ever having to delay the 

parsing of a sheet because another sheet hasn't loaded yet), 

and the last rule specified in the sheet order wins. 

2008 Link Opinion 

I think the current method of interpreting percentages is 

very intuitive. It seems your concern is with calc()… 

2008 Link Opinion 

…But consensus is not always a synonym to "intuitive" nor 

to "best solution"… 

2008 Link Irrelevant 

…This allows graceful degradation for browsers that do not 

support text-shadow, in the cases where an author would 

use the same "color" and "background-color", and rely on a 

shadow of a different color to make the text readable. 

As it is a fairy common use case (for example, about every 

text-shadow demo on the net uses it), I think such an 

intuitive way to have graceful degradation would be much 

appreciated… 

2008 Link Opinion 

If we choose nesting of ::selection pseudo-elements, then 

we run into the problem that the rules: 

  p::selection { background: purple; } 

  ::selection { background: blue; } 

would cause the selection on any element inside the p to be 

blue. However, we could still represent the default selection 

as :root::selection rather than as ::selection, although this 

seems less intuitive to me. 

2008 Link Opinion 

fantasai: That would not make sense if the min-height is big 

enough to contain the margin 

Alex: but its behavior is continuous 

Discussion about what is intuitive 

2008 Link Opinion 

http://lachy.id.au/dev/css/tests/adhoc/collapsing-margins-02.html
http://lachy.id.au/dev/css/tests/adhoc/collapsing-margins-02.html
http://lachy.id.au/dev/css/tests/adhoc/collapsing-margins-03.html
http://lachy.id.au/dev/css/tests/adhoc/collapsing-margins-03.html
https://lists.w3.org/Archives/Public/www-style/2008Sep/0207.html
https://lists.w3.org/Archives/Public/www-style/2008Oct/0056.html
https://lists.w3.org/Archives/Public/www-style/2008Oct/0150.html
https://lists.w3.org/Archives/Public/www-style/2008Oct/0266.html
https://lists.w3.org/Archives/Public/www-style/2008Oct/0268.html
https://lists.w3.org/Archives/Public/www-style/2008Nov/0022.html
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Steve: It really bothers me that we don't have any designers 

here 

Alex: Min-height is as currently specified has a side-effect 

on margin collapsing that is not intuitive to the designer 

2008 Link Opinion 

…   Daniel: I have a <pre>, and I want a minimum height 

for my code box 

<dbaron> Designers aren't really using min-height in the 

wild because of IE support, I think. everybody has a 

different idea of what designers would want for min-height 

and margin collapsing 

fantasai posts to twitter and gives up trying to minute 

Discuss dbaron's option E 

Alex: That's what IE8 impelements, and I'm not convinced 

it's more intuitive 

2008 Link Opinion 

…Hakon: next, border parts 

generated content for paged media spec 

Hakon explains example XXXV 

bert makes a very funny face 

Hakon: this is very very cool 

Hakon: needed for footnotes 

Hakon: very intuitive 

Hakon: way to define dash above footnotes 

2008 Link Opinion 

…Peter: You can have "7px + -4px" 

Haakon: So these spaces here are significant? 

Bert: Some of them are. 

Peter: Can you nest calc()? 

Bert: no 

Bert: Seems kind of pointless. 

Peter: It's unintuitive to a user to require spaces around - but 

not around / or *. 

2008 Link Opinion 

…15:55  * Bert wonders why HTML5 doesn't add 

<toc><li>...</toc> elements... 

Peter: OK, z-index first thing tomorrow, then. 

Haakon: I have another issue about the page counter. 

<glazou> Bert: hey, that would be a too simple and intuitive 

solution :-) 

2008 Link Opinion 

https://lists.w3.org/Archives/Public/www-style/2008Nov/0022.html
https://lists.w3.org/Archives/Public/www-style/2008Nov/0022.html
https://lists.w3.org/Archives/Public/www-style/2008Nov/0023.html
https://lists.w3.org/Archives/Public/www-style/2008Nov/0023.html
https://lists.w3.org/Archives/Public/www-style/2008Nov/0023.html
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dbaron: We also need counters work for the HTML5 header 

algorithm, counter-set that doesn't create a new scope might 

solve it. 

…HTML solves this by allowing the onfocus handler to be 

attached to the BODY tag, which seems like a sensible, 

intuitive place to put it. I could see the argument for putting 

it on the HTML element instead, but they didn't. 

