

Introducing Constraints into Web Layouts:

Evaluating the Intuitiveness of Current

Approaches for Designers

MASTER’S THESIS

by

William Clear, 11101906

submitted to obtain the degree of

MASTER OF SCIENCE (M.SC.)

at

TH KÖLN – UNIVERSITY OF APPLIED SCIENCES

INSTITUTE OF INFORMATICS

Course of Studies

WEB SCIENCE

First supervisor: Prof. Dr. Kristian Fischer

TH Köln - University of Applied Sciences

Second supervisor: Prof. Christian Noss

TH Köln - University of Applied Sciences

Cologne, July 2016

2

Contact Details: William Clear

william.j.clear@gmail.com

 Prof. Dr. Kristian Fischer

TH Köln – University of Applied Sciences

Institute of Informatics

Steinmüllerallee 1

51643 Gummersbach

kristian.fischer@th-koeln.de

 Prof. Christian Noss

TH Köln – University of Applied Sciences

Institute of Informatics

Steinmüllerallee 1

51643 Gummersbach

christian.noss@th-koeln.de

mailto:kristian.fischer@th-koeln.de
mailto:christian.noss@th-koeln.de

3

Abstract

When it comes to web applications and their dynamic content, one seemingly common

trouble area is that of layouts. Frequently, web designers resort to frameworks or JavaScript-

based solutions to achieve various layouts where the capabilities of Cascading Style Sheets

(CSS) fall short. Although the World Wide Web Consortium (W3C) is attempting to address

the demand for more robust and concise layout solutions to handle dynamic content with the

recent and upcoming specifications, a generic approach to creating layouts using constraint

syntax has been proposed and implementations have been created. Yet, the introduction of

constraint syntax would change the CSS paradigm in a fundamental way, demanding further

analysis to determine the viability of its inclusion in core web standards. This thesis focuses

on one particular aspect of the introduction of constraint syntax: how intuitive constraint

syntax will be for designers. To this end, an experiment is performed involving participants

thinking aloud while reading code snippets. Also, cursor movements are recorded as a proxy

for eye movement over the code snippets. The results indicate that, upon first-impression,

constraint syntax within CSS is not intuitive for designers.

4

Abbreviations

CSP Constraint Satisfaction Problem

CCSS Constraint Cascading Style Sheets

CSS Cascading Style Sheets

Flexbox CSS Flexible Box Layout Module Level 1

GSS Grid Style Sheets

HLSA Hue, Saturation, Lightness and Alpha

HTML Hypertext Markup Language

JSON JavaScript Object Notation

RGB Red-Green-Blue (Colour Model)

sRGB Standard Red Green Blue (Colour Space)

VFL Visual Format Language

W3C World Wide Web Consortium

5

Table of Contents
Abstract .. 3

Abbreviations ... 4

1 Introduction .. 7

1.1 Core Concepts .. 8

1.1.1 Web Layouts ... 8

1.1.2 Web Designer ... 8

1.1.3 Constraints .. 9

1.1.4 Current Approaches to Web Layouts ... 11

1.1.5 Intuitiveness .. 11

1.1.6 The Design Process and Environment .. 13

1.2 Scope .. 13

1.3 Objectives and Relevance ... 14

1.4 Motivation .. 15

2 Related Work .. 17

2.1 Constraint Cascading Style Sheets ... 17

2.2 Online Processing During Reading and How Code is Read 19

2.3 Approaches toward Intuitiveness from the CSS Working Group 22

2.4 Frameworks .. 26

2.5 Modern Web Page Layouts .. 27

2.6 CSS Specifications ... 29

3 Analysis .. 34

3.1 Historical Perspective ... 34

4 Experiment ... 40

4.1 Experiment Design ... 40

4.1.1 Establishing Contact ... 41

4.1.2 Pre-experiment Survey ... 41

4.1.3 Confirmation Email .. 42

4.1.4 Establishing a Video Call ... 42

6

4.1.5 Designer Views Example Layout ... 44

4.1.6 The Designer is Shown Four Code Snippets .. 45

4.1.7 Cursor Movements Over Code Snippets Are Recorded 51

4.1.8 The Designer Selects a Snippet .. 53

4.1.9 The Designer Completes a Follow-up Survey .. 53

4.1.10 The Results Are Combined .. 55

4.2 Results .. 57

4.2.1 Participant Survey .. 57

4.2.2 Experiment Results ... 59

4.3 Discussion .. 60

5 Conclusion .. 63

5.1 Summary and Key Findings ... 63

5.2 Critical Review ... 65

5.3 Future Directions .. 66

6 References .. 67

Appendix A : Uses of ‘Intuitive’ in the WWW-Style Mailing List 74

Appendix B : Experiment Notes ... 109

Appendix C : Cursor Movements ... 120

Appendix D : Declaration ... 128

7

1 Introduction

This thesis looks at the question of whether introducing constraint syntax into Cascading

Style Sheets (CSS) results in an intuitive development experience for designers creating

layouts for the web. Phrased as a research question:

Is constraint syntax in CSS intuitive for designers, relative to current CSS layout

techniques?

The paper attempts to answer this question as well as propose and implement a process for

determining the relative intuitiveness of CSS language features in general. The focus on

whether the technology is intuitive stems from some of the principles that underlie the

development and the success of the Web so far; in particular: availability and collective

empowerment (Open Stand, 2016). This paper suggests that considering the intuitiveness of

the standards underpinning the Web works towards aligning the Web with these principles,

as more intuitive standards would allow more people to utilise the Web to a greater extent.

This is one aspect of the practical relevance of this thesis. The other is establishing a process

of determining the intuitiveness of CSS language features which might be used to challenge

or support decisions in the creation of standards; a process that seems to have been largely

based on opinion during the formative years of CSS (discussed in section 2.3, supported by

Appendix A). In particular, this paper examines the feasibility of the integration of constraint

syntax as defined by the Grid Style Sheets 2.0 (GSS) framework (GSS, 2015) into the CSS

collection of specifications by comparing how intuitive it is for designers compared to current

layout approaches. Clearly, there is more to consider in the adoption of a standard; however,

this paper limits its scope to a consideration of the relative intuitiveness of the technologies.

There are several baseline concepts to establish for this paper: web layouts, web designers,

constraints, current approaches to web layouts, intuitiveness and the web design process.

Each of these concepts is defined and described later in the introduction as it is understood

in the context of this paper. Further, the introduction outlines the scope of the thesis and

introduces the objectives, relevance and the motivation for writing the paper. Following the

introduction, related works are considered: this includes both academic work as well as state-

of-the-art material in the web layout space. Next, the analysis section considers the problem

space from a historical perspective. The analysis section helps relate the paper to its context

as well at looking at how some fundamental ways of thinking about web layouts arose. An

experiment section follows, describing and justifying the experiment design, presenting the

results and discussing the findings. The paper is summarised, key findings are highlighted

and a critical review is offered in the conclusion.

8

1.1 Core Concepts

To establishing the ground work for this thesis, web layouts, web designers, constraints,

current approaches to web layouts, intuitiveness and the design process and environment are

defined and described as they are understood in the context of this paper.

1.1.1 Web Layouts

A web layout, as understood in this paper, is the composition of the graphical and textual

elements on a web page or in a web application. This is based on definition of layout as a

general term (Macmillan Dictionary, 2016) and made specific for the web environment. In

other words, the web layout could also be seen as the compositional result produced by the

interpretation of a website’s source code by a web browser. (For brevity, the word “layout”

also refers to web layouts in this paper). For instance, the Holy Grail Layout is a web layout

utilising a full-width header at the top of the page, a three-columned content section and a

full-width footer at the bottom of the page (Levine, 2006). Columns, rows, grids, headers,

footers and navigation bars are common terms used in the description of web layouts.

Furthermore, many websites utilise a grid-based layout framework such as Twitter Bootstrap

(Bootstrap)1, ZURB Foundation (Foundation)2 or Ink3 (discussed in detail in section 2.3).

The grid pattern of arranging content in rows and columns is evidently a de-facto standard

for web layouts. While the layout is the intended result, this paper focuses on how it is

achieved by a web designer using CSS.

1.1.2 Web Designer

Although the title of the paper refers to ‘designers’, by placing the word within the context

of ‘web layouts’ it is intended to imply that web designers are the target subject. In this paper,

a web designer is a person whose profession involves producing and updating web layouts

and interactions with web technologies (primarily CSS, HTML and JavaScript). The use of

web technologies differentiates the term web designer from the more established term,

graphic designer. However, since graphic design generally involves conveying information

using design elements such as typography and images (Merriam-Webster.com, 2016), a web

designer is seen as a particular type of graphic designer. More specifically, the web designer

(subsequently referred to as ‘designer’ for brevity) role includes creating designs (which

could be sketches, computer-generated imagery or mock ups) and translating those designs

into code for browsers (Grannell, 2013); in other words, it encompasses the work of a

1 The homepage of the Twitter Bootstrap project is http://getbootstrap.com/.
2 The homepage of the ZURB Foundation project is http://foundation.zurb.com/.
3 The homepage of the Ink project is http://ink.sapo.pt/.

http://getbootstrap.com/
http://foundation.zurb.com/
http://ink.sapo.pt/

9

frontend developer. This is not an unprecedented inclusion, as designer Andrew Clarke

observed: “code became my medium when designing became more than about making an

artist’s impression of a website” (Clarke, 2014). This is also backed up by survey done by

Gridset in which 38% of respondents, the largest category, self-identified as being a hybrid

designer/developer (Gridset, 2014). Both support the idea that being a designer involves

writing CSS. Therefore, in the context of this paper, a designer implements web layouts using

CSS.

1.1.3 Constraints

The term “constraint” is taken from the constraint satisfaction problems area of research in

artificial intelligence. A constraint satisfaction problem (CSP) consists of “a set of variables,

each of which has a value… [it] is solved when each variable has a value that satisfies all the

constraints on the variable” (Russell & Norvig, 2010, p. 202). A constraint consists of a

relation defining the values that variables participating in the constraint can take on (Russell

& Norvig, 2010, p. 202). In particular, this paper looks at how layouts may be treated as CSPs

using GSS. At face value, it seems quite beneficial to consider a layout as a CSP; for instance,

one may constrain two elements to have equal heights and widths (perhaps desirable when

attempting to utilise the Gestalt principle of similarity (Lidwell, Holden, & Butler, 2010)), or

constrain the width of an element to be always be proportional to its height (useful for

maintaining a ratio on video elements and image elements with preferred aspect ratios), or

constrain the centres of two elements to be at the same coordinates on the page, ensuring that

one element is always neatly centred, vertically and horizontally, within the other element.

In each of these examples, the constraints are satisfied when the requirements are fulfilled.

To best explain how constraints can be used for web layouts, an example is offered. Take the

example of ensuring that a video element always has a particular ratio and always has a width

at least as small as the window, for which the code may look like that given in Figure 1. In

this example, a feature video element is being identified by the GSS selector #feature-

video, which functions virtually the same as a CSS selector for most intents and purposes.

The width of the feature video element is a variable participating in three constraints. On the

first line, it is constrained to always be less than or equal to 800 pixels. In the language of

#feature-video[width] <= 800;

#feature-video[left] == ::window[left];

#feature-video[top] == ::window[top];

#feature-video[width] <= ::window[width];

#feature-video[width] == #feature-video[height] * 1.7778;

Figure 1: Constraint syntax example stating an element should retain a given width-to-height ratio and be no

wider than the width of the browser window.

10

CSPs, the scope of the constraint consists solely of the width property of the feature video

element and “<= 800” dictates the relation for the constraint: the value of the width property

should either be less than or equal to 800 pixels. Next, on line 4, both the width of the feature

video element as well as the window width are participating as variables in a constraint. In

this constraint, the relation is between the variables: it states that the width of the feature

video element should always be less than or equal to the width of the window. The third

constraint featuring the width property of the feature video element on line 5 has a relation

defining that the width of the video element should be 1.7778 times the height of the width

of the video. In other words, this line is enforcing a size ratio of 1.7778:1 (width to height)

on the video element, reflecting the common 16x9 video aspect ratio.

Throughout this description, the phrase “should be” has been used to reflect the particular

class of CSP that GSS is solving, a CSP with constraint weights. This allows authors to

prioritise constraints: weaker constraints may be violated when it is not possible to implement

them in favour of satisfying stronger constraints (GSS, 2015). The strength of constraints in

GSS is given with the keywords: weak, medium, strong and required; where medium is the

default strength (GSS, 2015). In regards to the intuitiveness of the constraint hierarchy

concept in GSS, the use of natural language keywords may help designers quickly adopt the

concept of the constraint hierarchy in GSS. Further, the GSS constraint hierarchy is

analogous to two concepts in CSS: the cascade and the important rule. Analogous concepts

or metaphors help make a system intuitive (Blackwell, 2006) (this is discussed greater detail

in the analysis). By providing more “weight” to styles specified later and by allowing CSS

rules to override subsequent declarations with the !important rule (W3C, 2011), CSS has

established an analogous precedent for the constraint hierarchy concept in GSS. Despite the

similarities and potential footholds for designers attempting to use GSS, it remains to be seen

whether the constraint hierarchy concept will be found intuitive or not.

Indeed, GSS presents quite a paradigm shift from CSS as it stands, where a property value is

assigned to a property in a unidirectional fashion. A constraint, on the other hand, works in

two directions. Here, a similar question of intuitiveness arises in the consideration of this

malleable aspect of constraint syntax semantics. To highlight the bidirectional nature of

constraint syntax and that the constraint syntax is not simply assigning variables, it is

#feature-video[width] == #feature-video[height] * 1.7778;

#feature-video[height] == #feature-video[width] * 0.5625;

#feature-video[height] * 1.7778 == #feature-video[width];

#feature-video[width] * 0.5625 == #feature-video[height];

Figure 2: Alternatives, equivalent ways to prescribe an element a 16:9 ratio using constraint syntax.

11

instructive to consider some of the alternative ways in which the last line of the feature video

example could be have written. These alternatives are shown in Figure 2, each of these lines

produces an identical result: the video element maintains a size ratio of 1.7778:1. Relating

this back to intuitiveness, the paradigm-shift from reading the <property>: <property value>

assignment pattern in CSS to bidirectional constraint syntax in the form <property>

<relation> <property> may impose a cognitive hurdle for designers new to GSS.

In summary, it can be seen that treating web layout as a CSP and declaring a layout using

GSS can be useful for solving common web layout challenges. However, significant

differences between GSS and CSS raise the question about whether it will be considered

intuitive by designers and consequently readily adopted.

1.1.4 Current Approaches to Web Layouts

The ‘current approaches’ part of the title refers to techniques that designers are currently

using to accomplish various page layouts. A current approach could refer to a specific layout

concept or it may refer to how an entire website has its layouts templated. For example, the

use of syntax from the CSS Flexible Box Layout Module Level 1 (Flexbox) specification to

create a splash page, the use of floats to position sidebars, and the use of frameworks such as

Bootstrap to create page templates based on grids are all current approaches to web layouts.

It is treated as a broad concept; however, this simply reflects the variety of web layouts and

the flexibility of its definition. The current approaches are looked at in more detail in the

Related Work section (see sections 2.3 and 2.5 in particular).

1.1.5 Intuitiveness

Intuition in this paper is defined as a thought or response that is “reached with little apparent

effort, and typically without conscious awareness, [involving] little or no conscious

deliberation” (Hogarth, 2001). In other words, in the mind of the thinker a conclusion or

understanding might be reached with minimal conscious thought process. This paper

considers the intuitiveness of designers in particular. This implies familiarity with the basic

design concepts and the syntax of CSS. For example, CSS allows a user to define the

background colour of an element like so:

footer { background-color: blue; }

From this snippet, it is assumed that a designer could readily understand that a footer element

will have a blue background with very little thought. This rapid comprehension is considered

intuitive. In this case, it is perhaps intuitive because it so closely resembles an equivalent

natural language representation of the same idea that a “footer’s background colour is blue.”

12

On the other hand, not all CSS expressions are intuitive. For example, consider the

declaration block:

img + span[data-traits~="blob"]:nth-child(4) { color: #6495ed; }

In this snippet, the reader of the CSS must consciously resolve that span elements being

styled by this rule are preceded by an image element and they contain the value “blob” among

other values of the data-trait attribute. Further, a small amount of counting is involved: it

is the fourth child within its parent container. Lastly, unless the reader is particularly well

versed with colour theory and hexadecimal notation, it is hard to visualise the colour being

used as a background colour in this CSS snippet as it is given by the sRGB colour space and

the intensities of the red, blue and green values must be combined to determine the resultant

colour, cornflowerblue4 (W3C, 2011). Counter-intuitive traits of CSS need not be found in

complex selectors or colour spaces: more specifically to layouts, some CSS authors may find

it counter-intuitive that the height and width properties do not include the size of the borders

or padding (unless the box-sizing property is set to border-box) and the complex rules

dictating margin-collapsing behaviour are known to be confusing as well (Hickson, 2004).

Therefore, the intuitiveness of CSS is in no-way guaranteed. However, these counter-

intuitive aspects to CSS highlight the importance of making sure new additions to the

specifications favour intuitive syntax to minimise the introduction of additional points of

confusion in the future.

Generally, the use of familiar keywords and the straight-forward way that CSS presents

property values mapped to properties within declaration blocks with relatively little syntax

seems to make CSS fairly intuitive by design. This is explored in more detail throughout the

paper. However, there are aspects of the language, both advanced (such as advanced

selectors) and simple (such as colour values and sizing with padding and borders) that can

quickly turn the activities of reading or writing CSS into puzzle solving. This paper looks at

what is required to accomplish “intuitiveness” as given in the sense of the first example in

this section (background-color: blue); that is, the characteristics of the CSS language that

result in an intuitive authoring experience, especially when creating layouts.

It is recognised that, over time, a web designer develops a sense of intuition for how to use

CSS, at least at a basic level. While teaching the use of Cascading Style Sheets (CSS) for

layouts, Rachel Andrew, author of several CSS related books, has observed that there is a

point where those learning a particular layout technique with CSS “just get it” and it

“becomes simple for them” (Simmons & Andrew, Laying Out the Future with Rachel

4 One of the CSS colour keywords, w3.org/wiki/CSS/Properties/color/keywords.

https://www.w3.org/wiki/CSS/Properties/color/keywords

13

Andrew, 2016). Comparably, it was found in a study of the intuition of mathematicians that

knowledge and experience seemed to be the primary contributors to the development of

intuition (Burton, 1999). Although research on the intuition of web developers is hard to

come by, it is perhaps reasonable to draw parallels and assume that knowledge and

experience play a major role in developing an intuition for the syntax designers are working

with and the effects that it causes. Therefore, an ingredient for intuitiveness, as it is

considered in this paper, is prior experience with CSS and familiarity with the basic concepts

and syntax. Although the search for intuitive technology is driven here by principles of

accessibility and collective empowerment, it would seem unreasonable to expect that

intuitiveness could be built-in without requiring some learning effort to establish a baseline

understanding of how CSS works.

1.1.6 The Design Process and Environment

The environment in which the designer is working impacts how the designer creates and

maintains code sources while producing their designs. For instance, considering just the step

of producing CSS, it is common to debug and tweak CSS using developer tools found in

popular web browsers. These tools often include features such as: syntax highlighting,

automatic indentation of code, colour-preview boxes and colour selectors, an ability to view

all the styles affecting an element, file management and real-time page updates as styles are

changed. Therefore, in considering how intuitive layout technologies are in real world usage,

such assistance needs to be accounted for. This means that although a CSS concept may be

difficult to understand while reading it from specification or implementing it in a plain text

editor without syntax highlighting, it may still be termed intuitive if common tools exist to

make working with such a concept easier. For example, composing RGB colours may not be

intuitive because it may require consciously mixing the hexadecimal values to approximate

the colour being generated, as noted earlier. However, the click-and-drag colour dialogs

present in popular browsers such as Chrome and Firefox allow designers to intuitively work

with colours as they can point and click among hue, saturation, lightness and alpha values

with little thought as to which colour will be produced. Therefore, the design process and

environment are included as core concepts for their effect on whether aspects of CSS can be

termed intuitive or not.

1.2 Scope

This thesis limits its scope in several ways due to the limited timeframe of several months

and virtually no budget. This restricts the scope for the size of the experiment and the breadth

of the topics being covered.

14

Necessarily, this thesis is intended only as a preliminary usability test of constraint syntax in

CSS; therefore, only a handful of participants are expected to participant in the experiment.

However, as noted by Jakob Nielsen, testing usability with just 5 users may yield a significant

proportion of the results (Nielsen, 2000). On the other hand, the same article proposes making

many small tests; whereas, the experiment conducted as part of this thesis tests just one layout

due to the limited timeframe. Experimentation on a scale required to term the results

indicative for all web designers of all cultures, let alone conclusive, is well beyond the

resources available and remains beyond the scope for this thesis. Rather, the scope for the

experiment is generate suggestive findings and a process that could be repeated if more

research in this area is warranted.

Further, there are many ways to evaluate artificial languages including characteristics such

as expressiveness, definiteness, implementability and so on (Khedker, 1997). The scope of

this thesis is restricted to looking especially at whether CSS is intuitive to read. In other

words, it is looking at the question: if a designer was to see a code snippet used to generate a

layout, could the designer quickly comprehend what the approximate outcome would be? As

stated in the introduction, the outcome of test proposed is intended to support or challenge

decisions about language features rather than provide a holistic view of them.

In the same way that not all criteria of good programming languages are being observed, not

all capabilities are being included either. This paper distinguishes between two major

applications of CSS: defining layouts and styling elements. While styling elements may

include defining colours, typography and animation, layout refers only to the positioning and

sizing of elements. Although the two are related and may overlap, the focus in this paper is

on CSS features relevant to constructing web page layouts. Even more specifically, it is

looking particularly at the layout capabilities of GSS and comparable capabilities in CSS.

The GSS framework also comes with additional capabilities that are not considered within

the scope of this paper. GSS also provides a Visual Format Language (VFL) and element-

based conditionals (e.g. if the width of element 𝑥 is greater than 𝑦, then implement 𝑧).

However, this paper focuses on the core concept of constraints and does not consider the

intuitiveness of these extensions.

Phrasing the scope positively: the thesis is restricted to considering only the intuitiveness

constraint syntax as implemented by GSS relative to CSS layouts techniques on a small scale.

1.3 Objectives and Relevance

This thesis aims to achieve two objectives:

15

 Produce a preliminary conclusion as to whether designers find constraint syntax for

layouts in CSS (as defined by GSS) intuitive relative to other CSS approaches.

 Secondarily, test a method for evaluating the intuitiveness of CSS languages

constructs that may be repeated and improved upon to test the intuitiveness of other

language constructs.

As for the relevance: as covered in the Related Work section, there is a lot of material being

generated on new layout techniques, including upcoming CSS specifications. An in-depth

look at the solutions being proposed and how they compare from the perspective of a designer

could be relevant to many working in the field. Secondly, deciding on whether CSS language

features are intuitive or not seems to be largely a matter of opinion (as observed in section

2.3), this paper presents groundwork that could potentially be used to determine whether or

not language constructs really could be considered intuitive or not based on evidence instead

of opinion. This may also be of relevance to those involved in the construction of

programming languages.

1.4 Motivation

With a background as a web developer, working in both server-side and frontend

development, common CSS, JavaScript and HTML concepts quickly became ‘normal’ and

unquestioned. This thesis provides an opportunity to ask: where did some of these concepts

come from? Are there alternatives? Could the process of evolving the Web itself be

improved?

Furthermore, exposure to a variety of working environments has led to an appreciation of the

transferability of skills related to the core standards of JavaScript, HTML and CSS, even as

tools, platforms and frameworks change. Therefore, a Master’s Thesis covering a topic that

would necessarily involve a greater understanding of the standards and an outlook on their

future is exactly the sort of thesis I am interested in writing.

It also seems to be the right context to write such a thesis. It seems that the Web has moved

from a collection of documents, through a dynamic web and a web of data, to also being an

interface to intelligent systems and even an intelligent system in its own right in some senses.

While scoping for topics, I began working through the textbook Artificial Intelligence: A

Modern Approach (Russell & Norvig, 2010) to discover more potential ways to use the Web

intelligently. I came across constraint satisfaction problems in chapter 6 and, at around the

same time, GSS. At this time, this was a personal insight: realising that not only could the

Web enable interactions with intelligent systems, the web platform itself could become more

intelligent. This is very exciting, because a more intelligent web platform means the benefit

16

is available to all of over one billion5 websites rather than one or a few proprietary, black-

box intelligent systems. On this scale even small, incremental improvements can have a

profound impact.

5 The estimated number of websites at the time of writing is 1,040,100,236, 14 June 2016, from

http://www.internetlivestats.com/total-number-of-websites/.

http://www.internetlivestats.com/total-number-of-websites/

17

2 Related Work

The related works are constituted of two significant areas. The first is other academic work

that looks at the origin of the constraints in CSS concept and determining how the mind works

while reading, looking especially at what constructs in code might be deemed intuitive and

how to measure this. The second area considers approaches to developing technologies that

support web layouts and how certain layout patterns are achieved. This includes the extent to

which the CSS working group considers the intuitiveness of the standards as they are

developing based on evidence from the public mailing list, how frameworks handle layouts

and modern layout patterns. Additionally, in the last few years the CSS Working Group has

been attempting to address the layout challenges of web developers with specifications such

as the CSS Flexible Box Layout Module Level 1 (shortened to Flexbox) and, the CSS Grid

Layout Module Level 1 (CSS Grid), this are also addressed as related work.

2.1 Constraint Cascading Style Sheets

In 1999, Constraint Cascading Style Sheets (CCSS) was proposed in the proceedings of the

12th annual ACM symposium on User Interface Software and Technology (Badros, Borning,

Marriott, & Stuckey, 1999). CCSS is foundational for this thesis as it provided a detailed

description of how constraints could be used by CSS. Further, the GSS project is openly

based on CCSS concepts: an author of the original CCSS paper, Badros, is involved in the

GSS project as well (GSS, 2015). Given its importance to this paper, the CCSS paper is

summarised here, and key concepts are highlighted.

The CCSS paper begins by introducing the state of CSS and notes several areas for

improvement, including: responding to various browser window sizes and ‘ad hoc’ layout

restrictions (Badros, Borning, Marriott, & Stuckey, 1999). Both of these issues are addressed

in this thesis as they seem to have been unresolved in universally accepted way since the

original paper was written over fifteen years ago, paving the way for GSS other frameworks

to gain popularity by addressing some these shortcomings. Other issues noted at the time

such as a complex and vague CSS specification and inconsistent browser support are not

considered within the scope of this thesis. Naturally, introducing constraints into CSS was

viewed as the solution to these issues. It was noted that with CCSS ‘we6 can naturally and

declaratively specify complex behaviour’ (Badros, Borning, Marriott, & Stuckey, 1999, p.

6 Interestingly, from the analysis of the CSS Working Group’s public mailing list (see Appendix A)

the term ‘we’ may not have been used in such a paper if it were written again in today’s context. Over

time, the contributors to CSS development have developed an awareness that they are creating syntax

for web authors rather than themselves; therefore, a term like ‘authors’ or ‘designers’ may have been

used instead. Distinguishing this subtle difference is important because the audience of CSS readers

must be considered when determining whether or not it is intuitive.

18

73). Indeed, the ability to ‘naturally and declaratively specifying complex behaviour’ is

indeed the subject matter of this thesis itself (if one may consider ‘naturally’ as a being

synonymous with ‘intuitive’ as it is understood in the context of this paper). Interestingly,

the layout-related parts of the CCSS introduction seem to be as relevant in today’s context as

they were when the paper was written over a decade ago.

Following this introduction, the CCSS paper introduces the functionality of CSS at the time

in more detail and reiterates the key issues given above before introducing how constraints

would work with CSS. Conveniently, the first aspect considered is page layouts, and how it

‘can be modelled using linear arithmetic constraints’ (Badros, Borning, Marriott, & Stuckey,

1999, p. 76). A simple table layout is recreated using CCSS, the syntax governing the

implementation is given in Figure 3. This example was included to illustrate some key

concepts beyond the CCSS syntax itself: browsers automatically creating constraints, the

impact of the strengths of constraints and how the syntax suggests an implementation strategy

(Badros, Borning, Marriott, & Stuckey, 1999, p. 77).

In the description of the code snippet, it was noted that constraints 1 through 7 are

automatically generated by the browser to implement certain table properties: the table width

should be as wide as its columns (constraint 1), each column should be as wide as the text it

holds (constraints 2 through 6) and the table should try to minimise its width to 0 (constraint

7). The given strength of REQUIRED present for constraints 1 through 6 ensures that the table

and its columns show visible content, while the WEAK constraint that the table width should

be 0 means that the browser should attempt to meet this constraint by minimising the table

width. In other words, the WEAK constraint can be violated in favour of meeting the REQUIRED

constraints and browser instead gives the table a width as close to 0 as possible while

satisfying the other constraints. The DESIGNER constraint strength present on constraints 8

and 9 is intended to represent rules created by web page authors. This strength is more strictly

enforced than WEAK constraints but less strictly enforced than REQUIRED constraints (Badros,

(1) #t[width] = #c1[width] + #c2[width] + #c3[width] REQUIRED

(2) #c1[width] ≥ width(\Text1") REQUIRED

(3) #c2[width] ≥ width(\Text2") REQUIRED

(4) #c3[width] ≥ width(\Text3") REQUIRED

(5) #c3[width] ≥ #i2[width] REQUIRED

(6) #c1[width] + #c2[width] ≥ #i1[width] REQUIRED

(7) #t[width] = 0 WEAK

(8) #c1[width] = 0.3 * #t[width] DESIGNER

(9) #c3[width] = 0.2 * #t[width] DESIGNER

Figure 3: Example layout constraints. This figure is based on Figure 6 from the CCSS paper (Badros, Borning,

Marriott, & Stuckey, 1999, p. 77).

19

Borning, Marriott, & Stuckey, 1999, p. 77). In the given example, the DESIGNER-strength

constraints produce a table where column #c1 is 0.3 times the width of the table, column #c3

is 0.2 times the width of the table and column #c2 is left to take up the remainder of the table,

provided that more strictly enforced constraints do not break these rules. Altogether, the

example offered a glimpse into a flexible layout system showing the viability of constraints

syntax for web layouts.

However, the article did not maintain a thread arguing why such syntax would be found

intuitive (or ‘natural’ to use its own terminology) by designers despite introducing it as such

and positioning it as an improvement over the difficult-to-understand CSS 2.0 specification

with ‘seemingly ad-hoc restrictions on layout specification’ (Badros, Borning, Marriott, &

Stuckey, 1999, p. 73). Indirectly, the declarative nature of the syntax was emphasised as well

as the way it implied an implementation strategy (Badros, Borning, Marriott, & Stuckey,

1999, p. 77). However, when it came to testing the proposed syntax, an Amaya browser

extension was tested for functionality and performance and underlying constraint-solving

algorithms were discussed without having designers read and write CCSS to test its usability.

In effect, the assumption seems to have been made that constraint syntax offered a more

intuitive solution to layout problems and the ground work for how the constraint syntax could

work alongside CSS was established. GSS completed a full-scale implementation of the

syntax (with modifications) and this paper offers evidence as to the supposed intuitiveness

of constraint syntax.

2.2 Online Processing During Reading and How Code is Read

Rather than simply look at what designers report as being intuitive, this paper makes an effort

to reason with concepts from psychology as to why some programming language concepts

may be seen as more intuitive than others. In doing so, the relationship between reading and

information processing is examined. Although it is not specific to reading code, the work of

Keith Rayner is particular useful in this area, therefore an overview of it is included here.

Other research, more specific to code reading is included as well, although it does not connect

reading to cognitive processes to the same extent.

In 1998, Rayner offered a review, Eye Movements in Reading and Information Processing:

20 Years of Research, stating that eye tracking and analysis technology as well as

theories of language processing had sufficiently advanced that it was “possible to use

eye movement records for a critical examination of cognitive processes underlying

reading” (Rayner, 1998, p. 372). While introducing an overview of the results of such

progress, the article first establishes the common terminology of the field.

20

The terms saccade and fixation are introduced here to establish the groundwork of

the rest of the overview. A saccade is an eye movement from one position to another.

The time that the eye remains stationary between the saccades is termed a fixation.

The duration of fixations is about 200 – 300ms, while the duration of saccades

depended on degree to which the eye moves: a common saccade while reading of 2°

is about 30 milliseconds whereas a saccade of 5° is about 40 to 50 milliseconds

(Rayner, 1998, p. 373). The timings and introduced here because, as will be seen, the

timing of eye movements can reflect cognitive processes.

The article is quick to introduce the cognitive processes behind the movements. The

article notes several studies that suggest ‘saccade programming is done in parallel

with comprehension processing in reading’ and points out that decisions of when and

where to move the eyes are separate decision processes (Rayner, 1998, p. 374).

Importantly, evidence is found that ‘cognitive processes can influence the latency’ of

saccades. For example, voluntarily directing saccades away from a peripheral target

increased saccade latency, directions to be careful resulted in increased latency and

increase latency resulting in increased accuracy of eye movements. (Rayner, 1998, p.

374). Further, a centre of gravity effect was identified whereby a saccade directed to

targets of two elements landed in an intermediate location, with a pull effect toward

larger or brighter elements (Rayner, 1998, p. 374). Further on, it is identified that

about 10 to 15% of saccades are regressions: the eyes traverse back over text that has

already been passed. The explanation given for regressions is that they occur because

the ‘reader did not understand the text’ (Rayner, 1998, p. 375). Furthermore, in-word

regressions may be due to problems processing the currently fixated word (Rayner,

1998, p. 375). Clearly, there are inferences about cognitive processes during reading

that can be made by tracking the eye movements of the reader. For this paper, this

means there is a way to measure what really could be termed intuitive on a relatively

fundamental level, beyond merely asking designers what they find easy to

understand.

The impact of these findings on reading code is applied tentatively here, in lieu of

more specific work being done in this area. Firstly, the trend appears to be that

increase cognitive processing slows down eye movements during reading. Therefore,

comparing two code snippets, the one with longer fixations may be the harder to

21

understand of the two or the less intuitive code snippet in terminology of this paper.

This is an interpretation that code reading studies have also adopted (Bednarik &

Tukiainen, 2006). Secondly, a relatively large number of multi-word regressions may

indicate difficultly understanding what the CSS achieves while a relatively large

number of in-word regressions may indicate difficulty understanding the semantics

of keywords in the code.

There seems to be much less research material looking at what reading patterns imply

about cognitive processes during the reading of code. Instead, research looking at

code reading seems to be focused on how code is read and subsequent comprehension

as opposed to what can be inferred about cognitive processes while reading,

especially at a novice level (Busjahn, Schulte, & Busjahn, Analysis of Code Reading

to gain more Insight in Program Comprehension, 2011; Whalley, et al., 2006;

Busjahn, et al., 2015; Turner, Falcone, Sharif, & Lazar, 2014). Even less can be said

for research material looking at cognitive process while reading declarative languages

such as CSS for which no relevant papers were found during the construction of this

paper. In some ways, it could be said that code reading research appears to be at the

same level of natural language reading research prior to the 1970s: identifying the

patterns and comprehension on a surface level (Rayner, 1998, p. 372), yet to look

deeply into the online processing taking place as code is read and extrapolate

cognitive processes. Perhaps this identifies the need for a model of code

comprehension that could be verified, tested and improved in the same way that

models like the E-Z Reader model have been instrumental in establishing a

framework for research of eye-movement during reading (Reichle, Rayner, &

Pollatsek, 2000). It must be noted that there are models for program comprehension

(for example, a comparison between six is given for software maintenance and

evolution (von Mayrhauser & Vans, 1995)), although none seem to predict eye

movements. Nevertheless, some findings from research looking at code reading are

applicable here.

In particular, it is interesting to know which programming language features seem to

support the reading of code. For instance, recent research utilising eye-tracking

suggests that regularity, repetition of code fragments, provides a better indicator of

the understandability of code than metrics like lines of code and McCabe’s

22

cyclomatic complexity (Jbara & Feitelson, 2015). This could be interpreted as giving

CSS an advantage over GSS, as GSS introduces additional syntax, it may dilute the

regularity which is typical for CSS. Further, another eye tracking experiment

involving code reading showed that more experienced programmers utilise ‘surface

language features that facilitate … comprehension’, also known as beacons, to

navigate and understand programs; although, exactly which language feature acts as

a beacon may differ from person to person (Crosby, Scholtz, & Wiedenbeck, 2014).

One might assume that selectors appearing above each declaration block could

represent beacons in CSS, a pattern shared by GSS. However, as shown in the

introduction, GSS also utilises syntax outside of declaration block, this may obscure

beacons and, again, result in CSS being the easier of the two to comprehend. Once

again, the findings from the research must be applied tentatively here, as although the

research focuses on code, it focuses on programming languages with an executable

structure as opposed to declarative languages.

In summary, particular traits can be looked for from code readers to infer cognitive

processing: particularly long fixations and regressions may imply additional

reasoning steps and misunderstanding or unfamiliarity respectively. Furthermore, it

has been noted that certain programming language features seem to facilitate

comprehension, although the extent to which these findings apply to declarative

languages like CSS and GSS is unclear. Therefore, when determining the

intuitiveness of a GSS relative to CSS, evidence from reading patterns over code

snippets and the identification of assistive language features via a think-aloud

experiment component and reflection on the code would be beneficial in arguing the

case one way or the other.

2.3 Approaches toward Intuitiveness from the CSS Working Group

So far, research has been identified that allows us to reason (to a limited extent) about the

intuitiveness of CSS and GSS based on reading patterns and language features. It may be

instructive to consider how intuitiveness has been reasoned about during the creation of CSS

thus far. To this end, the group developing the CSS syntax, the CSS Working Group,

maintains a public mailing list. According to the CSS Working Group Charter, this mailing

list is the primary tool for technical discussion and is involved in obtaining consensus for

decisions (Bos & Lilley, 2016). Therefore, it can be used as a related work to gather insight

into the approach towards creating an intuitive layout authoring experience. Indeed, an exact

23

match for the term ‘intuitive’ is found among approximately 1% of the mailing list’s

communications (see Appendix A) indicating it certainly a consideration of the group.

In order to draw out the approach toward making CSS intuitive, a basic, textual analysis of

the public mailing list during the formative years of CSS was conducted. The mailing list

archive interface (W3C, 2016) was used to search for the keyword ‘intuitive,’ filtering for

the mailing list name: ‘www-style.’ Each of the results was opened in a browser window.

Using the hotkey Ctrl + F and searching for the term ‘intuitive’ highlighted its usages on the

page. The context of each usage was read and understood. The context may have been a

single sentence, such as this example from 2006:

I can (kind of) see their reasoning for having floats for alpha, since integers aren't

intuitive for opacity. (Raymond, 2006)

Or, the context may have required several sentences to understand, as in this extract from a

2008 email:

Thirdly, I understand from [1] that clearance was originally implemented as a change

in margin-top. Superficially this seems intuitive, so there must be some tricky edge-

cases which expose problems with this implementation. (Prowse, 2008)

In any case, the context of the usage of the term ‘intuitive’ was pasted into the table given in

Appendix A, along with the year it was used and a link to source. In a fourth column of the

same table, a categorisation was given as the nature of the usage of the term ‘intuitive.’ The

four categorisations were:

 Opinion: the claim of intuitiveness was led by language that suggested it was an

opinion; for instance: “I think…”, “I believe…”, “It seems to me…” or so on. Or,

insufficient logic or evidence was presented to support the claim of intuitiveness.

 Logic: the claim of intuitiveness was backed up with a logical argument.

 Evidence: the claim of intuitiveness was backed up by some research or test.

 Irrelevant: the usage of the term intuitive did not actually relate to some aspect of

CSS being intuitive.

24

As shown in Figure 4, declaring some aspect of CSS as intuitive or counter-intuitive in the

majority of cases seemed to be based on the opinion of the mailing list contributor and rarely

on usability studies analysing CSS concepts or detailed reasoning to justify why a particular

concept is intuitive or not. It is perhaps instructive to highlight the cases where a concept was

declared intuitive based on some underlying reason, as this may illustrate why it is not more

often the case. For instance, a loose reference was made to usability studies when discussing

the intuitiveness of colour notations:

…in particular, it has nothing to do with HLS, HSB and suchlike polar

representations of RGB (which are, in usability studies, often shown to be *not* very

intuitive) (Lilley, Re: CNS colors, 1996).

In another email discussing a potential default setting of 0 for the volume of an element read

by a speech synthesiser, an analogy is drawn:

This seems strongly counter-intuitive. The default is that there is no sound? Perhaps

a stylesheet for visual presentation could specify that the default is black text on a

black background, so the screen is entirely dark? (Lilley, Re: T.E.O.'s Draft--

Cascading Speech Style Sheets (txt), 1996).

In these cases, the justification for terming something as intuitive or not had analogous

parallels. When discussing colour notation, a general reference was made to usability studies

that had looked at the topic and when discussion default element volume, an analogy was

made to the established default background and text colours. Figure 4 indicates logic and

evidence were used to a greater extent when justifying the intuitiveness of CSS concepts in

0

5

10

15

20

25

30

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Year

Usage of 'Intuitive' in the CSS Working Group

Public Mailing List

Evidence

Irrelevant

Logic

Opinion

Figure 4: How the use of ‘intuitive’ is supported in emails belonging to the CSS Working Group’s public mailing

list over the years.

25

the early years of its development when it was drawing from existing concepts, for example

in print media (as will be seen in 3.1 Historical Perspective). As CSS developed, perhaps a

larger number of unique and novel aspects had to be considered for which there were no

obvious analogies to draw from.

Summarising the results, it seems as though the intuitiveness of the CSS standards is certainly

a recurring a discussion point in the mailing list. This reflects efforts made to produce syntax

that is indeed intuitive for CSS authors. However, the efforts toward this end are largely

informal. In the majority of cases where intuitiveness is discussed, the writer asserts some

aspect is intuitive based on their own opinion rather than research or substantial reasoning. It

is understandable that this is the case, as mentioned: concepts are being formulated for a new

domain and styling for the Web has its idiosyncrasies, limiting the material it is able to

borrow from existing fields. Perhaps this represents an opportunity to increase efforts in

formally conducting usability testing on CSS itself.