2008 Link Opinion 

…I prefer a way of correcting it that is similar to the way it 

was dealt with in HTML (pretending that the BODY is the  

WINDOW, for certain things), as that would be familiar 

and intuitive for authors… 

2008 Link Opinion 

…Thirdly, I understand from [1] that clearance was 

originally implemented as a change in margin-top.  

Superficially this seems intuitive, so there must be some 

tricky edge-cases which expose problems with this 

implementation. 

2008 Link Opinion 

…The issue is that you're essentially duplicating the Grid 

Positioning Module ( http://www.w3.org/TR/css3-grid/ ).  

In many ways Template Layout is just a pretty face on Grid 

Positioning, making the whole thing easier and more 

intuitive. 

2008 Link Opinion 

…So the only remaining question is whether 

xy := <nowrap>x</nowrap><nowrap>y</nowrap> 

should wrap the same as 

<nowrap>xy</nowrap> 

I think that is more intuitive than the alternative… 

2008 Link Opinion 

…In Gecko we follow two principles: 

1) Break opportunities induced by white space are entirely 

governed by the value of the 'white-space' property on the 

enclosing element. So, spaces that are white-space:nowrap 

never create break opportunities. 

But 2) When a break opportunity exists between two non-

white-space characters, e.g. between two Kanji characters, 

we consult the value of 'white-space' for the nearest 

common ancestor element of the two characters to decide if 

the break is allowed. 

2008 Link Opinion 

https://lists.w3.org/Archives/Public/www-style/2008Nov/0443.html
https://lists.w3.org/Archives/Public/www-style/2008Nov/0443.html
https://lists.w3.org/Archives/Public/www-style/2008Nov/0482.html
https://lists.w3.org/Archives/Public/www-style/2008Nov/0556.html
https://lists.w3.org/Archives/Public/www-style/2008Dec/0039.html
https://lists.w3.org/Archives/Public/www-style/2008Dec/0043.html
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I think these principles are reasonably intuitive and useful. 

To be continued from here…    

https://www.w3.org/Search/Mail/Public/advanced_search?keywords=intuitive&hdr-1-name=subject&hdr-2-name=from&hdr-3-name=message-id&index-grp=Public__FULL&index-type=t&type-index=www-style&resultsperpage=20&sortby=date-asc&page=20


 

109 

 

Appendix B: Experiment Notes 

M9Q0L5 

Notes 

 In the GSS example, found all the equals sign confusing, did not know what they 

could mean. 

 In the CSS Grid example, everything was reasonably intuitive, just unsure about the 

units being used. 

 In the Flex example, the shortness of the code appealed to the participant. 

 Commented on a preference for background-color to appear at the top of a style 

declaration. 

Transcript unavailable: recording program crashed before reaching substantive part. 

X0Z3C0 

Notes 

 Grid style sheets: usually much easier to see the units, but don’t see a unit in grid 

style sheets 

 Looking for differences between the code 

 Grid-template-columns looks like Bootstrap, it looks like CSS Grid uses a 

framework 

 All the properties are very common in the non GSS and CSS Grid examples 

 I like tables, but they are not so flexible 

 Flex looks basic 

 GSS: Too complex using equals signs, too much new stuff. Not so simple to move 

from CSS to GSS with the new syntax. However, moving from CSS2 to CSS3, just 

need to know new features. 

 CSS Grid is not so hard to understand. Think the units are different proportions. 

 Noted browser support concerns from Flexbox and that different styles could be used 

for different browsers. 

Transcript 

E: Choose the one that’s the most intuitive, the one that makes the most sense. 

P: definitely not the second one probably (Grid Style Sheets). I see it is much clearer when 

you see what you (unit) measures are in. 
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E: What are you looking at now? 

P: I am looking line by line and seeing what are the differences. Now I am looking at the first 

one, grid-template-columns, looks like Bootstrap. The first example looks like some kind of 

framework, so you have columns and lines. It depends on which code I should choose… 

Let’s go to flex. I would say I would choose the last one, because I can clearly see the height 

and width and in pixels… but it is only because I can see what it’s related too. I like Tables, 

but they are not so flexible. 

E: You would choose flex? 

P: Yeah, it is more interesting, you can do more stuff… 

E: Does the code make sense? 

P: Yep, I don’t see anything special. What about the third one which is Grid Style Sheets 

element centring. I don’t know, is it really normal CSS? 