The basic methodology used here to analyse the CSS Working Group’s consideration of

intuitiveness could itself be improved. For instance, having a second, independent reviewer

verify the results would add weight to the results. Further, the methodology could be

improved by looking further outside of the public mailing lists into how the CSS Working

Group considers the usability of CSS as it develops. It should be noted that there exists a

private, member-only mailing list which may have further information unavailable for this

analysis. Lastly, due to time restrictions, to analysis covers the years 1996 through 2008

which may obfuscate any more recent efforts from the CSS Working Group in this area.

Altogether, the results can only be taken as indicative rather than absolute and there may in

fact be additional deliberations over how intuitive CSS languages features are before they are

introduced for newer features; although the precedent of basing decisions about intuitiveness

on opinion is certainly evident.

In summary, the results from this basic analysis are indicative that intuitiveness is persistently

considered albeit informally. In defence of the CSS Working Group, producing standards

that are intuitive is not among the success criteria given in the charter; on the other hand, one

would assume it contributes towards other success criteria such as ‘achieving multiple,

independent, interoperable implementations,’ since implementations are made by humans

who will have their intuitions when interpreting the standards, and having ‘user community

and industry adoption’ (Bos & Lilley, 2016). Perhaps the methodology testing the relative

intuitiveness of GSS to CSS could be extended to test the introduction of other new CSS

language features, so future decisions in this area are based on evidence. There is certainly a

26

significant test effort made to measure CSS’s compatibility with browsers (W3C, 2016),

perhaps a similar effort could be made to test CSS’s compatibility with designers.

2.4 Frameworks

The history of using hacks such as table-based layouts or using floats and images for purposes

other than those for which they were designed in order to achieve certain layouts has led to a

demand for a better solution to web layouts. So far, this demand from designers seems to

have been somewhat fulfilled by the use of frameworks such as Foundation and Bootstrap

(Shepherd, 2011; Kramer, 2014). Despite the utility of such Frameworks, this paper assumes

that the movement toward a generic layout component offered as part of CSS is a desirable

outcome: for the performance benefit (the browser internally calculates the layout without

relying on interpreting and executing external JavaScript), the ability for designers to transfer

layout skills from project to project independent of whether projects use particular

frameworks and to reduce network traffic as less framework code needs to be downloaded.

(To this end, even though GSS is a framework, the concept considered in this paper is the

inclusion of constraint syntax in CSS). Nevertheless, the popularity of using frameworks to

organise the layout of a website demands that they be investigated in this paper. However,

the CSS modules will be considered in more depth than the frameworks and included in

experimentation while frameworks are not.

In recent years, frameworks seem to have played a major role in influencing the layout of

numerous websites. As an indication, Wappalyzer, a tool that identifies website software, has

detected Twitter Bootstrap on over three million websites, Ink on over seven-hundred

thousand and ZURB Foundation on over two-hundred thousand via its users in the last 6

months (Wappalyzer, 2016). All three frameworks are based on grid systems. Bootstrap and

Foundation offer a 12 column grid layout whereas Ink determines its columns in percentages:

multiples of 5% up to 100%, 16%, 33%, and 66% (Bootstrap, 2016; ZURB Foundation, 2016;

Ink, 2016). Further, all three base their grid system on the usage of floats, floating columns

to the left by default. Ink and Foundation have alternative builds available that utilise the

flex display value and Bootstrap has included it in its upcoming version 4 release as a

replacement for using floats. This indicates a transitory stage from using float to using

flexbox as the cornerstone for website layouts; however, it seems that using floats is still the

default approach underpinning grid systems on websites. Furthermore, it is a strong

indication that grid arrangements are the defacto standard for web page layouts.

In summary, the implementation of a grid system is a commonality between the frameworks;

essentially adding a semantic laying for expressing layout in columns and rows although the

underlying implementation is typically achieved with floats. Although it may be one of many

27

factors underpinning the popularity of the frameworks, this suggests that designers are

looking for grid semantics to assist producing web layouts.

2.5 Modern Web Page Layouts

Here, the current state of layouts on the web is considered. Trends are identified and

connected to intuitiveness. Although academic material does cover web layouts, it has proved

difficult to uncover material discussing state-of-art CSS layout techniques. Perhaps this is

due to the rapid, transformational progress made on the web platform and how it is used.

Therefore, academic efforts have been made to capture the zeitgeist of the web such as trends

in element positioning (Kumar, et al., 2013), analyse the visual complexity of web page

layout (Harper, Jay, Michailidou, & Quan, 2013) or determine the impact of CSS updates

across a website (Liang, et al., 2013). In other words, the general focus appears to be on the

outcome of using CSS as opposed to specific techniques used to create layouts. Therefore,

the current state of layout techniques has been identified by analysing the leading voices in

web design, such as Jen Simmons, Rachel Andrew and Eric Meyer, who are known for

interactions with W3C, browser vendors and web designers. Identifying the concepts that

leading voices are promoting has been more revealing than academic literature in the process

of determining the current state of techniques for implementing web layouts.

In particular, a recent talk from Jen Simmons entitled “Modern Layouts: Getting Out of Our

Ruts,” summarises prevalent layout patterns and suggests how upcoming expansions to the

CSS specifications, such as those analysed in this thesis, will impact the future of web page

layout (Simmons, 2015). The ‘rut’ that Simmons’ refers to is shown in Figure 5. It is a

common, familiar web page layout featuring a full-width heading at the top followed by

navigation, content on the left and a sidebar on the right underneath the navigation and full-

28

width footer at the bottom. Simmons offers twenty example websites from a range of

organisations in various industries to indicate the prevalence of this pattern.

Looking at print seems to offer one way out of the ‘rut’; although Simmons cautions that the

ideas must “translated not transferred” (Simmons, 2015). In other words, layouts as they are

being done in print cannot simply be copied for the web, the concepts behind them must be

understood as well as characteristics unique to the web medium. Similarly, layouts should

not be copied without sense from one project to another; instead, “layout should serve the

content” notes Simmons (2015). An example of an online article from the New York Times

with a full-width, full-height splash cover, like what one would see in a physical magazine,

is offered; with the caveat that is suitable for a cover story, not for every blog post. Like

splash covers based on Flexbox, shaping content blocks with interesting outlines using tools

from CSS Shapes (W3C, 2014) is another suggested technique based on concepts from print.

Many solutions offered are responses to a predominant “box, box, box way of thinking”

(Simmons, 2015). However, even when using boxes, especially in form of grids, Simmons

suggests ideas for using them to support the content. While three, horizontally-aligned,

equally-sized boxes of content may be ‘orderly and sturdy’ (but perhaps overused and

commonplace), three boxes growing in accordance with the golden ratio may seem ‘organic

and dynamic’ and three boxes with chaotic sizing is ‘interesting and a bit unnerving,’ says

Simmons quoting an article from Nathan Ford (Ford, 2014). The ability to experiment with

managing columns and rows using concepts from the upcoming CSS Grid specification is

Figure 5: Simmons’ asserted common layout pattern for web pages (Simmons, Modern Layouts: Getting Out of

Our Ruts by Jen Simmons, 2015).

29

also encouraged (Simmons, 2015). The techniques offered challenge designers to break out

of the prevalent, familiar layout pattern shown in Figure 5.

The impact of this commentary can also be considered in the context of the discussion taking

place in this paper as well. It identifies the boilerplate effect of the prevalent frameworks and

design patterns and the resultant similarity between websites. As noted in the introduction,

experience is a factor when developing an intuition for layouts, and it seems that experience

is increasingly constituted of the usage of template and framework code which establishes

layout paradigms like the 12-column grid (see section 2.4 Frameworks). Many of the

proposed solutions to the ‘rut’ are in the form of new W3C specifications, especially CSS

Grid, Flexbox and CSS Shapes. Yet during the talk, Simmons notes that ‘it’s going to take

us all a couple of years to wrap our heads completely around Flexbox’ and proposes the

Gridset as a third-party tool to create a grid layout and generate a framework (Gridset, 2016).

On one hand, this may suggest that tools to assist designers in creating layouts are necessary

to embed design principles and this component of the work may never be intuitively

embedded into CSS language constructs. On the other hand, it may suggest that the standards

enabling the creation of modern web page layouts are not yet intuitive and therefore learning

effort and supportive tools are required to utilise them effectively. This would make room

for something like GSS which enables layout creation in a way supposedly easier to

comprehend relative to the construction of layouts based on what is currently available in

CSS.

It is clear from the work covering the construction of modern web page layouts that the

developments of the CSS specifications in this area must also be considered alongside any

other proposal for an intuitive solution to web page layouts. Towards the end, Simmons notes

that the “hardest part is changing our thinking, not our CSS” (Simmons, 2015). However,

CSS is also an artefact constructed by humans and, in a way, this thesis is about determining

if we can change CSS to suit our thinking.

2.6 CSS Specifications

As concluded in the previous section, considering recent developments in CSS specifications

related to web layouts is necessary when proposing constraint syntax for CSS. Interestingly,

these specifications have, to a degree, already exposed designers to constraints indirectly.

CSS Tables (part of CSS2.1), CSS Grid and Flexbox describe implementation details of

certain language features in way reminiscent of constraints.

A neat comparison to start with is that of CSS Tables, following the trend established by the

CCSS paper (see section 2.1 Constraint Cascading Style Sheets) which featured an example

30

showing how constraints could be used to render a HTML table (Badros, Borning, Marriott,

& Stuckey, 1999). Similarly, the CSS Table specification shows how constraints lie just

under the surface of CSS syntax. In the section entitled ‘17.5 Visual layout of table contents’

the CSS Table specification it is noted that rectangles representing table cells must be ‘as far

to the left as possible’ (W3C, 2011), prompting one to think of a constraint such as that shown

in the first code snippet in Figure 6. Here, GSS syntax is used to declare a weak constraint

that the left edge of table cells should try to be at the left edge of the window. While other

constraints may push table cells to the right, the above constraint would ‘exert a force’, so to

speak, always pulling cells as far to the left as possible as required by the CSS Tables

specification (swapped for right-to-left languages). Likewise, the statement that ‘a cell box

cannot extend beyond the last row box of a table’ (W3C, 2011) may be achieved by the

constraints given in the second code snippet of Figure 6. The selector ^ tr:last selects the

last table row of the table by using ^ to refer to parent selector, table, of the nested td

declaration block. Subsequently, the left, right and bottom edges of table cells within a table

are constrained to never be beyond the left, right or bottom edges of the table respectively.

Evidently, aspects of the CSS Tables specification lend themselves to be defined in constraint

syntax.

Such constraints become assumptions for designers working with these specifications. Given

the CSS Table specification, designers may implement layouts using CSS Tables (not HTML

Tables) assuming that cells are rendered as far to the left as possible (in left-to-right

languages) and never lie beyond the last table row. Integrating constraint syntax into CSS

would reverse this pattern: a designer could determine how they would like a layout to behave

and write constraints to define it rather than being on dependent on the CSS Working Group

implementing a collection of properties and property values that would implement the

constraints as envisaged by the designer. This is a strong indicator that constraint syntax

/* GSS Based on CSS Tables Specification, Snippet 1 */

td[left] == ::window[left] !weak;

/* GSS Based on CSS Tables Specification, Snippet 2 */

table {

 td {

 left: >= (^ tr:last)[left];

 right: <= (^ tr:last)[right];

 bottom: <= (^ tr:last)[bottom];

 }

}

Figure 6: Constraints given using GSS syntax that could be used to implement aspects of the CSS Tables

specification.

31

could be considered more intuitive than current CSS features: the designer would not have

to learn what behind-the-scenes constraints accompany various CSS features, they would be

implementing design patterns based directly on how they reason about them. In other words,

CSS keywords currently act like a middleman between designers and constraints, giving

designers the ability to write constraints would cut out the middleman. Writing constraints

themselves, designers may be able to implement layout behaviours in ways they find more

intuitive than the keywords provided by CSS.

A situation similar to that of CSS Tables is present in the Flexbox specification: the CSS

Tables specification contains the term ‘constrain’ seven times and the Flexbox specification

nineteen times. Again, constraints lie beneath the surface. The Flexbox specification is made

to include ‘simple and powerful tools for distributing space and aligning content in ways that

web apps and complex web pages often need’ (W3C, 2016). However, unlike tables, some

Flexbox behaviours can be quite difficult to translate to constraint syntax. For instance, it is

unclear what GSS statements would results in flex items filling the available space in

proportion to each flex item’s internal content; yet, designers achieve this effect by setting a

flex property value of auto on flex items (W3C, 2016). Further, it is non-obvious how to

handle wrapping with constraints in the way that Flexbox achieves. Both these effects may

be particularly useful when the designer is uncertain of the length of the content. Despite

some Flexbox layouts being difficult to achieve with constraints; other Flexbox layouts are

much more straightforward. For instance, a justify-content property value of center

(Flexbox) is reminiscent of constraints aligning elements using the center-x property (GSS)

while an align-items property value of center (Flexbox) is reminiscent of constraints

aligning elements using the center-y property (GSS, 2015; W3C, 2016). This suggests that

Flexbox and GSS can be treated like tools: it is up to the designer to pick the tool that suits

the intended layout effect.

32

CSS Grid may also be counted among such tools. CSS Grid is, like Flexbox, offered as a

collection of tools to ‘control the sizing and positioning of boxes and their contents’ (W3C,

2016). Where Flexbox is oriented on a single axis, CSS Grid uses column and row concepts

to enable two-dimensional control over layout (W3C, 2016). Using an example borrowed

from the CSS Grid specification, Figure 7 shows how the syntax allows for a layout to be

templated, then various elements may be assigned to areas within the resultant grid. One may

infer how constraints could produce a similar layout. For instance, that nav, article and

aside must be the same height or that aside is equal to twenty percent of the width of the

main element (which presumably wraps the other HTML elements). Despite accomplishing

the same result, semantic keywords may offer an advantage of CSS Grid over GSS. The grid,

grid-template-columns and grid-template-rows properties from CSS Grid concisely

template positions and sizes the parts of the grid, while similar semantics may be lost among

constraint syntax when accomplishing the same result with GSS.

It is interesting however, that although Flexbox and CSS Grid have been shown to have some

advantages over constraint syntax, constraint syntax has been shown to be applicable for

layouts produced by all three CSS specifications considered here: CSS Tables, Flexbox and

CSS Grid. This would suggest that constraint syntax could be a versatile tool if it were readily

available to designers. On the other hand, such versatility may come at the cost of semantics,

<header>...</header>

<article>...</article>

<nav>...</nav>

<aside>...</aside>

<footer>...</footer>

main {

 display: grid;

 grid: "h h h"

 "a b c"

 "f f f";

 grid-template-columns: auto 1fr 20%;

}

article {

 grid-position: b;

 min-width: 12em;

}

nav {

 grid-position: a;

}

aside {

 grid-position: c;

 min-width: 12em;

}

header (h)

article

(b)

nav

(a)

aside

(c)

footer (f)

Figure 7: Example layout based on example from the CSS Grid specification (W3C, 2016).

33

as shown in the case of CSS Grid, and this may result in constraint syntax being less intuitive

when used for layouts that have built-for-purpose alternatives.

In summary, it seems that designers are already working with and perhaps intuitively

reasoning with constraints as they apply to layouts, only they exist under the surface of CSS

properties and values. As more specifications like Flexbox and CSS Grid are released,

designers have access to a greater range of implied constraints at their disposal. Yet, perhaps

enabling designers to write constraints directly would offer a versatile tool which could be

used more broadly than any one particular CSS specification. However, this thesis looks at

intuitiveness of constraints rather than versatility. The comparison given in this section

indicates that simplicity of Flexbox to accomplish advanced layout effects and the semantics

offered by the built-for-purpose CSS Grid specification may give these specifications the

intuitive edge over defining similar layouts with constraint syntax.

34

3 Analysis

3.1 Historical Perspective

Looking at the history of the Web provides instructive context to the topic of web layouts.

The story of invention of the Web as an information space is well known, but it is worth

repeating here with an emphasis on the control over layouts available to web designers as the

HTML and CSS standards emerged. These developments allowed a way of thinking about

web page layout design to emerge, helping to shape how it is thought about today. As a

warning, this section observes the specifications as they were stated at the time of publication,

many of the features discussed are now obsolete and non-conforming. However, some of the

design ideas have perpetuated and transcended the methods used to create them.

When compared to the print industry which started almost 600 years ago, the 27-year-old

Web7 is still a very recent development. Despite this, it has already had several revolutions

in the way that content is presented and laid out. Indeed, the Web borrows many design

concepts from the print industry, building on the work done in print media over the centuries,

and has subsequently introduced new concepts exploring what is unique to media of the

screen. For example, much of the typographical concepts in CSS come from a history in print

media. On the other hand, the concept of responsive design, for instance, has arisen for the

demands of the Web. However, it took many intermediary steps to go from thinking about

design on the Web in terms of print, to thinking about design on the Web as a new medium,

or even as designing for multiple media.

At the beginning of the Web, there were not a lot of options for the creator of a website to

consider from a visual design perspective. An email from Tim Berners-Lee in 1991 and a

linked “HTML Tags” document outlined 19 available HTML tags. A tag for images was not

yet present. Further, it was noted that a couple of these tags, such as <hp1> for highlighting,

were unused (Berners-Lee, 1991; Berners-Lee & Connolly, 1992). In these early stages, the

focus was evidently on textual content and the ability to link documents to one another as

opposed to flexibility in laying out a webpage.

The first “design revolution” on the Web could be potentially be attributed to the release of

the Mosaic browser in 1993. Although it is not technical terminology from the design domain,

the intent is clear when Berners-Lee states that the Mosaic browser “made webpages much

sexier” due to the use of embedded images in comparison to earlier browsers where images

had opened in separate windows (Berners-Lee, 1994-2006). Although it was still hard to

7 The Web officially celebrated its 25th anniversary in 2014 with the publication of the website:

www.webat25.org.

http://www.webat25.org/

35

define layouts, the ability to include images directly in web pages was an initial concession

of control to web designers and a lot more was to follow in a relatively short period of time.

Two years later, the informal HTML specifications, scattered across a variety of sources,

were collected into a single “Hypertext Markup Language – 2.0” (HTML 2.0) document

(Berners-Lee & Connolly, 1995). This serves as a coherent and comprehensive primary

resource for identifying layout techniques available to web designers8 at the time. Although

overall, the HTML 2.0 specification indicates that a lot of what could be considered web

design was left up to the user agent or browser. The first CSS specification was still to come

in the following year (Lie & Bos, 1996) and the table element and other developments in

HTML were still to come in the year after that with the HTML 3.2 specification (Raggett,

1997); although, some user agents had implementations prior to the recommendations

coming from W3C. In the absence of these critical standards, the task of creating layouts for

the Web was a difficult undertaking. For instance, it was up to the user agent to select an

indentation for the <pre> tag, decide how to render various typographic elements, decide

whether to append an icon to an anchor tag and decide whether to include an image or the

content of its alt attribute instead among various other things that directly or indirectly

affected the layout of the webpage (Berners-Lee & Connolly, 1995, pp. 24-25,31,33). Despite

the restrictions, the HTML 2.0 specification conceded some layout options to web designers.

With the specification, web designers were beginning to see more options to handle the layout

of images with hints of other forms of flexibility to come. The specification for the tag

included an align attribute, allowing web designers to align the image to the top, middle or

bottom with respect to the text baseline (Berners-Lee & Connolly, 1995, p. 35). Furthermore,

the compact attribute allowed designers to designate a compact rendering for the list tags

, , <menu> and <dl> tags (Berners-Lee & Connolly, 1995, pp. 27-29), granting a

small amount of control over the layout of lists. It could also be said that the list elements

themselves presented an additional way of controlling layout. Indeed, the standard noted that

the ability to mix-in form elements with document structuring elements, such as lists or the

preformatted text element, allowed for “considerable flexibility in designing the layout of

forms” (Berners-Lee & Connolly, 1995, p. 39). Further, using the image map attribute,

ismap, on an image element gave designers a way to respond to clicks in different areas of

an image; a similar function was available by setting the type attribute of an input element

to “image” (Berners-Lee & Connolly, 1995, pp. 38,42). Since far greater control was

8 Interestingly, usage of the term “web designer” was also beginning to grow at this time, despite the

discussed limitations in design. Prior to 1992, the term “web designer” had been virtually non-existent

according to Google’s Ngram Viewer: http://bit.ly/28ItCeX.

http://bit.ly/28ItCeX

36

available over the look of an image, web designers were able to create a layout within an

image and handle clicks in various regions of the image accordingly9. There was still much

to come, although the signs from the initial HTML 2.0 specification, even at this early stage

of the web, suggested a move toward granting additional control over layout to creators of

webpages; however, a critical issue remained: HTML was not the right place for control over

the presentation of content.

Shortly (on a historical timescale) after the inclusion of images embedded directly into

webpages by web browsers, came what could be considered the second revolutionary period

for web design, especially from a layout perspective, and that is the 1996 release of the first

CSS specification (Lie & Bos, 1996) coupled, to a degree, to the release of the HTML 3.2

specification shortly thereafter (Raggett, 1997). This allowed HTML to focus on defining the

semantic structure of documents and control over web page presentation was granted to web

designers via CSS instead. The rule of thumb that structure and semantics belong in HTML,

while presentation (including style and layout) belongs in CSS has persisted since this time.