E: It’s proposed an extension to CSS that uses constraints. 

P: What’s the reason, for example, what is the reason to use double equals? It is more like 

C++ or similar. You don’t see the difference… It is too much new stuff. It is not simple to 

move from CSS to this one. If you choose CSS3, it’s not such a difference from CSS2 because 

it’s just adding new functions… it is not hard to move from one to another, you just need to 

know new (functions), but here you need to know much more: how to specify parameters in 

a new way. What about the first one, CSS Grid element centring, I think it’s… it looks like… 

kind of… yeah, it’s not so hard to understand. It’s okay. I am not sure what grid-template-

columns. I think it is different proportions… I would choose Flexbox… 

Internet connection problem 

E: (Which was the second code snippet?) 

P: The second one is Table Styles. The last one is Flexbox. 

P: I should probably say why it could be better to choose tables. Sometimes you can’t choose 

Flexbox if you need to support old browsers. Probably better to use a mix… different styles 

for different browsers. 

25.07.2016 5:30pm  

K1C5C8 

Transcript 
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P: So, in the first code snippet, it looks like it’s made with CSS Grid. I have never done 

something, so I see grid-template-columns. I can’t… I don’t know what this does. So it’s… 

let me look… I just can think… I really don’t know… I see the grid-column: 2… I try to 

make sense how a column can fit in there because it is centred horizontally and vertically. 

And then inner element p is just padding… and is text align-centred. 

P: The second code snippet, Flexbox. With Flexbox, I am familiar and display flex works 

like magic. The inner element is with width 60% and the p is centred… Yeah… okay… If I 

see this code snippet I would know it centers something in the middle and there are margin 

auto. But with flex it’s just ‘display this as flex and it’s there and it’s centred’ but I really 

don’t know what… why it does what I want. If that’s…  

P: The third code snippet is done with display: table and display: table-cells which for me is 

straight forward but I know tables aren’t there to layout something. Tables are there to … 

make tabular text alignment. But you know what’s going on. With display table-cell you can 

do vertical align middle and vertical align middle speaks for itself… it’s vertically aligned in 

the middle. Inner element p is centered with margin auto and has a width… it’s clear what it 

does but I know it’s not the most perfect thing to do because it’s a table. 

P: And the fourth code snippet, I’ve seen this before, this is GSS. I’ve looked into it. But it’s 

kinda ‘whoa’, it’s a completely different attempt to CSS. And… let me look… it has the top, 

window[top], left… it’s the outer element. Okay… outer element is on the window top and 

window left. The inner element has the background colour, green. Ah, okay, the p is text 

align center and then we have inner element is greater than or equals than outer element… 

okay… so the inner element depends on the outer element width, but 70%. It’s centered with 

the outer element center and the inner element height is like the p height, so it’s… I have 

think what it does, but when you see the code, it speaks for itself. 

E: So which would you most like to see in a code base, where you see okay, this is doing 

what that layout is, what the layout shows? 

P: I think for layout, GSS is very good because, like a said, it speaks for itself. 

Answers written questions… 

I can see… with the CSS Grid, I read it and didn’t know what it did and I went to it with my 

cursor. With Flexbox, I knew it does something, it centres it, but hmmm… and if there was 

the table styles. I kind of went over it and analyse it and knew what it does. And with GSS, I 

went over it and this intrinsic height, I don’t know what this does, that’s because I went with 

the cursor. And then I tried to figure out these layout positions. 
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M706W1 

Transcript 

P: To start with, I don’t know what a CSS grid is to be completely honest. 

E: It’ behind flags, like it’s a very new, experimental feature. As you read through it, try and 

work through what it could mean. 

P: So my guess is that grid is some kind of… um… so template-columns… There’s another 

framework we’ve used before… bootcamp? Or something. 

E: Bootstrap? 

P: Yeah… Bootstrap had the column-layouts system thing going. And you could define 

things within a column of a grid. And this looks similar to that. And this would probably 

mean 3 some unit (not sure what fr means), 14 and a 3. Which means you have 3, left column 

over here, then 14 then 3 here (point cursor to areas on example layout). I am not 100% how 

the vertical is calculated. Maybe the height… ah the outer element… So the outer element is 

divided into 3. This a bit confusing to me because it defines… it’s interesting… Align items 

center. Is that a new too? 

E: Yeah, sort of, it can also be used with Flexbox 

P: Yeah, which I also don’t know. So, align item centre, I have no idea what that would mean. 