Furthermore, when taken together, it seems that these two specifications introduced a

common way of thinking about web layouts: in boxes wrapped around the content of

elements, in grids, in two dimensions and on an infinite canvas. By identifying the

development of a common way of thinking about web layouts, it becomes possible to argue

a case for concepts that could be considered intuitive and concepts that could be counter-

intuitive.

The foundations of this common way of thinking are the box model defined by the CSS

specification (W3C, 2011) (although it was termed the formatting model (Lie & Bos, 1996)

at the time) and the table element which was utilised to implement layouts (a technique now

discouraged). The introduction of the box model promoted an understanding of visualising

the elements on a webpage as a rectangular box which is surrounded by padding, a border

9 At the time of writing, an early example of the usage of such an image map is available on the Mosaic

Communications Corporation (circa 1994) website: home.mcom.com/MCOM/index2.html.

http://home.mcom.com/MCOM/index2.html

37

and a margin respectively. Simplifying somewhat, the size of the content in each element and

the interaction of the margins of the elements forms the layout of the webpage. The

fundamental concept has changed little in the past two decades, as can been seen in a

comparison of the graphic presenting the box model in the CSS1 standard in 1996 and a

graphical representation of the box model from a modern browser in Figure 8. Although the

core concept seems simple and has remained stable, the interaction between hundreds of

hierarchically-arranged elements to which various display and positioning characteristics

apply makes formulating a common standard a substantial undertaking, not to mention a

standard that could be called intuitive.

Interestingly, the difference in the treatment of horizontal and vertical margins seems to have

been implemented with the intuition of designers in mind, as written in the specification:

“after collapsing the vertical margins the result is visually more pleasing and closer to what

the designer expects” (Lie & Bos, 1996). Although, there was no obvious justification as to

why the designer would expect margin collapsing to behave in this way; instead, it seemed

to have been an intuition about intuitions. Nevertheless, not only were these early

specifications defining a way of thinking about design for web layouts, they were also

attempting to cater to how designers might already be thinking about designing for the Web.

A second instance of this occurring, although not for layouts in particular, is that the

shorthand syntax for describing the font property is “based on a traditional typographical

shorthand notation to set multiple properties related to fonts” (Lie & Bos, 1996). Here, the

standard reflects something analogous to what some designers may have already been

familiar with. Analogies, along with the use of similes and metaphors seem to be one

technique used to create intuitive technologies for layout out web pages.

Figure 8: A comparison between the 1996 representation of the box model, taken from the CSS 1 specification

(left) and a 2016 representation of the box model as shown in Firefox 48 Developer Tools for a selected element

(right). It can be seen that this fundamental concept for web layouts has remained largely unchanged between the

two.

38

An analogous concept that would have likely been familiar to web designers encountering

the HTML 3.2 specification for the first time is that of the table element. Although tables

themselves are “a systematic arrangement of data usually in rows and columns for ready

reference” (Merriam-Webster.com, 2016), they are conceptually not so far from a grid, “a

pattern of straight lines that cross each other to form squares” (Macmillan Dictionary, 2016).

Indeed, when tables became standardised with the 3.2 specification, they were used as grids

for layout out web pages: a method of dividing the page into columns and rows and placing

content in the rectangles produced by this division. Despite, the now-obvious semantic

disconnect of using tables as layout grids, it was even a popular method at the time. The

bestselling web design book “Creating Killer Web Sites” even promoted it; giving an

extended code example whereby a left-hand sidebar effect is created during a redesign of a

website10 (Siegel, 1996). Along with tutorials on the web and prominent websites11 utilising

tables for laying out websites, it quickly became a widespread layout method that persisted,

in varying degrees for the next decade.

The point of singling out the table-based layout phenomena of the web in this paper is not to

show how much has been learned about the importance of semantic HTML since this period;

instead, it is to observe what web designers found intuitive to use, given the technology

available. The popularity of the technique and its widespread adoption suggests that web

designers were comfortable breaking a layout down into columns and rows, and treating the

cells of such a grid as sections thematically separating content.

The move toward structure and semantics and away from presentation is most evident in

the recent HTML5 specification. It is highlighted, for instance, in the difference

descriptions of the b element. Originally, in the HTML 2.0 specification it was described

simply as indicating “bold text” (Berners-Lee & Connolly, HTML 2.0, 1995). In the

HTML5 specification, no specific styling is mentioned. Instead, the focus has shifted to

semantic meaning of text found within a b element, as can be seen in this excerpt:

The b element represents a span of text to which attention is being drawn for

utilitarian purposes without conveying any extra importance and with no implication

of an alternate voice or mood, such as key words in a document abstract, product

10 At the time of writing, an example of the table-based layout code is still available at: killersites.com/

killerSites/2-sites/stargazer.
11 For instance, the Apple home page predominantly utilised tables for layouts in 1996:

(web.archive.org/web/19961022105458/http://www.apple.com) and it seems the utilisation of the

table for layout purposes on the homepage persisted until June 2008, although, by then it was just used

for a minor widget (see the news headline ticker on: web.archive.org/web/20070628220543/http://

www.apple.com). Similarly, the table element provided much of the layout for the Yahoo homepage

in 1997 (web.archive.org/web/19971007020952/http://www9.yahoo.com).

http://www.killersites.com/killerSites/2-sites/stargazer/index.html
http://www.killersites.com/killerSites/2-sites/stargazer/index.html
https://web.archive.org/web/19961022105458/http:/www.apple.com/
https://web.archive.org/web/20070628220543/http:/www.apple.com/
https://web.archive.org/web/20070628220543/http:/www.apple.com/
https://web.archive.org/web/19971007020952/http:/www9.yahoo.com/

39

names in a review, actionable words in interactive text-driven software, or an article

lede (W3C, 2014).

Whilst the purpose of using the b element is described and accompanying examples given,

there is no discussion of how it should be rendered, unlike the early HTML specifications.

A similar transition has occurred for the i element. Furthermore, other elements which had

been more presentation-based, as opposed to semantic-based in function have been dropped

completely with no transition. Specifically, in respect to layouts, the multicol element

from Netscape 3.0 used to achieve a multicolumn layout (Wilson, 2005), the spacer

introduced also by Netscape to place spacing between elements (Mozilla Developer

Network, 2013) and center (described in the HTML 3.2 specification as providing a

centred horizontal alignment (Raggett, 1997)) elements are now obsolete and non-

conforming.

Conclusively, HTML is no longer the place to look for layout options. Its historical impact

with the early introduction of tables may have contributed to the common grid-based

understanding of webpage layouts; however, the remainder of this paper will focus on CSS

and GSS as layout technologies. Yet, HTML remains connected to layout by setting an

important precedent: the visual order that a layout technology produces must respect the

structure of the HTML document it displays, a principle highlighted in the accessibility

section of the CSS Grid Layout specification (W3C, 2016).

40

4 Experiment

The purpose of this experiment is to identify whether or not constraint syntax within CSS is

intuitive for designers attempting to solve common layout challenges. The hypothesis,

rephrasing the research question given in the introduction, is that designers find constraints

more intuitive to use to solve layout challenges than existing CSS. Since there is no direct

measure of intuitiveness, it must be determined indirectly. In this experiment, web designers

will be observed talking-aloud while interpreting constraint syntax as well as CSS syntax.

Designers will be able to choose what they find the most intuitive from four shuffled code

snippets presenting alternative ways of constructing a simple layout. Cursor data will be

collected as a proxy for eye movements over each of the code snippets (Huang, White, &

Buscher, 2012). This offers an indication of how fast the designer was able to understand the

syntax and to reason with it. The experiment completes with the designers filling in a two-

question survey to determine qualitative characteristics of the code snippets that they felt

worked towards or worked against their intuitiveness. The experiment produces both

qualitative data (from the survey given to the designers) and quantitative data (from the cursor

movement and selection count of the various code snippets). The combination of which

should provide a solid basis for justifying whether or not designers found constraint syntax

intuitive.

4.1 Experiment Design

An overview of the process of the experiment can be given as follows:

1. Contact is established with a designer.

2. The designer is sent a survey regarding their experience and asked when an online

meeting would be convenient.

3. Optional: The designer is sent a confirmation email.

4. A video call is established with the designer.

5. The designer views an example layout.

6. The designer is shown four code snippets which produce the layout given in the

example. They think aloud while interpreting the code snippets. Simultaneously,

cursor movements over the code snippets are recorded.

7. The designer selects the code snippet they find the most intuitive. At this point, they

complete the think-aloud component of the experiment.

8. The designer completes a follow-up survey asking what they found intuitive and

counter intuitive in the code snippets.

9. The experiment is concluded. Optionally, the designer is shown implementations of

the code snippets and the data collected.

41

The remainder of this section describes and explains each step in its own subsection.

4.1.1 Establishing Contact

The target group for the experiment is designers, as defined in the introduction. Participants

are sourced via the networks of the author and the supervisors. This provided some level of

quality assurance as well as efficiency.

However, it would be assumed that sampling a greater number of web developers,

particularly across several countries would produce more robust and reliable results. Given

the time constraints for the thesis, and time required with each participant to record the think-

aloud component as well as analyse cursor data having quick access to participants through

existing networks was a critical factor.

4.1.2 Pre-experiment Survey

The survey included the questions:

 What is your age? <20, 21-25, 26-30, 31-35, 36-40, 41-45, 46-50, 51-55, 56-60, 61-

65, 66+

 What is your gender?

 How many years have you worked with CSS?

 How much of that work has involved designing web page layouts in particular? Very

little (<15% of projects), little (15%-35% of projects), somewhat (36%-65% of

project), a significant amount (66%-85% of projects), virtually all of it (>85% of

projects).

 How many hours per week do you estimate you have spent working with CSS?

 Do you use a CSS pre-compiler such as SASS or LESS for most of your work? Yes,

or no.

 How many years have you worked with design in general?

 Please write down the languages you know and your proficiency with respect to

reading and writing skills in each language using the scale: basic comprehension

(able to work with very common words and short, simple sentences; reading and

writing are very slow processes, relying heavily on support material such as

dictionaries), moderate comprehension (able to work with more complex sentences

regarding common topics; reading and writing are slow processes but achievable

with support material such as dictionaries), high comprehension (able to work with

complex sentences featuring advanced topics; reading and writing rely occasionally

on support material such as dictionaries) or fluent (able to work with complex

sentences featuring advanced topics with ease).

42

The first two questions regarding age and gender are basic demographic questions in order

to understand to whom the results may apply. For anonymization purposes, the responses to

age of the participants is grouped into fives. The question asking for the number of years

spent working with CSS is recorded as a gauge of how much experience the participant has

with CSS. As seen in the introduction, experience leads to intuitions about the technology.

The hours per week in the last month question attempts to identify whether this knowledge

is current and readily available. Since pre-compilers might put a layer of abstraction between

the designer and the CSS, thereby changing how participants may understand raw CSS, a

question about whether the participant uses such tools is also included. The next two

questions are more to do with design experience. They are included since the authoring of

CSS is usually just one step in a broader design process. Therefore, experience with

conceptualising designs, such as page layouts, in general must also be taken into account.

The combination of demographic and experience questions was inspired by a similar

experiment measuring eye movements in code reading (Busjahn, et al., 2015). The data from

these questions offers a way to reason with the results by understanding the backgrounds of

the participants undertaking the study.

4.1.3 Confirmation Email

The confirmation email is an administrative aspect to the experiment: it ensures that the

participant has a calendar entry readily available by including an invitation with the email. It

is an optional step, since some runs of the experiment were arranged within a short enough

timespan that no reminder was necessary.

Originally, this step also included sending an introduction to GSS. However, it was decided

that first impressions of constraint syntax should be measured instead. Therefore, no clue as

to the content of the experiment was given to the participants in advanced, aside from the

fact that it involved CSS and layouts.

4.1.4 Establishing a Video Call

The use of Google Hangouts or Skype (since they both enable screen sharing, the use of one

tool or the other comes down to whichever is more readily available for the participant) is

used to establish a video call with the participant. At the beginning of the call, verbal consent

is obtained for the recording of audio track of the video call. Once consent has been given,

the record button within the Callnote12 program is clicked, and the remainder of the call

recorded.

12 The Callnote program being referred to is the one based at the website here: https://callnote.net/.

https://callnote.net/

43

Additionally, in this initial stage of the video call, the participant is given an overview of the

up-coming experiment and examples of thinking aloud. This introduction reads as follows:

Have you participated in or conducted a think aloud usability session before?

(If no, share link to example think aloud video)

Through-out the experiment, please try to think out loud and verbalise your thoughts

as much as possible. For example, beginning sentences like “I am now looking

for…”, “I wonder why…”, “I like that…”, “I can see that…” and completing them

with your current thoughts is a possible way to share your thoughts and reasoning.

In the experiment, you will first be shown a picture of the intended simple layout,

followed by some HTML which structures the elements in the layout. Please start

thinking out loud as from the time you see the example layout picture. Further down

the same page, there will be three CSS snippets and one Grid Style Sheets snippet.

Please read each, then select the one you feel most intuitively represents the described

layout. Once you have selected a code snippet, you may stop thinking aloud.

Following the code snippet selection, there is a two question survey. Please answer

the two questions given there and click the “Submit” button to complete the

experiment. There is no time limit, please take as long as you would like. We would

like to find out how understandable CSS and Grid Style Sheets can be, so please be

open about what does and does not make sense. Do you have any questions?

This introduction attempts to set a baseline of what is expected of the participants as concisely

as possible. The included description of thinking aloud as verbalising your thoughts is

borrowed from a definition given by Jakob Nielsen (Nielsen, Thinking Aloud, 2012).

Additionally, Nielsen’s website is the source of the example think aloud video (Nielsen,

2014). The examples of thinking aloud are deliberately restricted to the beginning of the

sentences to avoid biasing the thoughts of the participant. An earlier example sentence was

“I can see that margin: 0 auto; will centre the element,” an attempt to keep the experiment

as layout-specific as possible, however it was decided against as it may have primed the

participants to look for elements centred in this way.

The abbreviation of GSS for Grid Style Sheets was avoided because it is expected that it is

still a relatively unknown acronym for most designers. A rough measure for this relative

unfamiliarity with GSS was determined by comparing the gridstylesheets.org website’s

Alexa global site ranking of 1,278,389 with the w3.org website (technically the home page

of CSS) ranking of 1,857 and the csszengarden.com (a popular website specific to CSS to

counter the effect of w3.org featuring a range of topics) website ranking of 139,274. It is

44

clear that GSS is a large margin behind having the same visibility as CSS (Alexa, 2016;

Alexa, 2016; Alexa, 2016).

The last couple of sentences focusing on the absence of a time limit and the concept of

evaluating CSS and GSS attempt to dissuade participants from thinking of the experiment as

a test of their skill and instead encourage them to be open with their thoughts.

Overall, the sense of this script is conveyed to the participant; it may not be delivered

identically to each participant depending on their prior experience.

4.1.5 Designer Views Example Layout

During the video call, the designer is given a web address pointing to a web page containing

an example layout, shown in Figure 9. An explanation is provided with the image, detailing

that the intention is to position the element found by the selector #inner-element in the

centre, both horizontally and vertically, of the element found by the selector #outer-

element. Further, it is noted in each of the upcoming code fragments the height and the width

of each of the elements is virtually identical to that given in the example layout image.

Additionally, the underlying HTML being styled is provided as well, it reads as follows:

<div id="outer-element">

 <div id="inner-element">

 <p>Content.</p>

 </div>

</div>

The HTML snippet has cursor tracking enabled. It is assumed that part of understanding the

code that produces the layout requires reading and understanding HTML that is being styled

by the CSS or GSS. Cursor tracking helps infer how much time the design spends looking at

the underlying HTML compared to time spent looking at the CSS and GSS. Furthermore, it

Figure 9: A simple layout involving two elements, one positioned in the centre of the

other.

45

may provide insights into aspects of the HTML that act as beacons: key locations in the code

the designer refers to most often while conceptualising the design. However, by using cursor

tracking in lieu of eye tracking and a small sample size, results to this effect are expected to

be indicative or suggestive rather than conclusive.

Furthermore, basic syntax highlighting was implemented within the HTML snippet. This is

done to aid readability in a way that replicates real world usage of HTML.

The example layout image was tested for various types of colour blindness to ensure that

participants with protanopia, deuteranopia, tritanopia, protanomaly, deuteranomaly,

tritanomaly, achromatopsia or blue cone monochromacy would still be able to distinguish

between the two boxes given in the example layout. The online Coblis tool13 and the

downloadable Color Oracle14 tool were used to conduct these tests and cross-check the

results.

4.1.6 The Designer is Shown Four Code Snippets

By scrolling further down the page from the layout example and its description described in

the previous step, the designer finds a selection of four code snippets as shown in Figure 10.

The code snippets feature solutions to the simple layout described in the previous step. The

solutions are based on methods utilising CSS Tables, Flexbox, CSS Grid and GSS. There is

one method per code snippet. Like the HTML code snippet, each of the styling code snippets

has syntax highlighting to replicate elements of the real-world web design environment.

Additionally, there is a colour-preview window next to the colour declarations. Along with

the selectors given as labels in the example layout diagram, this should assist designers in

determining which element each of the declaration blocks is styling.

Each of the four styling snippets is automatically pulled via an XMLHttpRequest from a

functional example of a corresponding implementation that has been tested in multiple

browsers. This guarantees that the code is functional and achieves the intended effect. The

code snippets are shuffled randomly to offset the impact that the order of the snippets may

have on participant responses. The shuffling occurs after all snippets are loaded to ensure

time to load the resources on the network does not influence the order of the code snippets.

To ensure readability, the code snippets are all the same height, have the same indentation

and syntax highlighting and prevent line-breaks for as long as possible as screen width

13 The Coblis tool is a shortening of Color Blindness Simulator. It was downloaded from

http://www.color-blindness.com/coblis-color-blindness-simulator/.
14 The Color Oracle creates a full screen filter for three different types of colour blindness; it was

obtained from http://colororacle.org/.

http://www.color-blindness.com/coblis-color-blindness-simulator/
http://colororacle.org/

46

reduces. This layout was achieved with a Flexbox implementation which respected the inherit

width of the code snippet widths as given by the longest line (this is especially visible in the

last three lines of the GSS code snippet in Figure 10) and vertically stretches all the code

snippet elements to be an equal height. Further, the elements wrap as the page width

decreases, ensuring that the participant does not need to horizontally scroll to see the code

snippets, only vertically, avoiding a well-known usability problem (Nielsen, Scrolling and

Scrollbars, 2005) and avoiding overly-preferential treatment for any particular code snippet.

For future intuitive layout tests, this layout arrangement could also be the subject matter of

an intuitive layout test similar to the one being presented here.

Figure 10: A screenshot of code snippets presented during the experiment. Each snippet accomplishes the same

result: positioning a light green element containing text content in the centre of a dark blue element. This is one

possible arrangement of the snippets; they are presented in a random order each time the experiment is run. The

select button moves the participant to the next step in the experiment.

47

Like the layout of the code snippets, the content of each code snippet is also deliberately

structured. As much as possible, the same order has been retained across the examples. For

instance, all examples present declarations in the same order of the elements given in the

HTML: #outer-element, #inner-element, then #inner-element p. The selector

#inner-element p could have also been written as p; however, so the designer participating

in the experiment would more readily comprehend where the paragraph element would be

appearing within the structure of the document, the selector was written as

#inner-element p. Furthermore, where possible, the order the properties are given is also

same across the examples: one can see that the #outer-element declaration block begins

with background-color, height and width and the #inner-element p declaration block

begins with text-align, padding and margin in all four code snippets. The effort to

maximise the consistency between the snippets has been undertaken with respect to the

finding that small differences in code (albeit Python code) can lead to different interpretations

(Hansen, Goldstone, & Lumsdaine, 2013). Furthermore, it is also based on the reasoning that

when the code snippets are mostly the same, the greatest amount of time will be spent

analysing the differences between them; that is, the differences most analysed by participants

are specific to how layouts are generated by the given GSS and CSS. Although, it must be

considered that the first code snippet viewed may take additional time to comprehend as the

common components are viewed for the first time.

The remainder of this section describes the CSS present in the code snippets from which the

designer can select.

CSS Common to all Snippets

In order to avoid repetition, CSS common to all the snippets is covered here before

highlighting the distinguishing features of each snippet in its own section. This includes some

including basic reset CSS (intended to generate a common look among the browsers) and

CSS intended to assist designers identify the relationship between the snippets and the layout

example.

The reset CSS sets the font-family to be sans-serif, the colour of the text to be white and the

body to have a margin of 0. It is common to all code snippets. It is excluded from the code

snippets because it has virtually no impact on the resulting layout, apart from the fact that it

should appear at the very top, left of the browser viewport rather having an eight-pixel margin

(the recommended default value for the body (W3C, 2016)). The removal of the eight-pixel

margin ensures that it is clear the layouts begin at the same location when using multiple tabs

to compare implementations of the code snippets.

48

Some CSS is common to all code snippets, yet included within the snippet rather than

refactored into its own style sheet as it is intended that the designer views it. For example, in

all four code snippets, the #outer-element declaration begins by setting the background-

color property to #024675 (a dark blue), the height property to be 294 pixels and the width

property to be 480 pixels, before setting other properties that are more specific to the layout

implementation. The use of the background colour here is to help designers identify to which

element of the layout it belongs to, like an indirect colour coding. A similar effect is intended

through setting the background colour of the #inner-element to the green shown in the

layout in each of the code snippets (except in the Tables snippet, for reasons explained in the

next section): it provides a colour code mapping from the CSS snippet to the example layout.

Lastly, aligning the text to the centre, giving it top and bottom padding of 1.5rem and left

and right padding of 0 is included in each of the code snippets as, unlike the reset CSS, it is

relevant to the layout: centring the paragraph text and ensuring that it has padding above and

below, making the element a bit taller than the text it contains.

CSS Tables

This code snippet is based on CSS Tables which are included in the CSS 2.1 specification

(W3C, 2011). The key features are that #outer-element is given a display value of table

and #inner-element is given a vertical-align value of middle and display value of

table-cell. This results in the browser treating the layout as a table with one cell and the

cell has its content vertically aligned in the middle. As will be seen, this approach is slightly

different to the others: since the table cell’s background-color fills the whole table, the

paragraph element was instead given a green background. Alternatives were considered such

as using the border-spacing property or adding padding to the cell; however, unlike the

other solutions, this would not have allowed #inner-element to expand and accommodate

a larger amount of content. Thus, the behaviour of the table display forced a solution that

deviated from the pattern found in the other solutions where #inner-element is sized and

displays with a green background as opposed to the paragraph element within it. Essentially,

although the paragraph element is being given the green background in this snippet, the

behaviour of the layout as more content is added is visually identical to the other

implementations.

Although the usage of tables for laying out web pages is discouraged (Kistner, 2004), it has

been observed that CSS Tables can be ‘cherry-picked’ for their layout benefits, such as

vertical centring, while many of the problems with using HTML Tables for layouts can be

avoided (Toh, 2014). Further, being part of CSS 2.1, CSS Tables are supported by a large

number of browsers, Can I Use reports almost 98% of browsers are able to use CSS Tables

49

with Internet Explorer 6 and 7 being the notable exceptions (Can I Use, 2016). Therefore,

CSS Tables have been included as a code snippet in this experiment.

Flexbox

The key features of the Flexbox code snippet include an #outer-element display property

value of flex and a width of 70%; and margin of auto for #inner-element. The auto value

vertically and horizontally centres #inner-element, as defined in the Flexbox specification.

Specifically, “positive free space is distributed to auto margins in that dimension” (W3C,

2016) and #outer-element consists only of free space and #inner-element, it is therefore

positioned centrally. The 70% value gives #inner-element a width 0.7 times the size of

#outer-element. The paragraph element within #inner-element has a margin of auto;

although, this could have been set to 0 for consistency with the CSS Grid and Grid Style

Sheets implementations. However, experimentation had already begun once this was noticed

and it was decided to keep the experiment as identical as possible for all participants. Only

the CSS Tables code snippet relies on the paragraph having a margin of auto, as it is required

to centre the paragraph block, as opposed to the #inner-element block in this case.

Flexbox, although still a work in progress (W3C, 2016), has been positioned as a solution to

various layout problems (Walton, 2016). Its adoption may have been hindered by significant

changes after it was first introduced and varying browser implementations (Coyier, 2012;

W3C, 2011). However, it now has global browser support of almost 97% (Can I Use, 2016)

and its usage is encouraged by some leading voices in the web development community

(HTML5 Please, 2016). Therefore, it is included among the code snippets, similarly to CSS

Tables, as something that is likely to be familiar to web designers.

CSS Grid

This code snippet is based on the upcoming CSS Grid layout specification. Importantly, the

line:

grid-template-columns: 3fr 14fr 3fr;

creates a grid of three columns within #outer-element using flexible space. The formula to

calculate the size of an fr unit is given as:

<flex> * <free space> / <sum of all flex factors> (W3C, 2016)

50

In the code snippet, this results in column sizes of:

Column 1 Column 2 Column 3

3 × 480 𝑝𝑖𝑥𝑒𝑙𝑠

20

= 72 𝑝𝑖𝑥𝑒𝑙𝑠

14 × 480 𝑝𝑖𝑥𝑒𝑙𝑠

20

= 336 𝑝𝑖𝑥𝑒𝑙𝑠

3 × 480 𝑝𝑖𝑥𝑒𝑙𝑠

20

= 72 𝑝𝑖𝑥𝑒𝑙𝑠

In other words, the second column of #inner-element is given a width of 336 ÷ 480 =

70% of #outer-element, just like the implementations of the other code snippets.

Therefore, placing #inner-element in column 2 using:

grid-column: 2;

has the effect of giving #inner-element a width 70% the size of #outer-element’s width.

Unlike CSS Tables and Flexbox, CSS Grid is currently only available in popular web

browsers if certain configuration flags are set to enable it: layout.css.grid.enabled in

Firefox and “Experimental web platform features” in Chrome. Therefore, along with GSS,

this is expected to be unfamiliar to designers since it is unlikely to be used for client work.

In this way, it provides a convenient control test: although designers may be familiar with

Flexbox and CSS Tables, the novelty of GSS is compared side-by-side with CSS Grid.

GSS

The code snippet featuring a GSS implementation of the layout is the most idiosyncratic

because it introduces the most novel syntax, constraint operators. Most of the constraint

operators given are intended to act like assignments, to make the code as familiar as possible

to the designer. For instance, setting height, width, top and left of #outer-element and the

height of #inner-element all read as unidirectional value assignments. The real test of the

experiment is the final three lines constraint properties between elements:

#inner-element[width] >= #outer-element[width] * .70;

#inner-element[center] == #outer-element[center];

#inner-element[height] == (#inner-element p)[height];

These three lines represent layout techniques unique to GSS (when compared to the CSS

code snippets); that is, constraining one element’s property values against the values of the

properties of other elements; especially, aligning the centres of two elements. A “greater-

than or equal to” constraint as well as an “equals” constraint is used as a hint to the designer

than these are not assignments; rather constraint operators. Further, some math is included,

making the width of #inner-element proportional to #outer-element. No more than three

lines of constraints are included so as to not overwhelm the designer with the new syntax.

Rather, the majority of the code snippet has retained syntax resembling that of CSS in an

51

attempt to test the intuitiveness of the concepts of GSS rather than the ability to interpret a

large number of constraints given in a new syntax.

Further, this code snippet involves positioning the layout relative to the window, else the

design may be under-constrained and may render #outer-element with negative top and

left margins, pulling part of the layout off-screen (GSS, 2015). This is not required in any of

the other code snippets.

4.1.7 Cursor Movements Over Code Snippets Are Recorded

This step of recording cursor movements over the code snippets by the participants occurs

simultaneously with the previous step as the participant moves their mouse over the code

snippets. Only cursor movements over the code snippets is recorded. There were several

characteristics to consider in the when establishing the mouse tracking system:

 The page is dynamically generated. Specifically, the code snippets are retrieved via

a XMLHttpRequest and shuffled.

 The page responds to changes in browser window size; therefore, code snippets may

be different widths when viewed by the participants.

 As it is a scientific experiment with only a small set of participants, as many mouse

movements as should be recorded as possible. Some mouse tracking systems only

collect samples.

In consideration of the situational requirements given above, a cursor movement recording

system that was aware of this context was developed to ensure they were all adequately

addressed. Further, this aids the analysability of the results since the implemented system

also distinguishes between interactions with each code snippet and records mouse

coordinates relative to the code snippet block: beginning one interaction when the mouse

enters the code snippet and ending that interaction as the mouse exits the code snippet.

Additionally, it offered considerable flexibility in the presentation of the results as will be

seen in later sections.

The implementation of the cursor recording software is written in JavaScript and runs directly

in the browser as the participant views the code snippets. Two event listeners are added to

52

the example layout image, the HTML snippet and each of the code snippets. The first event

listener listens for a mouse entering the element and begins recording the interaction, the

second listens for the mouse exiting the element and concludes the interaction. It is possible

for multiple interactions to occur on each element during the experiment. During an

interaction, a third event listener is added to the element to the recording of handle mouse

movements. Each mouse movement causes the script to save a mouse step in memory. A

mouse step consists of a timestamp and x and y coordinates recording the position of the

cursor at the timestamp. In JavaScript, the mouse step is an object with these properties,

named with the single letters ‘t’, ‘x’ and ‘y’ respectively to minimise space required when

the data is sent back to the server or downloaded.

Altogether, the mechanism handling the recording of interactions and their constituent mouse

steps produces the structure shown in Figure 11. It can be seen that an array, interactions,

stores a sequential record of the interactions. Each interaction features the title of the

{

 ...

 "interactions": [// A sequential record of interactions during experiment

 {

 "title": "CSS Grid element centring", // Element title

 "width": 314, // Width of element currently tracking mouse steps

 "height": 433, // Height of element currently tracking mouse steps

 "interactionSteps": [// Sequential record of mouse steps

 {

 "t": 1468506743538, // Timestamp from Date.now()

 "x": 313, // Pixel distance from left content edge

 "y": 94 // Pixel distance from top content edge

 },

 {

 "t": 1468506743569,

 "x": 311,

 "y": 93

 },

 ...

]

 },

 {

 "title": "Flexbox element centring",

 "width": 251,

 "height": 433,

 "interactionSteps": [...]

 },

 ...

],

 ...

}

Figure 11: An abbreviated sample extract of the interaction data collected during the experiments.

53

element subject to the interaction, as well as its height and width. The height and the width

are recorded, so the exact shape of the code snippet can be replicated when analysing the

mouse movements after the experiment. By using the timestamp given by JavaScript’s

Date.now() function, the mouse step’s timestamp records “number milliseconds elapsed

since 1 January 1970 00:00:00 UTC,” as measured by the participant’s browser (Mozilla

Developer Network, 2015). Generally speaking, since the Date.now() function uses a clock

on the client side which may be unreliable, its usage is advised against for data that will be

processed further on the server. Further, it has been noted that the system time as reported by

the browser may be off by an average of 7.5 milliseconds, up to 15 milliseconds (Resig,

2008). Although, this test is somewhat outdated at the time of writing and accuracy to the

nearest 100ms acceptable in this experiment as it is only intended to approximate where

participants direct their gaze and for how long. As to the issue of doing further processing on

timestamps generated by the client machine, for this experiment the timestamps are treated

relative to one another, so long as the participant does not make changes to system time the

results should be sufficiently reliable.

As well as clock performance, consideration of space usage for this record-all-movements

approach is required, since the number of mouse steps recorded can quickly move into the

thousands. As a rough indication, moving the mouse reasonably consistently and recording

the corresponding mouse steps for 4659 milliseconds in the Firefox 49 browser resulted in

379 mouse steps being recorded. As a minified JSON file, this array of mouse steps takes up

about 15 KB of space. The net effect may cause lag to affect the participant’s experience

during the experiment: around 4 MB of data could be generated during a twenty-minute

session with consistent mouse movement over the elements that recording it. Despite the

challenge of the large amount of data being generated, it is critical that the results are recorded

the first time a participant engages with the experiment, since the participants

4.1.8 The Designer Selects a Snippet

Once the designer has viewed all the code snippets while talking aloud, they select a code

snippet they believe most intuitively creates the given layout example by clicking its ‘Select’

button. Once a ‘Select’ button has been pressed, a two-question follow-up survey revealed

on the page, and the browser scrolls down to its position. At this point the designer is advised

they may stop thinking aloud.

4.1.9 The Designer Completes a Follow-up Survey

This step aims to capture qualitative aspects of the code snippets that relate to how intuitive

the designer found them. The questions are:

54

 Explain why you chose {title of selected snippet}. Please try to include specific

details about what you found intuitive in the code.

 Describe characteristics you found counter-intuitive or required additional thought

in some of the code snippets.

The placeholder {title of selected snippet} is filled in with the title of the code snippet the

designer selected in the previous step. This step gives respondents a chance to reflect on the

code they had just read, rather than drawing all the information from the initial reaction to

the code during the think-aloud component of the experiment.

At this step, the participant is also asked for their survey code. This helps connect the survey

results with the experiment results without the need to use personal identifiable information.

The results are then sent as a JSON file to the server. The data included in the JSON file and

an explanation is given in the table.

Data Reason for inclusion

Survey Code Used to connected the experiment results with a survey submission.

Browser Width Recorded so that the layout of the experiment as seen by the participant

can be recreated later on when viewing the results.

Code Snippet

Order

Records the order that the code snippets were presented to the

participant so it is possible to match up phrases like ‘the first

example…’ and ‘I found the third code block…’ to their corresponding

code snippets.

User Agent Indicates the browser used during the experiment so that the same

browser may be used when viewing the results (if it is available).

Selection

Explanation

Stores a written explanation from the participant stating what they

found intuitive about the code snippet they selected.

Non-selection

Explanation

Stores a written explanation from the participant stating what they

found counter-intuitive in the code snippets.

Interactions A chronological, timestamped record of mouse movements over the

code snippets, to approximately visualise how the participant read the

code snippets.

Table 1: Data included in the results of the experiment sent from the participant’s browsers to the server.

Additionally, notes are taken during each experiment and included in Appendix B and the

audio during the session is recorded (if permission has been granted during the experiment).

If there is a technical issue preventing the data from being to the server, the participant has

55

an option to download the data captured during the experiment as a JSON file which can then

be emailed.

Once the data constituting the experiment results for the participants is stored on the server,

it can be analysed.

4.1.10 The Results Are Combined

Qualitative and quantitative data is collected during each run of experiment with a participant.

The quantitative data includes:

 The count of selections of each code snippet made by the participants

 The timestamped mouse movements over code snippets recorded during the

participant’s participation.

The qualitative data includes:

 The content of what the participant stated during the think-aloud component.

 The content of the textual description of what the participant found intuitive.

 The content of the textual description of what the participant found counter-intuitive.

 The content of the experiment notes.

Most simplistically, the count of the selections of each code snippet provides an indication

of which code snippet designers found most intuitively represented the given layout. The

mouse movements may also support this by signalling what the participant was focusing on

and for how long. Figure 12 shows a sample of a visualisation generated by the experiment

system interpreting the mouse movement data. Each line represents an interaction. The lines

begin with a blue hue and ends with a red hue. The hue in between is generated proportionally

to how far through the interaction a given timestamp lies.

ℎ = 234 − (𝑝 ∗ 234)

ℎ is the hue as represented on a scale of 0 to 255 as specified for in the hue, saturation,

lightness and alpha (HLSA) CSS color value (W3C, 2011); 𝑝 is percentage of the way

through the current interaction the mouse step lies. A limited number of hues (0 to 234) was

Figure 12: A sample of the visual generated from the collected mouse movement data.

56

chosen because of the similarity of high value hues to low value ones: both appearing red.

As it stands, the spectrum covered ranges from 234 (blue) to 0 (red), both clearly identifiable,

primary colours.

Labels are also present to assist in interpreting the mouse movement visualisation. Each

interaction has a label at its start showing where the interaction starts and how many seconds

after the very first interaction it started. Likewise, a label at the end of the interaction displays

when the interaction ended in seconds since the very first interaction. In Figure 12, it can be

seen that the bottom line began as the very first interaction. The mouse was moved reasonably

consistently from left to right, before leaving the snippet two seconds later. The mouse

returned to the snippet 10.2 seconds after the very first interaction to begin the second

interaction at the top of Figure 12. In the second interaction, a second label stating ‘4.7s’ is

present next to a circle slightly larger than the others; this indicates that the mouse remained

stagnate at this location for 4.7 seconds. To avoid cluttering the screen with labels, only

mouse stagnations longer than 1 second are labelled.

As noted, the circles indicating the mouse steps have difference sizes. The is proportional to

the amount of time the cursor stagnated at each position. For instance, the large, light blue

circle labelled 4.7s is the largest in Figure 12 indicating that the cursor remained at this

position the longest. The size of the radius is given in the following equation:

𝑟 = 𝑚𝑖𝑛(log(𝑑), 1)

where 𝑟 is the radius in pixels and 𝑑 is the duration of the mouse step in milliseconds. A

minimum radius of one pixel is enforced on the circles so each step remains visible. Since

the mouse step durations can range from several milliseconds to tens of thousands of

milliseconds, the logarithm of the duration. This visually distinguishes between the mouse

steps that last only a few milliseconds and likely part of the mouse gliding from one position

to another, from those that last several seconds and those that last 10 or more seconds.

Drawing on the mouse-step data visualisation, it is possible to determine which parts of the

code snippet were read several times, and which parts were focused upon for a large amount

of time. As seen from the related works, this may indicate beacons in among the code snippets

(repeated views of a particular aspect) or increased cognitive load due to counter-intuitive

aspects of code snippet (longer fixations) respectively.

In summary, a lot of data is generated from the mouse step tracking, and this visualisation

diagram uses lines, color, circle size and assistive labels to make it possible to interpret. While

interpreting it can be see how the participant moved through the code snippets identifying

possible code beacons as well as aspects in the code that induce a higher cognitive load.

57

4.2 Results

The experiment intended to provide evidence as to whether or not designers found constraints

in CSS intuitive or not. The results come in two parts: the results to the participant survey,

which identifies to what extent the participants could be considered designers as understood

in the context of this paper. The second part presents the data collected during experiment

itself.

4.2.1 Participant Survey

This section looks at who is participated in the experiment. In total there were 7 participants

in the experiment. As can be seen in Figure 14 and Figure 15, a range of ages and languages

were presented. Figure 12 shows that there was 1 female and 6 males participating in the

experiment. Additionally, the ratio of those 30 or under to 31 or older, is 5:2, weighting the

results toward a slightly younger demographic, when considering the career lifespan of a

designer. Figure 15 shows that English was spoken by all 7 participants; however, only 4

Figure 14: The age and gender of experiment

participants.

Figure 15: The languages spoken by the participants,

divided by fluency.

Figure 13: Graph comparing the proportion of CSS work involving layouts of the participants.

0

1

2

3

4

21 -

25

26 -

30

31 -

35

36 -

40

C
o

u
n

t

Age Group

Age/Gender of

Participants

Female

Male0

2

4

6

8

10

German English Spanish French Italian Russian

Languages Proficiency of

Participants

Fluent

High Comprehension

Moderate Comprehension

Basic Comprehension

0

2

4

6

a) Very little (< 15% of

projects)

b) Little (15% to 35%

of projects)

d) A significant amount

(66% to 85% of

projects)

e) Virtually all of it (>

85% of projects)

C
o

u
n

t

Response

Proportion of Work Involving Layouts

58

reported they were fluent while 3 reported high comprehension of English. Fluent speakers

of German and Russian were also present during the experiment. Although several languages

are involved, they all lie within the Late Indo-European family of languages as shown by the

MultiTree project (MultiTree, 2014).

All participants recorded a long-term engagement with CSS and design, as reflected in

Error! Reference source not found. The participants noted an average of 7.7 years of e

xperience with CSS (from a minimum of 4 to a maximum of 11) and 7.3 years of design

(from a minimum of 4 to a maximum of 13). Although this may seem to indicate strong

familiarity, the result for hours per week spent working with CSS in the last month offset

this. For this metric, an average of 6.1 hours of CSS per week, with a minimum of 0 suggests

that CSS is not a core part of many participant’s work and it may not be fresh on their minds.

Despite the semi-inactive CSS status, 5 of the 7 participants responded that 66% (termed ‘a

significant amount’ in the survey) or more of their projects involved layouts. This goes some

way to validating that the participants represent the intended group of designers.

The participants also used some form of help while using CSS. Figure 16 shows that all

participants had assistance from at least a framework or a precompiler. 3 of the 8 participants

use both. Precompiler were slightly more popular, used by 6 participants compared to 5

participants using frameworks.

To sum up, the participants did reflect to intended target group to a significant degree: all

reported at least several years of experiences with CSS and most reported that at least

significant amount of their work involved layouts. However, the present engagement with

CSS of many of the participants may be considered a bit low.

Figure 16: Answer groups to the pair of questions asking participants whether they use frameworks for the

majority of their work and whether they use precompiler for the majority of their work.

0

1

2

3

4

C
o

u
n

t

Answer groups to: Uses Framework? Uses Precompiler?

Framework and Precompiler Usage of Participants

no - yes

yes - no

yes - yes

59

4.2.2 Experiment Results

The experiment has yielded quantitative results in the form of the count of selections made

by participants for the most intuitive code snippet and cursor movements as well as

qualitative data as participant’s thought aloud during the experiment and wrote down what

they found intuitive and counter-intuitive. Appendix B includes transcripts and notes taken

during the experiments while Appendix C shows visualisations of cursor movements.

The most direct answer to whether GSS could be considered intuitive relative to other layout

CSS techniques is given by a combination of Figure 18 and Figure 19. Only one participant

favoured GSS over the alternative layouts as shown in Figure 19. Further, an approximation

of the proportion of time spent engaging with code snippets based on cursor movement data

suggests that participants spent most time interacting with the GSS snippet and an about an

equal amount of time interacting with the other snippets, as shown in Figure 18. Using the

visualisations from Appendix C, it is possible to focus-in on points of interest in the GSS

snippet. The result of this is shown in Figure 17. There was significant variety in the amount

of cursor movement data collected. However, concentration points toward the bottom and

the top left are visible. These correspond to the positions of the constraint syntax and the GSS

33%

22%

23%

23%

Proportional Visual

Complexity of Cursor

Movement Data

GSS

CSS Grid

CSS Tables

Flexbox 0

1

2

3

4

5

6

CSS Grid Flexbox GSS Table

Styles

C
o

u
n

t

Code Snippet Selection

'Most Inituitive' Selection

Figure 19: An approximation of how much time

participants spent looking at each code snippet based

on a visual assessment of the cursor movement data.