This is like implicitly a certain layout, I’m not sure what that would mean if it means this 

way… or vertically centred. It’s not explicit. It would take me ages to find that line of code 

to do what I want it to do. Height and width are pretty standard across all… I assume we want 

a fixed height and width and that’s not important. Inner element… this is interesting… you 

pick grid in reference to the outer element (looking at grid-column 2). I assume this means 

you go in this slot (middle of layout) here. That’s like super interesting. I don’t particularly 

like it because this means that (the column number) is dependent on (the grid-template-

columns value) which could be somewhere else in the CSS. Where, in fact, this should be 

nested in here. It is hard to explain what I’m trying to say I guess. It’s weird that we’re moving 

the HTML logic into the CSS kinda. It’s scaring me a little bit. You’re basically doing 

programmatic… not programmatic… but like ordered layouts in CSS which is not common. 

E: An the order is part of the semantics. 

P: Yeah… so it’s like 2, grid-column 2. Which I guess makes sense to read, but I don’t like 

it in that regard. 
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P: That’s the paragraph… 

P: Let’s go to Flexbox. So I don’t know what flex is, right of the bat, so I’ll try to guess what 

it means. I think I might have experienced it, I just don’t remember. This is all standard stuff, 

it’s no different. So the inner element is green, it will be green. So 70% of its parent width. 

So auto means just use whatever remains of the width on both sides. I think that’s typically 

what it does even without flex. 

E: Do you know what it does with flex? 

P: No 

E: Also vertical… 

P: Oh, vertical alignment. Okay, I just don’t know that. So that means top, bottom, right, left. 

That’s super cool. Um… width… yeah, so since I haven’t set the… have I set the height? Is 

the height implicitly 100%? No it’s not. Where does it get the height from? 

E: Here, height comes from the bottom up, from the paragraph. 

P: Sure, fair enough. Text-align… centre…, yeah… same stuff… And here we’re doing the 

same thing assumedly? To centre this content? Without being how that works… only because 

I know how CSS margins work kinda… but I would not have guessed that flex did the vertical 

alignment. I guess if this was a live demo I would probably work it out pretty quickly though. 

This one’s alright, less code and that kind of stuff. 

P: Ahh, tables… I never code the table display stuff. Vertical align middle. That means 

vertically aligned, is that right? 

E: Yep, vertical 

P: Yeah, but it’s in both middles. Display table cell, um… (sigh)… This one annoys me… It 

uses the properties of the table, but it’s not a table and nothing about it kind of says where to 

put… uh… I guess that’s what… I am not sure what’s going in this one… What’s giving the 

side paddings this time? Ah, width 70, so it wraps the paragraphs content. Margin auto, same 

business… Text align centres… Not much to say about this one. 

P: Grid Style Sheets element centring, this looks scary. I bet you this is your one isn’t it. 

E: It’s not mine. It is a framework, JavaScript, and it has been proposed to used constraint 

syntax in CSS: 

P: Right. Got it. Alright, so, what’s going on here? I’m not going to pretend I know what’s 

going on here. In traditional programming languages the double equals means evaluate the 
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equality between two parameters. I’m guess it means the value… I have no idea honestly. 

I’m getting it means it can be calculated. Top, this is what leads me to believe that, is that it’s 

on this parameter here. It’s, argh, something like: top should to be the top of the window, and 

left should be the left of the window. Intrinsic-height, that’s a fancy keyword looks up 

definition of intrinsic, so that’s means the height should be the natural height of the… I’m 

guessing it’s going to use the padding and the height of the text rather than all the space 

available. Down here we have inner element is greater than or equal to the outer width times 

70% (laughs) what? Okay, centre, outer element equals centre. That makes sense. I guess 

that’s defining a range (pointing to first of three last constraint statements) for (inner 

element), saying that it can be greater than or equal to 70% of (outer element). 

E: How would you phrase that statement in an English sentence? 

P: OK, let me just… The inner element should be at least… the max width is 70% of the 

outer element. And for this one, they should share a center point. This one means infer the 

height from height of the p which has an intrinsic height. This is kinda that as well. That’s 

interesting. Does this stuff get calculated by the browser or is just JavaScript… then CSS? 

E: It’s JavaScript, it’s a framework. The suggestion is that the browser could do it. 