Figure 17: The sum total of the code snippets chosen

as the most intuitive during the experiment.

Figure 18: Cursor movements over the GSS-based layout snippets.

60

::window keyword respectively. The second and fifth cursor-movement visualisations in

Figure 17 from users highlight this especially.

The transcripts suggest a similar pattern of additional though being record for constraint

syntax. The think-aloud results showed that many of the participants expressed confusion

when encountering the GSS syntax for the first time. Especially, the double equals sign was

noted as confusing and uncertainty as to the effect it would have was expressed by several

participants. Despite this, some participants noted redeeming features about the GSS syntax.

One participant found the ability to define relationships between the properties of elements

compatible with thinking about layouts. At least two participants noted that Flexbox worked

like ‘magic’; while implying that being able to see exactly what was happening as shown by

constraints instead might be beneficial. The syntax of GSS struck most of the participants as

being irregular in a CSS context, despite its similarities.

The responses to the last two questions asked of participants during experiment provides

further evidence consistent with the results covered given so far. The aspects of GSS

considered counter-intuitive in this responses included: the use of math symbols, increased

line lengths, the combination of ‘:’ and ‘==’ when defining values, the verbosity of GSS, the

keyword intrinsic-height and generally confusing syntax. Further, one participant noted

that they did not need to jump between selectors with the choice of Flexbox, implying that

identifying all the constraints a property participated in was unwanted cognitive load. As a

counter-point, a respondent familiar with GSS syntax noted that the ‘code speaks for itself’

observing that using constraint syntax to express relationships between element properties

reflected a way of thinking about layout. A couple of other comments were supportive of

GSS as well. One participant noted it was ‘expressive’, another participant found the idea of

defining the relationships between elements interesting. However, the majority of comments

about the constraint syntax were unsupportive of the idea that it was intuitive relative to other

CSS layout techniques.

In sum, the results indicate that constraint syntax in CSS is not an intuitive approach for

layouts relative to alternative CSS layout methods.

4.3 Discussion

On the surface, the results counter the hypothesis that constraint syntax is intuitive for

designers relative to other CSS layout approaches. However, the nature of the experiment

means that this conclusion is not infallible. The selection of the of the participants and the

experiment method itself could be improved to make generate more concrete results.

61

The survey showed that the target group of participants was reached. All participants reported

more than several years or more of both CSS and Design experience. However, this was a

self-reported figure with no validation of its truth. Further, CSS and design may not be the

core work tasks of the participants and this measurement may not be an accurate reflection

of CSS ability. Indeed, this is indicated by an overall low average number of hours spent

doing CSS work per week, 5.5. On the other hand, the definition of designer in this paper

refers generally to those who use CSS to produce layouts professionally, it is not clear

whether this must be the central task of their professional work. In today’s context of

increasingly cross-functional, multi-skilled teams, the survey results may actually reflect the

reality of the role of a designer. In other words, designers have a long-term involvement with

CSS but it is only involved a fraction of their day-to-day tasks. However, determining the

extent to which this is true is out of the scope of this thesis.

Indeed, the scope of this thesis was noted as being ‘small scale’. It is self-evident that a group

of 8 participants cannot produce conclusive findings for designers around the world. It was

noted in the results section that all the languages were Late Indo-European languages and it

involved mostly those fluent in German or English, to the exclusion of thousands of others.

Age groups younger than 20 and over 40 are also not represented and only one female

participated in the experiment. Each of these demographic shortcomings would need to be

addressed in order to draw findings that could be considered relevant for designers around

the world, as CSS is implemented on a global scale. However, for the small scope of the

thesis, the multiple age ranges and multiple cultures of the participants is a starting point for

generating suggestive findings.

As for the results themselves, there is also room for improvement. Due to time constraints

and due to the unexpectedly poor quality of the cursor data in its capacity to act as a proxy

for gaze, the cursor was not analysed to the originally envisaged extent. Instead, it was only

visually assessed for where participants spent the most time concentrating, increasing the

possibility of errors. The poor quality of the cursor movement could be rectified in future

#outer-element {

 /* ... */

 grid-template-columns: 3fr 14fr 3fr;

}

#inner-element {

 /* ... */

 grid-column: 2;

}

Figure 20: A combination of properties that was found to be intuitive.

62

versions of this experiment with an eye tracking system. However, in current experiment the

poor quality of the cursor movement data was made up for by the qualitative data collected.

In generally, all participants were able to effectively think out loud during the experiment. It

was particularly insightful to see moments where they suddenly understood how something

was working. For instance, from these observations, it could be said that the combination of

lines in Figure 20 was intuitive as it is understood in the context of this paper. Although some

participants expressed that they had not seen CSS Grid before, they were able to determine

that the inner element would lie in a column whose width was 14fr (although what the fr unit

could mean proved to be a bit more puzzling). Likewise, once they had acclimatised a little

bit to the GSS constraint syntax, some participants were able read statements such as the one

aligning the centres of the inner and outer elements, or the statements aligning the outer

element to the top left of the window and determine their effects.

That highlights an area of further investigation. This experiment was interesting because it

captured, in several cases, the first impressions of people using both CSS Grid and GSS.

However, it became clear through the course of the experiment that there is a difference

between considering something intuitive on first impression and considering something

intuitive after having learnt as foundational set of rules. In this experiment, this gave CSS

Grid an advantage over GSS because it only introduced new properties and property values,

whereas GSS introduced new syntax into CSS. Several participants commented positively on

CSS Grid and were able to relatively quickly determine what its properties and property

values meant. On the other hand, the introduction of the double-equals sign and the double-

colon prefix prepended to the window selector in GSS drew comments of confusion. Yet

once the confusion passed, the majority of designers were able to determine the effect of the

constraints. Therefore, the experiment could be improved by comparing the relative

intuitiveness of layout implementations once a designer had learnt foundational concepts of

constraint syntax to give it equal footing with CSS. Nevertheless, comparison between first-

impressions of CSS Grid and GSS has been useful to produce such a finding.

In summary, the results suggest that constraint syntax is not intuitive when compared to other

layout approaches in CSS. As shown by the comparison to the relatively unknown CSS Grid

specification, this may be largely to do with the introduction of new operators into CSS.

Further, the caveat applies that constraint syntax is not considered intuitive on a first

impression. Re-testing other layout scenarios after introducing the foundational concepts

would be a future direction for this investigation. Lastly, the results are suggestive, repeating

and improving the experiment, with eye tracking for example, for a broader set of

demographics would help solidify the results.

63

5 Conclusion

5.1 Summary and Key Findings

This thesis set out to look at using constraints for web layouts, evaluating how intuitive they

are for designers compared to other, current approaches to web layouts. Here the flow of the

document is recapped and key findings are highlighted.

The introduction defined the key concepts as they are used in this paper. This included

defining the work of a designer to involve working with CSS by definition. The particular

strand of CSP that is used for layouts was introduced, along with key features of GSS. The

scope section established a precedent for the rest of the paper: the experiment was being

treated like a small-scale usability study and there would be a heavy emphasis on layouts and

constraints to the exclusion of other CSS and GSS capabilities. Next, the objective of

answering the core question and the relevance is established.

The subsequent related work section draws on academic work as well as work from current

material from leading voices in web design. Firstly, a paper introducing CCSS, upon which

GSS is based, is summarised. It is noted that the paper positions constraints as a solution to

a difficult-to-understand, restricted CSS 2.0 specification (Badros, Borning, Marriott, &

Stuckey, 1999), although it does not explain why constraints might be easier for designers to

understand. This is an early instance of an assumption being made that some technology is

intuitive without adequate testing, a theme repeated later in this paper. Despite this, it is

foundational, along with the GSS documentation for understanding how constraints could be

applied to web layouts.

Switching from looking at code and technical implementations to looking at the mind, the

next related work identifies key concepts to do with online processing during reading and

looking at how code is read. This is a deliberate attempt to break the cycle of assuming

intuitiveness, and look for bottom-up ways to reason whether something was intuitive or not.

In particular, it was noted that longer eye fixations and an increased number of regressions

indicated hard-to-understand material based on Rayner’s work (Rayner, 1998). It was

tentatively assumed that one could look for such patterns during the reading of code as well

as some related studies had done. Applications of eye tracking to code readers were also

covered, determining that some code characteristics could contribute to quick comprehension

of code: for instance, the use of beacons and a high level of regularity.

After establishing constraints and reading patterns to reason about intuitiveness, the related

work section stepped outside of academic papers and looked at the W3C Mailing List as a

related work to see how intuitiveness was reasoned about during the foundational years of

64

CSS. After analysing emails from 1995 to 2008, it was found that the decision as to whether

or not some feature of CSS is intuitive mostly comes down to opinion.

Frameworks were briefly assessed as the next non-academic related work as their popularity

seems to be underpinned by the easy in which they allow designers to manager layouts

compared to CSS. It was found that the most popular frameworks implemented a grid system

and columns and rows may play a large role in how designers think about layouts.

Moving on from the mainstream frameworks, state-of-the-art web page layouts were

considered based on a recent talk from Jen Simmons. The talk was constructed in a problem-

solution way: the problem was the frequency at which a boilerplate web layout pattern was

found across the web; the solution was some of the recent and upcoming CSS specifications

as well as to consider alternative layouts; for example, translating ideas from magazine

layouts (Simmons, 2015). Although the intuitiveness of the technologies was not considered

directly, commentary on Flexbox and the note to use tools to assist with grid creation

suggested intuitive use of these technologies was yet to come.

Last of the related works were the CSS specifications. It was found that specifications CSS

Tables, Flexbox and CSS Grid indirectly give designers access to constraints, they are just

separated by a layer of syntax. It was shown that constraint syntax could be used to implement

several concepts across the specifications, making constraint syntax quite versatile. However,

it was also observed that constraint syntax may quickly become verbose while trying to

capture layout behaviours that are concisely expressed in purpose-built CSS specifications.

Such an effect would reduce the capability of constraint syntax to be intuitive.

A brief analysis places the paper in a historical context. It looks at the development of HTML

and CSS, with a focus on layouts and how the early development shaped current thinking

about web layouts, especially the impact of table-based layouts.

The experiment forms a substantial part of the paper, and results in primary evidence refuting

the hypothesis that designers find constraint syntax intuitive for layouts relative to other CSS

approaches. An attempt was made to use cursor movement data as a proxy for reading,

insufficient quality (due to trackpads) meant it was incomplete. Although, taken at face-

value, it suggested the greatest amount of time was spent looking the novel syntax introduced

by GSS so it nevertheless contributed to the results. Improvements for future research were

identified such as switching from mouse tracking to eye tracking and the inclusion of a

broader demographic to better represent the diversity of the designer population.

Furthermore, it was realised that testing intuitiveness upon a first-impression, as was done in

this experiment, may yield different results to testing intuitiveness once a participant has

65

familiarised themselves with foundational concepts. Nevertheless, the experiment

accomplished what it set out to within the scope of this paper. It both suggested that constraint

syntax could not be considered as intuitive as existing CSS approaches as well as

implemented a process for testing for relative intuitiveness.

5.2 Critical Review

This paper set out to achieve two objectives. The first being to produce a preliminary

conclusion as to whether designers find constraint syntax for layouts intuitive relative to other

CSS approaches. The second was to test a method for evaluating the intuitiveness of language

constructs. This critical review looks at the extent to which they are fulfilled within the given

scope and identifies areas for improvements.

A task that seemed relatively straightforward at the beginning of the thesis, to determine the

relative intuitiveness of various syntax (including constraint syntax) for web layouts, turned

out to require a lot of work in the details. Although core definitions given in the introduction

were relatively simple, the extrapolation of ideas from the related works revealed the

complexities of the thesis topic. The CCSS paper (Badros, Borning, Marriott, & Stuckey,

1999) showed there are many aspects when applying constraints to CSS: how they handle

cascading, weighting constraints, establishing the syntax to use, the interaction of designer

and user stylesheets and so on. This paper focused on a bare minimum of constraint syntax:

positioning relative to the window and a few bare-metal positioning constraints, with one

mathematical operator are used in the experiment. However, any of the other concepts from

the CCSS paper could have been tested for its intuitiveness. Further, GSS features constraint-

based extensions, such as its VFL, representing other areas skipped by this paper. Instead,

this paper focused on only included a few examples in its experiment to avoid overwhelming

the participants (although many participants seem to have been overwhelmed with the small

amount of constraint syntax given). As far as could be determined, assessing relative

intuitiveness of CSS language features had not been done in a way similar to the method

presenting in this thesis previously. Therefore, the scope limited testing to a small scale and

attempting to draw out findings that were suggestive meant that focusing on just a couple of

concepts available with GSS was appropriate for this paper.

Like the question of how deep into constraint syntax should the paper, it was also difficult to

determine the extent to which the workings of the mind should be investigated in ordered to

support the categorisation of intuitive for constraint syntax. It could have gone much further

than what was presented in this paper; however, just a few basic reading patterns that allow

cognitive load to be inferred were identified. Further, in order to include these concepts in

the experimentation, it was decided to use cursor movements as a proxy. This obscured the

66

results even more, especially since a large portion of respondents used trackpads which

resulted capturing very little of the participant’s reading pattern. Again, the scope can be used

to justify this degradation. If the scope of similar experiments were to be grown with

correspondingly larger budgets for such research, eye tracking systems and perhaps brain

scans could be utilised to look more deeply and what participants struggled to understand.

Within the current scope and despite the poor quality, the recorded cursor movements were

able to show a large amount of time spent looking at GSS relative to the other code snippets

as well as indicate two points of concentration within the code snippet on the novel features

of GSS. This was enough detail given the scale of this paper and that it was supplemented

with the think-aloud component of the experiment as well.

Altogether, the findings from this paper may have been made more substantial by digger

further into the topics that are already presented here: further into constraint syntax and

further into what can be termed intuitive based on how the mind works. Nevertheless, it is

believed that within the given scope of the paper, the set objectives have been achieved. A

process for testing the relative intuitiveness of various CSS language features was established

and tested during the course of the thesis. This lead to sufficient evidence to suggest that

constraint syntax, on a first-impression, is not intuitive relative to existing CSS layout

approaches.

5.3 Future Directions

From its beginning to its upcoming standards, this paper has shown CSS is changeable (or at

least extendable). Assessing the usability of such changes using think-aloud tests and some

way to measure the user’s gaze results, especially during a comparison of language features,

reveals insights about how designers think about the code. Such insights may have avoided

counter-intuitive behaviours, such as some margin-collapsing rules, which are now set in

stone. Testing new CSS features in demographic groups around the world could help ensure

future changes to this global specification simply make sense.

67

6 References

Alexa. (2016, July 13). Site Overview csszengarden.com. Retrieved July 15, 2016, from

Alexa: http://www.alexa.com/siteinfo/csszengarden.com

Alexa. (2016, July 15). Site Overview gridstylesheets.org. Retrieved July 15, 2016, from

Alexa: http://www.alexa.com/siteinfo/gridstylesheets.org

Alexa. (2016, July 13). Site Overview w3.org. Retrieved July 15, 2016, from Alexa:

http://www.alexa.com/siteinfo/w3.org

Badros, G. J., Borning, A., Marriott, K., & Stuckey, P. (1999). Constraint Cascading Style

Sheets for the Web.

Bednarik, R., & Tukiainen, M. (2006). An Eye-Tracking Methodology for Characterizing

Program Comprehension Processes. ETRA (pp. 125-132). San Diego, California,

USA: ACM.

Berners-Lee, T. (1991, October 29). Re: status. Re: X11 BROWSER for WWW. W3C.

Retrieved July 16, 2016, from http://lists.w3.org/Archives/Public/www-

talk/1991SepOct/0003.html

Berners-Lee, T. (1994-2006). What were the first WWW browsers? W3C. Retrieved June

18, 2016, from https://www.w3.org/People/Berners-Lee/FAQ.html#browser

Berners-Lee, T., & Connolly, D. (1992). Tags used in HTML. Retrieved June 18, 2016, from

http://info.cern.ch/hypertext/WWW/MarkUp/Tags.html

Berners-Lee, T., & Connolly, D. W. (1995, November). Hypertext Markup Language - 2.0.

IETF. Retrieved June 20, 2016, from http://www.ietf.org/rfc/rfc1866.txt

Blackwell, A. F. (2006, December). The Reification of Metaphor as a Design Tool. ACM

Transactions on Computer-Human Interaction, 13(4), pp. 490-530.

Bootstrap. (2016). Grid System. Retrieved July 21, 2016, from

http://getbootstrap.com/css/#grid

Bos, B., & Lilley, C. (2016, July 12). Cascading Style Sheets (CSS) Working Group Charter.

Retrieved July 15, 2016, from W3C Interaction Domain:

https://www.w3.org/Style/2014/css-charter

Burton, L. (1999). Why is Intuition so Important to Mathematicians but Missing from

Mathematics Educations? For the Learning of Mathematics, 19(3), 27-32.

68

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J. H., Schulte, C., . . . Tamm, S.

(2015). Eye Movements in Code Reading: Relaxing the Linear Order. Proceedings

of the 2015 IEEE 23rd International Conference on Program Comprehension (pp.

255-265). Florence: IEEE. doi:10.1109/ICPC.2015.36

Busjahn, T., Schulte, C., & Busjahn, A. (2011). Analysis of Code Reading to gain more

Insight in Program Comprehension. Koli Calling. Koli, Finland: ACM.

Can I Use. (2016, June). CSS Table display. Retrieved July 22, 2016, from

http://caniuse.com/#feat=css-table

Can I Use. (2016, June). Flexible Box Layout Module. Retrieved July 22, 2016, from

http://caniuse.com/#feat=flexbox

Clarke, A. (2014, March 25). A Modern Designer’s Canvas. Retrieved June 12, 2016, from

Smashing Magazine: https://www.smashingmagazine.com/2014/03/a-modern-

designers-canvas/

Coyier, C. (2012, August 7). “Old” Flexbox and “New” Flexbox. CSS-Tricks. Retrieved July

22, 2016, from https://css-tricks.com/old-flexbox-and-new-flexbox/

Crosby, M. E., Scholtz, J., & Wiedenbeck, S. (2014). The Roles Beacons Play in

Comprehension for Novice and Expert Programmers. 14th Workshop of the

Psychology of Programming Interest Group (pp. 58-73). Brunel University.

Ford, N. (2014, March 25). Content-out Layout. A List Apart. Retrieved July 26, 2016, from

http://alistapart.com/article/content-out-layout

Grannell, C. (2013, June 4). Beyond mockups: how leading web designers work in 2013.

Digital Arts. IDG. Retrieved July 24, 2016, from

http://www.digitalartsonline.co.uk/features/interactive-design/learn-web-designs-

new-ways-work/

grid. (2016). Macmillan Dictionary. Retrieved June 1, 2016, from

http://www.macmillandictionary.com/dictionary/british/grid

Gridset. (2014). Gridset. Retrieved July 27, 2016, from Responsive Report:

http://2014.report.gridsetapp.com/

Gridset. (2016). Gridset. Retrieved July 27, 2016, from Web Layout Evolved:

https://gridsetapp.com/

69

GSS. (2015). Constraint CSS. Retrieved July 13, 2016, from Grid Style Sheets 2.0:

http://gridstylesheets.org/guides/ccss/

Hansen, M., Goldstone, R. L., & Lumsdaine, A. (2013, April 26). What Makes Code Hard

to Understand. Retrieved July 13, 2016, from http://arxiv.org/abs/1304.5257

Harper, S., Jay, C., Michailidou, E., & Quan, H. (2013). Analysing the Visual Complexity of

Web Pages Using Document Structure. Behaviour & Information Technology, 32, 5,

491-502.

Hickson, I. (2004, December 22). Re: Collapsing 0 width margin. W3C Mailing Lists.

Retrieved July 24, 2016, from https://lists.w3.org/Archives/Public/www-

style/2004Dec/0087.html

Hogarth, R. M. (2001). Educating Intuition. University of Chicago Press.

HTML5 Please. (2016, May). Flexbox. Retrieved July 22, 2016, from

http://html5please.com/#flexbox

Huang, J., White, R. W., & Buscher, G. (2012). User See, User Point: Gaze and Cursor

Alignment in Web Search. CHI, (pp. 1341-1350). Austin, Texas, USA.

Ink. (2016). Grid. Retrieved July 21, 2016, from http://ink.sapo.pt/ui-elements/grid/

Jbara, A., & Feitelson, D. G. (2015). How Programmers Read Regular Code: A Controlled

Experiment Using Eye Tracking. 23rd International Conference on Program

Comprehension (pp. 244-254). Florence, Italy: IEEE.

Khedker, U. P. (1997). What Makes a Good Programming Language ? Department of

Computer Science, University of Pune.

Kistner, G. (2004). Why Tables Are Bad (For Layout*) Compared to Semantic HTML +

CSS. Retrieved July 22, 2016, from

http://phrogz.net/css/WhyTablesAreBadForLayout.html

Kramer, J. (2014, February 19). Responsive Design Frameworks: Just Because You Can,

Should You? Retrieved July 8, 2016, from Smashing Magazine:

https://www.smashingmagazine.com/2014/02/responsive-design-frameworks-just-

because-you-can-should-you/

Kumar, R., Satyanarayan, A., Torres, C., Lim, M., Ahmad, S., Klemmer, S. R., & Talton, J.