P: I feel like this is the sort of thing that someone would type when they are trying to show 

off their programming skills. Having just learnt about grids and flex, I would probably use 

Flex. Partially because I am lazy and it seems to be the one that works the easiest… with the 

littlest… you know… things that confuse me. Like this I don’t like because you have to 

consider these (the little fr things). Is that what fr means, fraction? 

E: Even in the spec, it’s not exactly clear what fr stands for. But it is a fractional unit… it’s 

a fraction of the whole grid. 

P: So why is it 20, not 10? Ah, right! So whatever number you imply is the total. So it’s 3 

twentieths. So could just do one, one, one and it would be equal. 

E: Exactly. 

P: Um… I have to pick one don’t. Fine this one… (picks CSS Grid). 

E: Now, there’s a bit of a reflection… 

P: I would not like to write anything… 

E: Just talk a little bit more, but answer the last two questions. 
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P: Explain why you chose… ahhh, yeah I will talk. I chose this one (CSS Grid) because after 

looking at all of these, it’s the one I understand the most. Despite the fact it is not ideal for 

this kind of think. This is more than just centring content, this is a specific layout; like I want 

a 14th of a 20th or whatever… (the grid column template value) is not as arbitrary as 70% 

essentially. I am not sure… but… I previously said I don’t like this one, but I picked it 

anyway. Maybe I don’t like centring with CSS. If I had to go with one, I would use (CSS 

Grid) simply because I understand it the most. And I have not used Grid before, but this 

makes a lot of sense. You got your fractions of a sum total, I think that’s pretty cool. This I 

am not a big fan of, but it makes sense. 

P: Okay, that kind of makes sense. You want to put it here (column 2), then you get a grid 

like that (grid column template). This I am not a big fan of, align item centre which I assume 

lines it this way (vertically) because that should be a part of the grid right, rows or something, 

who knows. I’ve actually been in a situation where I have wanted to centre content and had 

no solution. The actual solution was to press both halves of the image against each other. 

Then you make two boxes, one is pressed against the bottom of the other element, the other 

against the top of another element and they just happen to centre the image for you. It’s really 

horrible. 

P: Characteristics you found counter-intuitive… Despite picking this one, the align items 

centre comes out of nowhere and doesn’t make sense. And if I was looking at this and this, I 

would not assume that this meant this. There should be grid template rows. 

P: Tables stuck. This one has too much JavaScript… it’s not JavaScript… but too much logic 

for something so simple. Even if I understand it, I would not want to read this. This one, I 

think I just don’t fully understand. It seems like flex is just magic. It might as well say display 

magic. Whilst it would be nice if it worked… to be honest I would also pick this one, but 

only because it just works. 

E: Interesting that you noted that, that it works just like magic. But with grid you can at least 

see the columns. 

P: Yeah, there’s a defined layout. I don’t entirely like the fact that display affects its laid out. 

But (Flexbox) is magic. Display flex, then margin auto, wow amaze. The only value we’re 

setting here is width. So that somehow means that by default everything should be pretty. 

Z4T2D3 

Notes 

 dont know what columns means 
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 css grid element 

- template columns don't make sense 

- Similar to CSS. 

- rank 3 

 flex 

- don't know what flex means 

- like flexbox: makes more sense in the inner and outer elements 

- everything simple and matches up 

- lot easier to remember fewer rules 

- rank 1 

 table styles 

- width of 70% 

- rank 2 

 grid style sheets 

- Immediately, there's a lot more stuff going on, which I don't want to read. 

- Not as straight forward as the first three. 

- Least intuitive. 

- Straightforward  

- 70% makes more sense the GSS 

- rank 4 

- More used to just using the column. Reminds of objective C. ::window 

Transcript unavailable, program crashed. 

28.07.2016 6:00pm M9T5F6 

Transcript 

P: reads the task… 

P: I see a figure element which has a larger outer element in blue and has a green inner 

element with content in it. It is position centred to the out element. The HTML which is 

obviously for this cascaded and a paragraph tag… all good… Now I see a table with three 

code snippets. 

E: There might be a fourth if you scroll down. 

P: Ah, there’s a fourth. There’s four code snippets, the first is Flexbox, the next is Table 

Styles, the third is CSS Grid and the fourth is Grid Style Sheets element centring. Each of 

these boxes contains some CSS code, each for the outer, inner and paragraph element. By the 
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way, the text is also centred in the inner element. The colour is everywhere the same. And 

most importantly, it is hard to position centred on the out element. I already knew about 

positioning of elements with Flexbox which makes the positioning of elements quite flexible 

as the name suggests. But I see that the inner element misses some flex attributes. Therefore, 

I would say that the first snippet is not the right one. 