O. (2013). Webzeitgeist: Design Mining the Web. CHI 2013: Changing Perspectives

(pp. 3083-3091). Paris, France: ACM.

70

Levine, M. (2006, January 30). In Search of the Holy Grail. A List Apart. Retrieved July 8,

2016, from http://alistapart.com/article/holygrail

Liang, H.-S., Kuo, K.-H., Lee, P.-W., Chan, Y.-C., Lin, Y.-C., & Chen, M. Y. (2013). SeeSS:

Seeing What I Broke – Visualizing Change Impact of Cascading Style Sheets (CSS).

UIST (pp. 353-356). St. Andrews, UK: ACM.

Lidwell, W., Holden, K., & Butler, J. (2010). Universal Principles of Design, Revised and

Updated: 125 Ways to Enhance Usability, Influence Perception, Increase Appeal,

Make Better Design Decisions, and Teach Through Design. Rockport Publishers.

Lie, H. W., & Bos, B. (1996, December 17). Cascading Style Sheets, level 1. W3C. Retrieved

June 22, 2016, from https://www.w3.org/TR/REC-CSS1-961217

Lilley, C. (1996, February 7). Re: CNS colors. Retrieved July 15, 2016, from W3C Mailing

Lists: https://lists.w3.org/Archives/Public/www-style/1996Feb/0019.html

Lilley, C. (1996, February 28). Re: T.E.O.'s Draft--Cascading Speech Style Sheets (txt).

Retrieved July 15, 2016, from W3C Mailing Lists:

https://lists.w3.org/Archives/Public/www-style/1996Feb/0063.html

Macmillan Dictionary. (2016). layout. Retrieved July 24, 2016, from

http://www.macmillandictionary.com/dictionary/british/layout

Merriam-Webster.com. (2016). graphic design. Retrieved July 8, 2016, from

http://www.merriam-webster.com/dictionary/graphic%20design

Mozilla Developer Network. (2013, November 22). <spacer>. Mozilla. Retrieved June 30,

2016, from https://developer.mozilla.org/en-US/docs/Web/HTML/Element/spacer

Mozilla Developer Network. (2015, December 26). Date.now(). Retrieved July 14, 2016,

from MDN: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/Date/now

MultiTree. (2014). Multitree: A digital library of language relationships. Bloomington,

Indiana, USA: Department of Linguistics, The LINGUIST List, Indiana University.

Retrieved July 28, 2016, from http://multitree.org/

Nielsen, J. (2000, March 19). Why You Only Need to Test with 5 Users. Nielsen Norman

Group. Retrieved July 24, 2016, from https://www.nngroup.com/articles/why-you-

only-need-to-test-with-5-users/

71

Nielsen, J. (2005, July 11). Scrolling and Scrollbars. Retrieved July 14, 2016, from Nielsen

Norman Group: https://www.nngroup.com/articles/scrolling-and-scrollbars/

Nielsen, J. (2012, January 16). Thinking Aloud: The #1 Usability Tool. Retrieved July 15,

2016, from Nielsen Norman Group: https://www.nngroup.com/articles/thinking-

aloud-the-1-usability-tool/

Nielsen, J. (2014, September 1). Demonstrate Thinking Aloud by Showing Users a Video.

Retrieved July 29, 2016, from Nielsen Norman Group: Demonstrate Thinking Aloud

by Showing Users a Video

Open Stand. (2016, July 8). Principles. Retrieved from Open Stand: Global advocates for

open standards & technology development: https://open-stand.org/about-

us/principles/

Prowse, A. (2008, November 23). [CSS21] Negative clearance. W3C Mailing Lists.

Retrieved July 26, 2016, from https://lists.w3.org/Archives/Public/www-

style/2008Nov/0482.html

Raggett, D. (1997, January 14). HTML 3.2 Reference Specification. W3C. Retrieved June

20, 2016, from https://www.w3.org/TR/REC-html32.html

Raymond, M. (2006, July 13). Re: [CSS3 Color] Percentages in Alpha Value etc. W3C

Mailing Lists. Retrieved July 26, 2016, from

https://lists.w3.org/Archives/Public/www-style/2005Jul/0351.html

Rayner, K. (1998). Eye Movements in Reading and Information Processing: 20 Years of

Research. Psychological Bulletin, 372-422. Massachusetts, USA: American

Psyschological Association.

Reichle, E. D., Rayner, K., & Pollatsek, A. (2000). Comparing the E-Z Reader Model to

Other Models of Eye Movement Control in Reading.

Resig, J. (2008, November 12). Accuracy of JavaScript Time. Retrieved July 15, 2016, from

John Resig: http://ejohn.org/blog/accuracy-of-javascript-time/

Russell, S., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach (Third Edition).

Upper Saddle River, New Jersey 07458: Prentice Hall.

Shepherd, R. (2011, September 19). CSS3 Flexible Box Layout Explained. Retrieved July 8,

2016, from Smashing Magazine:

https://www.smashingmagazine.com/2011/09/css3-flexible-box-layout-explained/

72

Siegel, D. (1996). Web Site Design: Killer Web Sites der 3. Generation. 110-111. (N.

Schwarten, Trans.) Munich, Bavaria, Germany: Markt&Technik Buch- und

Software- Verlag GmbH.

Simmons, J. (2015, December 5). Modern Layouts: Getting Out of Our Ruts by Jen Simmons.

An Event Apart. Retrieved July 21, 2016, from https://vimeo.com/147950924

Simmons, J., & Andrew, R. (2016, April 3). Laying Out the Future with Rachel Andrew. The

Web Ahead. Retrieved from http://thewebahead.net/114#transcript

table. (2016). Merriam-Webster.com. Retrieved July 1, 2016, from http://www.merriam-

webster.com/dictionary/table

Toh, C. (2014, October 27). The Anti-hero of CSS Layout - "display:table". Blog | Colin Toh.

Retrieved July 22, 2016, from http://colintoh.com/blog/display-table-anti-hero

Turner, R., Falcone, M., Sharif, B., & Lazar, A. (2014). An Eye-tracking Study Assessing

the Comprehension of C++ and Python Source Code. ETRA (pp. 231-234). Safety

Harbor, Florida, USA: ACM.

von Mayrhauser, A., & Vans, A. (1995, August). Program Comprehension During Software

Maintenance and Evolution. Computer, 28(8), pp. 44-55.

W3C. (2011, June 07). Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification.

(B. Bos, T. Çelik, I. Hickson, & H. W. Lie, Eds.) Retrieved June 22, 2016, from

https://www.w3.org/TR/CSS2/

W3C. (2011, June 7). CSS Color Module Level 3. Retrieved July 9, 2016, from

https://www.w3.org/TR/css3-color/

W3C. (2011, March 22). Flexible Box Layout Module. (T. Atkins Jr., A. Mogilevsky, & L.

D. Baron, Eds.) Retrieved July 22, 2016, from https://www.w3.org/TR/2011/WD-

css3-flexbox-20110322/

W3C. (2014, March 20). CSS Shapes Module Level 1. (V. Hardy, R. Atanassov, & A.

Stearns, Eds.) Retrieved July 27, 2016, from https://www.w3.org/TR/css-shapes-1/

W3C. (2014, October 28). HTML5: A vocabulary and associated APIs for HTML and

XHTML. (I. Hickson, R. Berjon, S. Faulkner, T. Leithead, E. Navara, E. O'Connor,

& S. Pfeiffer, Compilers) Retrieved June 2016, 29, from

https://www.w3.org/TR/html5/Overview.html

73

W3C. (2016, May 26). CSS Flexible Box Layout Module Level 1. (T. Atkins Jr., E. J.

Etemad, & R. Atanassov, Eds.) Retrieved July 22, 2016, from

https://www.w3.org/TR/css-flexbox-1/

W3C. (2016, May 19). CSS Grid Layout Module Level 1. (T. Atkins Jr., E. J. Etemad, & R.

Atanassov, Compilers) Retrieved June 29, 2016, from https://www.w3.org/TR/css-

grid-1/

W3C. (2016). CSSWG Test Server. Retrieved July 26, 2016, from CSSWG Test Server:

http://test.csswg.org/

W3C. (2016, June 21). HTML 5.1. Retrieved July 22, 2016, from

https://www.w3.org/TR/html51/rendering.html#the-css-user-agent-style-sheet-and-

presentational-hints

W3C. (2016, July 15). Mailing-lists Search service. Retrieved from W3C:

https://www.w3.org/Search/Mail/Public/advanced_search

Walton, P. (2016, July 19). Solved by Flexbox. Retrieved July 22, 2016, from

https://philipwalton.github.io/solved-by-flexbox/

Wappalyzer. (2016, July 21). Web Frameworks: Websites using Web Frameworks. Retrieved

July 21, 2016, from https://wappalyzer.com/categories/web-frameworks

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P., Kumar, P., & Prasad, C.

(2006). An Australasian Study of Reading and Comprehension Skills in Novice

Programmers, using the Bloom and SOLO Taxonomies. Eighth Australasian

Computing Education Conference. Hobart, Tasmania: Australian Computer Society,

Inc.

Wilson, B. (2005). Multi Column. Index DOT Html. Retrieved June 30, 2016, from

http://www.blooberry.com/indexdot/html/tagpages/m/multicol.htm

ZURB Foundation. (2016). The Grid. Retrieved July 21, 2016, from

http://foundation.zurb.com/sites/docs/grid.html^

74

Appendix A: Uses of ‘Intuitive’ in the WWW-Style Mailing

List

The table below presents the uses of “intuitive” found in the www-style mailing list. The

mailing list archives are available at: https://lists.w3.org/Archives/Public/www-style/. A total

of 934 emails containing “intuitive” were found (which may include duplicates as it is

included in responses as well), an indication that the intuitions of people using CSS are

considered in its design. The term is found in about 1.127% of the 82,838 messages present

in the archive. This covers the time range from May 1995 until June 2016. However, only

messages up to and including 2008 are analysed. The purpose of this table is to ascertain the

reasoning behind determining whether something is intuitive or not by examining the context

of its usage. Each usage is categorised into “opinion”, “logic”, “evidence” or “irrelevant”

based on how the reference to something being intuitive is justified. For the most part,

spelling and grammatical errors have been included as they were given in the original

documents; however, autocorrect may have fixed the occasional word. To the interpretation

of the author, usage of mailing list content is granted given the following statement appears:

Copyright © 1995-2016 World Wide Web Consortium, (MIT, ERCIM, Keio, Beihang).

http://www.w3.org/Consortium/Legal/2015/doc-license.

Message Year Link Categoris

ation

…Howeverm I'm sure you can make something more

intuitive to allow authors to change properties of capitals…

1995 Link Opinion

… I would prefer the style sheet language to be a bit more

intuitive. "@archform" isn't…

1995 Link Opinion

…While coding, a couple of issues that I didn't resolve

intuitively came up. I've described one of them below. Input

is welcome….

1995 Link Opinion

… The problem with this solution is <DOC> or <SOURCE>

may appear as real HTML tags one day and the style sheet

language will become ambiguous.

If anyone has a clear vision of how one can get out of this

with an intuitive notation in place, please let me know...

1995 Link Opinion

…Yes, I like your [] syntax. It's much cleaner and more

intuitive than what I came up with…

1995 Link Opinion

https://lists.w3.org/Archives/Public/www-style/
http://www.w3.org/Consortium/Legal/2015/doc-license
http://www.w3.org/mid/9505222209.AA03453@eitech.eit.com;list=www-style
https://lists.w3.org/Archives/Public/www-style/1995Jun/0000.html
https://lists.w3.org/Archives/Public/www-style/1995May/0004.html
https://lists.w3.org/Archives/Public/www-style/1995May/0004.html
https://lists.w3.org/Archives/Public/www-style/1995Jul/0039.html

75

…Whether the default properties are inherited or not depends

on the property. Making it depend on the element instead is

rather counter-intuitive…

1995 Link Opinion

…I seem to understand you, by using this notation, to mean

that if "[.]font[.]" were anywhere within the classification,

then the current class should have its attributes cascaded

from "font". I do NOT find it intuitive to say that…

1995 Link Opinion

…So the notion of

 HTML_ELEMENT : SPECIFICATION

would be better rendered as

 CLASS_NAME { SPECIFICATION }

where SPECIFICATION may be a multi line set of

elememts. This makes a complex element like the EM.first

much more intuitive (and easier to parse too)…

1995 Link Opinion

…Instead of making subclassing mandatory, the CSS

proposal takes advantage of the existing "subclasses" (H1, P

etc) and overlays styles based on these. For me, that's

intuitive, and Peter's extra level of indirection is not. What do

other people think? (I fear my intuition is somewhat damaged

after thinking about these issues for some time :-)…

1995 Link Opinion

…the value of the <STYLE NOTATION> attribute is

apparently restricted to the values listed in the DTD. This

seems counter-intuitive to me…

1995 Link Opinion

…Or do you want separate properties for URL's, such as

`text-background' vs `text-background-url'? The problem is

that this may not be very intuitive either….

1995 Link Opinion

…"*" is not a synonym for "HTML", it's a synonym for the

top-level element. In HTML, this happens to be "HTML",

but many authors omit it and I believe "*" is more intuitive…

1995 Link Opinion

…While CLASS would be "usable", it is not the least bit

intuitive…

1995 Link Opinion

…My guess is that the most intuitive reading will be that

everything is relative to its enclosing environment…

1995 Link Opinion

https://lists.w3.org/Archives/Public/www-style/1995Jul/0044.html
https://lists.w3.org/Archives/Public/www-style/1995Jul/0064.html
https://lists.w3.org/Archives/Public/www-style/1995Jul/0090.html
https://lists.w3.org/Archives/Public/www-style/1995Jul/0092.html
https://lists.w3.org/Archives/Public/www-style/1995Sep/0005.html
https://lists.w3.org/Archives/Public/www-style/1995Sep/0021.html
https://lists.w3.org/Archives/Public/www-style/1995Oct/0007.html
https://lists.w3.org/Archives/Public/www-style/1995Nov/0010.html
https://lists.w3.org/Archives/Public/www-style/1995Nov/0017.html

76

…Then there are some not-so-obvious factors like how

"mature" a property is, how "intuitive" it is and how "useful"

it is…

1995 Link Irrelevant

…True, and even more so, I feel future authoring tools need

to present the stylesheet functionality in an intuitive manner.

That will, I believe, influence authoring styles more than

anything else…

1995 Link Opinion

…#x65y or "x56y"? #x65y. Definitely. Using quotes in a

way that has a syntactic meaning (other than encapsulation)

is pretty anti-intuitive…

1995 Link Opinion

…For font-weight and font-size, I appreciate that you've

moved from absolute numbers to relative ones. I'm a little

concerned, though, that it may not be intuitive that a bare

positive number means an increase…

1996 Link Opinion

…I know which printer fonts link to which screen fonts - but

a name searching system is going to be more cumbersome

and less intuitive…

1996 Link Opinion

…Obviously CNS (which I'd never heard of before) is a

subset of the HSB (hue-saturation-brightness) color model,

widely used and intuitive…

1996 Link Opinion

…In particular, it has nothing to do with HLS, HSB and

suchlike polar representations of RGB (which are, in

usability studies, often shown to be *not* very intuitive) …

1996 Link Evidence

…HSB is a spectacularly bad idea as it is non intuitive. It

claims for example that yellow (RGB 00FFFF) and blue

(RGB 00FFFF) have the same "brightness" which is clearly

false. It is extremely non linear, the hue circle is not at all

even .. generally, it is a mess.…

1996 Link Logic

…The tags and have more intuitive

meanings than <i> and for people who work aurally

rather than visually…

1996 Link Logic

…This seems strongly counter-intuitive. The default is that

there is no sound? Perhaps a stylesheet for visual

presentation could specify that the default is black text on a

black background, so the screen is entirely dark? ...

1996 Link Logic

https://lists.w3.org/Archives/Public/www-style/1995Dec/0004.html
https://lists.w3.org/Archives/Public/www-style/1995Dec/0056.html
https://lists.w3.org/Archives/Public/www-style/1995Dec/0118.html
https://lists.w3.org/Archives/Public/www-style/1995Dec/0152.html
https://lists.w3.org/Archives/Public/www-style/1996Jan/0063.html
https://lists.w3.org/Archives/Public/www-style/1996Feb/0016.html
https://lists.w3.org/Archives/Public/www-style/1996Feb/0019.html
https://lists.w3.org/Archives/Public/www-style/1996Feb/0019.html
https://lists.w3.org/Archives/Public/www-style/1996Feb/0035.html
https://lists.w3.org/Archives/Public/www-style/1996Feb/0063.html

77

…I do not discuss physical values for these attributes, as

these cannot be translated as simply to values of multimodal

attributes as can the less precise (but more intuitive) natural

language or numerical values…

1996 Link Opinion

…Space should be tied to the visual attribute of padding or

margin; I picked padding, but I think that either could be

chosen. Possible mnemonics: none (a bit counter-intuitive at

1) | narrower | narrow | normal | wide | wider | widest…

1996 Link Opinion

…Physical values obviously should be allowed, to give

authors detailed control over document formats; however,

the allowed values were selected to be as useful and intuitive

as possible, to encourage casual authors to use them rather

than physical values…

1996 Link Opinion

…allowing numbers, e.g. [1-7], to be used to represent the

values of multimodal attributes for which this procedure

seems to be intuitively reasonable…

1996 Link Opinion

…as authors are probably more likely to prescribe visual

style than audio style. In this case, the name would be a bit

less intuitive than before…

1996 Link Opinion

…are also useful goals for unimodal styling language

designers (as are the first and seventh, but they are so

intuitive that they are almost universally followed) …

1996 Link Opinion

…The "immediate predecessor" idea Hakon brings up would

seem more intuitive to me using '+' …

1996 Link Opinion

…The user is presented with a color spectrum arranged in a

circular pattern, with a slider bar beside it to specify the

lightness/darkness of the particular color chosen. This

system is simple, intuitive, and generates RGB codes without

forcing the user to delve into the wonders of hexadecimal…

1996 Link Opinion

…it may not be correct, but it is simple and intuitive… 1996 Link Opinion

…that is not how MSIE applies the style properties applied

via a STYLE attribute (anything inside a STYLE attribute on

an element is immediately applied to the element, before

anything else. Otherwise, it could be overridden by a rule

1996 Link Opinion

https://lists.w3.org/Archives/Public/www-style/1996Mar/0001.html
https://lists.w3.org/Archives/Public/www-style/1996Mar/0001.html
https://lists.w3.org/Archives/Public/www-style/1996Mar/0001.html
https://lists.w3.org/Archives/Public/www-style/1996Mar/0001.html
https://lists.w3.org/Archives/Public/www-style/1996Mar/0001.html
https://lists.w3.org/Archives/Public/www-style/1996Mar/0001.html
https://lists.w3.org/Archives/Public/www-style/1996Apr/0005.html
https://lists.w3.org/Archives/Public/www-style/1996Apr/0032.html
https://lists.w3.org/Archives/Public/www-style/1996Apr/0032.html
https://lists.w3.org/Archives/Public/www-style/1996Jun/0045.html

78

with a higher specificity (e.g., "#ID1 #ID2 {}"), which

doesn't seem intuitive at all)…

…The major problem with SPACER, outside of any

discussion of compliance with standards and Netscape vs.

Microsoft, is that it's not intuitive. If one thinks of it like a

blank image, you expect to give it WIDTH and HEIGHT

attributes. But this only applies if you choose

TYPE=block…

1996 Link Logic

…The main difficulty of learning the X resource system is

that very few people have a good intuitive understanding of

what a widget is, or a window. On the other hand, most

people have a very good intuitive understanding of what a

hierarchy is, and they also understand the meanings of text,

background, shadow, and many other words employed by

CSS…

1996 Link Opinion

…I like to think of leading as added space after the line. I've

never seen it referred to as space above and below the line.

Its counter-intuitive…

1996 Link Opinion

…Also, we are not changing the rules for comments – this is

all within the bounds of SGML. (I, like many other people,

find those rules to be less than intuitive, but there we are) …

1997 Link Opinion

… My feeling is that left/right is a little ambiguous while

front/back is a bit more intuitive and less ambiguous…

1997 Link Opinion

… Really, they're just two different interpretations of how

intrinsic HTML support is handled, but I believe IE4's is

much more intuitive…

1997 Link Opinion

… The only evidence at the moment is that two authors

confronted with the same problem found the same solution

intuitive…

1997 Link Opinion

… This is a simple solution useful in simple situations,

syntactically no less intuitive than the shorthand, yet

functionally a superset…

1997 Link Opinion

…a conceptual change that adds an intuitive bit of

functionality at no practical cost…

1997 Link Opinion

https://lists.w3.org/Archives/Public/www-style/1996Jul/0091.html
https://lists.w3.org/Archives/Public/www-style/1996Aug/0143.html
https://lists.w3.org/Archives/Public/www-style/1996Nov/0025.html
https://lists.w3.org/Archives/Public/www-style/1997Jan/0027.html
https://lists.w3.org/Archives/Public/www-style/1997Jul/0114.html
https://lists.w3.org/Archives/Public/www-style/1997Jul/0175.html
https://lists.w3.org/Archives/Public/www-style/1997Jul/0219.html
https://lists.w3.org/Archives/Public/www-style/1997Jul/0220.html
https://lists.w3.org/Archives/Public/www-style/1997Jul/0227.html

79

… Not everyone will find it intuitive to lump default

properties and user-defined attributes…

1997 Link Opinion

… Should the new value be clipped (if this is necessary)

before or after it is passed on to children? It is easier to clip

first, but I think that this is the less intuitive interpretation…

1997 Link Opinion

… If I'm understanding you, all that you want is a shorthand

for the left, top, width, and height properties. This might not

be a bad idea, but I think as an author it's simpler and more

intuitive to specify these properties separately…

1997 Link Opinion

…Of course, if I actually cared to contribute to the debate, I

would point out that the issue of RGB vs HSL vs YUV vs

CMYK is irrelevant, since _ALL_ of those color models are

counter-intuitive and generally bogus, from the non-techie-

nerd's point of view…

1997 Link Opinion

…"Teach Yourself Web Publishing with HTML 3.2 in 14

days" (SamsNet, 1996):

"The Hue, Saturation, and Brightness model is sometimes

called the subjective or perceptive color, because this model

intuitively describes how we preceive color and changes

from one color to another."