E: (Corrects understanding of experiment stating that each snippet produces the same result) 

P: Okay, so, actually for the first what captured my curiosity is that the inner element has a 

width setting of 70%, maybe that is reasonable for how this is scaled. I would expect some 

positioning of the inner element which is not stated there.  

P: So for the Table style element, the outer element with a fixed height and width, in all of 

those, and you have display table. Actually, then in the inner element we see that there’s a 

vertical align CSS property which says middle which seems reasonable for me. And the 

display of type table cell and the paragraph is also with the text align centred. That looks 

pretty descriptive the second one. 

P: The CSS Grid centring, let me check out this. The outer element is of display grid. It uses 

some grid template columns with abbreviations: 3fr, 14fr and 3fr. I can only assume that 

these are three columns three columns; I can’t quite get what fr means. But that should be 

some virtual layout-ing scale numbers. Um… it positions the inner element in grid column 

two which might make some sense. But it does not say how wide the inner element should 

be. Ah. Now, I think I get it. It says in the grid template columns that there are three layout 

elements to the left of the space and 14 layout columns wide centring and then there are 3 to 

the right and I think the inner element is in grid column 2, I position it into (indecipherable? 

middle of) the layout columns and then having it with 3 spaces to the left and 3 spaces to the 

right which obviously seems to centre the inner element. But still it doesn’t say something 

about the height of element. 

P: Then, for the fourth, we have some meta classes which positions the outer element on the 

top left of the window. The inner element has no positioning constraints in the first section. 

But (down the bottom) it says that there are some calculation rules which looks a bit complex 

for me to figure out what it does. But it seems to calculate the positioning of the width and 

height of the inner element based on the width and height of the outer element. And 

positioning the inner element in the center of the outer element with an assignment. At least 

this assignment looks pretty need. But the rest is a bit strange from the syntax. I would say 

the second one is the one that makes the most sense to me. 
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C6Y7Y6 

CSS Grid element centring 

 three ids 

 outer element with colour web 

 it's a new thing... grid template columns... I am not too sure what fr means. It makes 

sense this. 

 inner element 

 grid columns - hard to  

gss 

 This is crazy, I never saw this way to attributes. I think it ... some kind of variables. 

 We have same pattern, with width  

 sure where variables like top and left come from. 

 text element has a height; not sure what it means 

table styles 

 on the first view, a lot simpler than GSS. 

 it's a table layout.  

 pretty straight forwad. Table metaphor makes sense. 

 inner element has a background. 

 colour 

Flexbox 

 one step easier 

 outer element 

 margin auto 

 if I knew 
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D0K3H9 

flexbox 

 paragraph, a 

 I do this pretty regularly 

 outer element,  

 margin auto, align items is clearer. 

 better semantics 

 padding rem is a bit funny. could have made a flex. 

 margin won't do anything 

css grid 

 new layout 

 fraction unit. Setting up a grid where columns take up fractions. 

 goes into the second column. you can have areas. big fan. from usability, flex is great 

for 1 dimensional layout 

table 

 personally, I don't use it a lot. 

Gss 

 okay, I have not seen it before. 

 height... top... window... 

 first impression: not sure about the double equals. I can see what top and left. 

Problem, is it always on the top. ::window is confusing, but its not position fixed. I 

am not sure what the expected behaviour is. always,  

 intrinsic-height,  

 assignmnet, but usually boolean operators. 

 interesting idea, unfamiliar syntax. == window top 

 relationships between 
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Appendix C: Cursor Movements 

M9Q0L5d 

Note: Flexbox showed movement in this session. 
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X0Z3C0 

Note: no activity on image or HTML in this session. 
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K1C5C8 

Note: no activity on Flexbox snippet or CSS Grid snippet. 
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M706W1 
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Z4T2D3 

Note: no activity on Flexbox code snippet or HTML.  
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M9T5F6 

Note: no activity on Flexbox snippet, image or HTML. 
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C6Y7Y6 
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D0K3H9 
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Appendix D: Declaration 

I declare that I have independently written this Master’s Thesis and have not used other 

sources than the sources and means indicated and stated in quotations. 

 

 

 

William Clear 29 July 2016 