I just spent 15 months at Carnegie Mellon University getting

my Masters in Human-Computer Interaction and color

models were discussed in several classes. The Hex numbers

required by RGB were never intuitive and the only way to

adjust them was by random trial and error unless you had a

color picker tool. On the other hand you could make changes

to an HSL value and see the color change in the direction

desired…

1997 Link Evidence

…RGB hexadecimal is what we designers call the RGB

notation that you are referring to.

Yes - it is far from intuitive! …

1997 Link Opinion

…Unfortunately HSL is not intuitive either. It requires that

one know all the hue values…

1997 Link Logic

…In truth, I and many other designers I know can tell

approximately what a color looks like or is with plane #RGB

values. I can also look at those values and know if it will

1997 Link Opinion

https://lists.w3.org/Archives/Public/www-style/1997Aug/0062.html
https://lists.w3.org/Archives/Public/www-style/1997Nov/0059.html
https://lists.w3.org/Archives/Public/www-style/1997Nov/0151.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0028.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0054.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0071.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0071.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0071.html

80

work on a NTSC display or "WebTV" HSL can not provide

me with that intuitive knowledge…

… Don't use HSL, please it is far from intuitive for a

designer. We might as well just have the RGB hex…

…I'm not convinced your examples are intuitive, but

something along those lines would be better than unmatched

bracketing with forward slashes and tildes with context-

sensitive meanings…

1997 Link Opinion

… Both of these notations are simple transformations of the

RGB color space, but represent more intuitive spaces for

general use by the average non-technologist. For example,

consider the following activities: …

1997 Link Opinion

…specifying RGB colors is non-intuitive for people who do

not have significant experience with RGB or computers…

1997 Link Opinion

…I urge you to read the archives of this mailing list [1] for

previous discussions about the non-intuitive nature of HSL

(and HSV) … The corresponding activity, of changing the

hue but keeping the lightness the same, does not give the

intuitively expected results using HSL…

1997 Link Opinion

…In my own work, I've always included HSL

because it is significantly more intuitive that RGB…

1997 Link Opinion

…I think that part of the problem is that separating document

structure from document display is not a process that is

intuitive for many people…

1998 Link Opinion

… I confess I was wrong to refer to them as positioning

properties--that's just intuitive…

1998 Link Opinion

… The selector syntax is already getting complex… can we

come up with intuitive syntax?

1998 Link Opinion

…One idea would be to examine the different ways it is

implemented and find the most intuitive one. It has to be said

that so far, the attr selector system hasn't been the most

intuitive…

1998 Link Opinion

…Remember, the main advantage of HTML is that it's

simple enough to teach to almost anyone, and most of the

tags are their own mnemonics. Style sheets are slightly more

1998 Link Opinion

https://lists.w3.org/Archives/Public/www-style/1997Dec/0074.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0182.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0182.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0193.html
https://lists.w3.org/Archives/Public/www-style/1997Dec/0194.html
https://lists.w3.org/Archives/Public/www-style/1998Feb/0033.html
https://lists.w3.org/Archives/Public/www-style/1998Feb/0056.html
http://www.w3.org/mid/Pine.LNX.3.93.980307150043.231A-100000@charlotte.inria.fr;list=www-style
https://lists.w3.org/Archives/Public/www-style/1998Mar/0033.html
https://lists.w3.org/Archives/Public/www-style/1998Mar/0059.html

81

complicated, but the properties are generally named after the

effects they (should) create, so they're easy to understand and

remember… Regexps are just about the exact opposite…

(This is where I have trouble; my intuitive side keeps getting

in the way and I lose concentration.) …

…My two thoughts so far were to link from the title-- not

necessarily intuitive-- or adding a "[Spec]" link, which isn't

much more obvious…

1998 Link Opinion

…Also, each property page has a link to the appropriate part

of the specification, with a "[Spec]" link in the nav bars. I'm

still taking any suggestions for ways to make this more

intuitive…

1998 Link Opinion

…As someone who is in the middle of translating a fairly

simple intuitive ordering algorithm over ISO Latin-1 from

hand waving into computer code I know just how important

(and difficult) these things are…

1998 Link Opinion

… (Since the default value of background-color is

transparent, setting { background: white } or whatever for

the OBJECT where the text/html object itself doesn't set a

BODY background-color will have the intuitive effect.)…

1998 Link Opinion

…So now the background-color of the parent of the OBJECT

would shine through. (At least in the way I've always

interpretted (sic) it to work – which seems fairly intuitive to

me.) …

1998 Link Opinion

… say that background-attachment on inline elements is

relative to the containing block (which is CSS2-speak for in

most cases) the "parent element")

No. This is counter intuitive at best…

1998 Link Opinion

… I would guess that the first is what is closest to the original

intent. It's the easiest to implement, and the most intuitive…

1998 Link Opinion

… The effect was that the interpretation of 'border: medium

red' changed from producing a solid red border to producing

no border at all. Not very intuitive maybe, but consistent with

its new role as a shorthand property…

1998 Link Opinion

https://www.w3.org/Search/Mail/Public/advanced_search?keywords=intuitive&hdr-1-name=subject&hdr-2-name=from&hdr-3-name=message-id&index-grp=Public__FULL&index-type=t&type-index=www-style&resultsperpage=20&sortby=date-asc&page=4
https://lists.w3.org/Archives/Public/www-style/1998Apr/0020.html
https://lists.w3.org/Archives/Public/www-style/1998Jun/0007.html
https://lists.w3.org/Archives/Public/www-style/1998Aug/0021.html
https://lists.w3.org/Archives/Public/www-style/1998Aug/0022.html
https://lists.w3.org/Archives/Public/www-style/1998Sep/0009.html
https://lists.w3.org/Archives/Public/www-style/1998Sep/0012.html
https://lists.w3.org/Archives/Public/www-style/1998Oct/0005.html

82

…This anonymous box also has the font properties of the

block-level element, so all other inline boxes are vertically

aligned within it.

The above makes the spec much closer to the 'intuitive'

expectations…

1998 Link Opinion

…nest your DIVs, add a class "section" to them and use the

following rule:

DIV.section { margin-left : 2px }

which is IMHO simpler and more intuitive, works on

existing browsers, but implies a rewriting of your document

in a more structured way…

1998 Link Opinion

…The CSS1/CSS2 approach is the more intuitive approach

for replaced elements, and the IE approach is the more

intuitive for non-replaced elements…

1999 Link Opinion

…I'd suggest that it makes the most sense to put the columns

on "bottom" with row groups and rows on top of them. While

this proposal is largely arbitrary (it just seems most intuitive

to me this way), a possible rationale is that COL and

COLGROUP come before the rows in the table

description…

1999 Link Opinion

…Should the background image cover only half the element

(the right one), or should it cover it all? IMO controlling the

position of the tiling boundary while covering the whole

element is more important/useful/intuitive then covering just

a part of the element, but the CSS2 specifications aren't clear

on this…

1999 Link Opinion

… This means that paragraph's can't be 'backed up' on top of

previous elements and have the background overlap previous

content. Too bad, as that 'might' be useful (and maybe more

intuitive?) …

1999 Link Opinion

…It is also far more intuitive, and I cannot see any area in

which the existing spec is better…

1999 Link Opinion

… Letterspace and word space are common terms. Linespace

seems most intuitive…

1999 Link Opinion

https://lists.w3.org/Archives/Public/www-style/1999Jan/0037.html
https://lists.w3.org/Archives/Public/www-style/1999Mar/0066.html
https://lists.w3.org/Archives/Public/www-style/1999Apr/0000.html
https://lists.w3.org/Archives/Public/www-style/1999Jun/0002.html
https://lists.w3.org/Archives/Public/www-style/1999Jun/0008.html
https://lists.w3.org/Archives/Public/www-style/1999Sep/0072.html
https://lists.w3.org/Archives/Public/www-style/2000Jan/0056.html
https://lists.w3.org/Archives/Public/www-style/2000Jan/0150.html

83

… The zoom value would impy a zoom not only on font

stuff, but also on images, vector graphics, etc. I think this is

a more intuitive and reliable approach then deferring to the

CSS cascade and hope for the use of percentages, ems, or

other relative sizing…

2000 Link Opinion

…'text-align' positions the HR horizontally within the

available space.

This is sort of intuitive, unless you're a CSS expert, in which

case it is quite confusing…

2000 Link Opinion

… That's counter-intuitive to me, since overlapping elements

generally overwrite previous elements in the flow…

2000 Link Opinion

…I see not reason to have an attribute like box-sizing. It

seem counter-intuitive to change the definition of sizing…

2000 Link Opinion

…The basis of my argument was that 'box-sizing' is not an

intuitive solution, and this is a better solution…

2000 Link Opinion

…No, the box-sizing thing doesn't do what I want. The

problem with it is that it is not intuitive. Say you are trying

to explain this to someone new…

2000 Link Opinion

…The basis of my argument was that 'box-sizing' is not an

intuitive solution, and this is a better solution. What isn't

intuitive about it? …

2000 Link Opinion

… And yes, I am advocating "changing the rules" of CSS

because, as I have repeatedly said, they are counter-intuitive.

There should ABSOLUTELY be a way to specify the

ENTIRE WIDTH of a box WITHOUT having to resort to an

ugly hack like "box-sizing: border-box"…

2000 Link Opinion

…IE5 renders the second one in what is, IMO, a most

intuitive way; it uses the height it /can/ calculate (from the

other cell) as the basis for 100%...

2000 Link Opinion

…Names of properties are clickable and colour-

differentiated so navigation is intuitive and easy…

2000 Link Irrelevant

…The number of columns an element with 'column-span:

none' is split into is the number specified for column-span in

the *next* element that doesn't have 'column-span: none', or

2001 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2000Jan/0162.html
https://lists.w3.org/Archives/Public/www-style/2000Jan/0239.html
https://lists.w3.org/Archives/Public/www-style/2000Feb/0095.html
https://lists.w3.org/Archives/Public/www-style/2000Feb/0233.html
https://lists.w3.org/Archives/Public/www-style/2000Feb/0239.html
https://lists.w3.org/Archives/Public/www-style/2000Feb/0240.html
https://lists.w3.org/Archives/Public/www-style/2000Feb/0244.html
https://lists.w3.org/Archives/Public/www-style/2000Feb/0254.html
https://lists.w3.org/Archives/Public/www-style/2000Oct/0219.html
https://lists.w3.org/Archives/Public/www-style/2000Dec/0041.html
https://lists.w3.org/Archives/Public/www-style/2001Jan/0067.html

84

all remaining columns if there isn't a spanned element before

the end of the multicol.

I'm not saying this is inconsistent, it just didn't seem

very intuitive at first…

… Is there any reason not to include a pattern language into

CSS… A standards committee could no doubt come up with

something cleaner, more pleasing to the eye, and more

intuitive to use…

2001 Link Opinion

…A good language implements a small set of principles that

fit naturally to the domain and that can be combined in an

intuitive way to express what one wants to express…

2001 Link Opinion

… I totally agree ! cron-style notation is by far easier to read.

I also think it's generally far more intuitive than the an+b

notation…

2001 Link Opinion

…Putting a web author in front of nth-child(2,5,8-11) and

nth-child(1,2-*/3) didn't bring up a strange face. It brought

up a "Cool !" and he could figure out what it meant

immediately. Otoh, nth-child(-5n+6) didn't seem to be as

intuitive. Linear sequences aren't hard to understand (at least

in France everybody has been through them, I don't know

about other educational systems), but for many people it's far

behind…

2001 Link Opinion

…so counting would be done from behind if the *first*

number is negative. Unfortunatly the last two rules aren't

very intuitive (but IMHO more logical then the current

meaning of -3n+1) …

2001 Link Opinion

…However, this is IMO more intuitively addressed by using

the range proposition in a second selector: :nth-

child(3n):nth-child(1..15)…

2001 Link Opinion

…Measuring a percentage value for "left:" from the right

edge of the screen is inconsistent with the intuitive behavior

when using a pixel value. left:30px intuitively means start at

30px from the left edge of the screen…

2001 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2001Feb/0000.html
https://lists.w3.org/Archives/Public/www-style/2001Feb/0058.html
https://lists.w3.org/Archives/Public/www-style/2001Mar/0013.html
https://lists.w3.org/Archives/Public/www-style/2001Mar/0021.html
https://lists.w3.org/Archives/Public/www-style/2001Mar/0079.html
https://lists.w3.org/Archives/Public/www-style/2001Mar/0079.html
https://lists.w3.org/Archives/Public/www-style/2001Apr/0086.html

85

In trying to implement his tool he has discovered that the de

facto browser implementations of transparency are not of the

intuitive form he expects

2001 Link Opinion

The obvious goal of these media rule tricks is to select rules

based on the CSS version supported. Why not allow authors

to do the same thing in an intuitive way?

2001 Link Opinion

I believe that @media rules and other non-standard ways of

selecting the CSS version are more bug-prone, less intuitive,

and generally "worse" than a standard @version rule.

2001 Link Opinion

…I did the "granny test" with this one. The result: it's not at

all intuitive to people that scroll bars remain scroll bars after

they change color...

2001 Link Opinion

…Judging from the discussion here, people don't fully

understand how the spec deals with centering elements and

the size of the top-level element. "margin:auto" is non-

intuitive, and it behaving differently horizontally and

vertically is downright confusing...

2001 Link Opinion

…This is even more off-topic than the original post, but I feel

obliged to point out that, as counter-intuitive as it might

seem, closed-source products have occasionally been

successful in mass markets…

2001 Link Irrelevant

… I am fully convinced of W3's method of using a value

from 0 to 1. It seems neither easy (intuitive as in 0 to 100%)

or exacting (as in the standard 256) …

2001 Link Opinion

…Curious, why do you need to set the outer columns right,

left to 75%? That does not seem intuitive to me…

2002 Link Opinion

…It is easy to set "width: 100%;" or "height: 100%;",

difficult / not intuitive to use margins to determine the width

/ width, especially to center a block. Don't waste your time

trying to figure out how to vertically center one block within

another, you can't do it period using margins…

2002 Link Opinion

… I am a bit doubtful that CSS1 compatibility and intuitive

behavior with an exposed counter can be achieved

simultaneously…

2002 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2001Jul/0100.html
https://lists.w3.org/Archives/Public/www-style/2001Jul/0182.html
https://lists.w3.org/Archives/Public/www-style/2001Jul/0186.html
https://lists.w3.org/Archives/Public/www-style/2001Sep/0058.html
https://lists.w3.org/Archives/Public/www-style/2001Oct/0155.html
https://lists.w3.org/Archives/Public/www-style/2001Oct/0202.html
https://lists.w3.org/Archives/Public/www-style/2001Nov/0021.html
https://lists.w3.org/Archives/Public/www-style/2002Jan/0040.html
https://lists.w3.org/Archives/Public/www-style/2002Feb/0043.html
https://lists.w3.org/Archives/Public/www-style/2002Mar/0079.html

86

I can't see any way to define behavior consistent with that of

the unexposed counter that won't be clumsy and unintuitive

when combined with the new, exposed counter.

2002 Link Opinion

"RGB is oriented to light rather than (what people find more

intuitive) print. For instance, yellow is red+green in RGB…

RGB is non-intuitive. People can learn how to use RGB, but

actually by internalizing how to translate Hue, Saturation and

Lightness, or something similar, to RGB. "

2002 Link Opinion

…My vote is with Joe on the hanging indents. Yes, they

can be done with CSS1, but the method is

counter-intuitive…

2002 Link Opinion

…Since 1996 there have been numerous proposals to

improve the named colors to be more intuitive, or to allow

one to specify the naming scheme used…

2002 Link Opinion

…Well, the HTML colours almost pass the "high school"

test, with the addition of orange.

I know it sounds simplisitic, but with orange added they do

make a pretty good "intuitive" base set…

2002 Link Opinion

…Some folks don't find RGB intuitive, and find (at least

some of) the color names more intuitive. The addition of HSL

colors should help as well, as its use seems much more

intuitive than RGB…

2002 Link Opinion

…I respectfully disagree with the suggestion to do away with

named colors. While one may become accustomed to using

number values when creating Web content, it is neither

intuitive nor easy to maintain…

2002 Link Opinion

…But I have to memorize or look up tables; with a color

naming system like the one you once recommended [2], I

would only have to memorize around 20 keywords, declare

no entities, start up nothing than my text editor, and get a nice

range of colors, readable, intuitive, convenient…

2002 Link Opinion

… The margin/border/padding values then continue to mean

(in an intuitive sense) what they mean in any other context…

2002 Link Opinion

…XSL is already in XML format, while CSS has it's own

unique one. I find the syntax of CSS to be much much more

2002 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2002Mar/0085.html
https://lists.w3.org/Archives/Public/www-style/2002May/0061.html
https://lists.w3.org/Archives/Public/www-style/2002May/0183.html
https://lists.w3.org/Archives/Public/www-style/2002May/0208.html
https://lists.w3.org/Archives/Public/www-style/2002May/0220.html
https://lists.w3.org/Archives/Public/www-style/2002May/0221.html
https://lists.w3.org/Archives/Public/www-style/2002Jun/0005.html
https://lists.w3.org/Archives/Public/www-style/2002Jun/0007.html
https://lists.w3.org/Archives/Public/www-style/2002Jun/0013.html
https://lists.w3.org/Archives/Public/www-style/2002Jul/0008.html

87

intuitive for what it does, and would strongly object to it

being rewritten in xml. Apasrt from anything else it would

be much more verbose, and harder to learn. I also believe it'd

be less intuitive, create much larger file sizes than necessary,

and of course it wouldn't work in current browsers which

already do a good job interpreting it as it is…

…I see two schools of thought : the style sheet syntax must

be terse and intuitive for human conception or the style sheet

syntax should be in XML to be easily processable, verbosity

is of no consequence since style sheets are more and more

produced automatically or through an GUI interface (my

case at least)…

2002 Link Opinion

…How about "both intuitive syntax *and* straightforward

processability are important"? …

2002 Link Opinion

…The :hover state is a useful tool to provide visual

indication to the user that an element accepts input from a

pointing device such as a mouse, and the :active state is

useful for indicating that a particular element is currently in

the activation state. These visual indications are naturally

intuitive to the user…

2002 Link Opinion

…Imagine, if you will, someone new to web design. What

would be more intuitive for them to do? Add an empty div,

or use a defined CSS property like the proposed float-

overflow which says exactly whose name implies the exact

desired effect?...

2002 Link Opinion

… While the above examples are contained in the margin,

there might also be another reference to a *picture*; which

might be wider than the margins, so that the text would have

to flow around it. None of this is particularly unusual layout;

and --- at least to me --- it seems very much like the concept

of a "float"; yet, as far as I can tell, neither the float model,

nor anything else in CSS, could be used in an intuitive way

to generate this presentation.

What I draw from these examples (others' and mine) is that a

"float" (as one would think of it intuitively for layout

purposes) has both a position in the flow and a container

2002 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2002Jul/0009.html
https://lists.w3.org/Archives/Public/www-style/2002Jul/0011.html
https://lists.w3.org/Archives/Public/www-style/2002Jul/0108.html
https://lists.w3.org/Archives/Public/www-style/2002Aug/0118.html
https://lists.w3.org/Archives/Public/www-style/2002Aug/0132.html

88

…Consider the definition I suggested elsewhere in this

thread:

A "non-CSS presentational hint" is information which is

derived from the document and is translated into CSS

properties by the user agent through some mechanism other

than CSS style rules…

Is this definition reasonable, and reasonably intuitive? …

2002 Link Opinion

…how do I collapse the section to show only the heading?

Here is a solution, but it is not a very intuitive one:

 section:0 > h {display: block}

 section:0 > * {display: none}…

2002 Link Opinion

…Let's use strings to represent the characters that correspond

to normal keys, let's keep keywords for special keys, let's use

whitespace as the <key> separator, and let's use the comma

as the <key-press-combination> separator. Incidentally, this

makes dealing with the "space" key more intuitive: it's simply

" "…

2002 Link Opinion

…Nonetheless, that they would need to do this for the quirky

behaviour to make sense seems to indicate that perhaps a

more intuitive solution exists--and should be used…

2002 Link Opinion

…padding, border-spacing: 1em 2em;

would have very unintuitive results. Authors are allowed to

express information in a form that is intuitive to them. It is a

valid declaration, but behind those property names is a

detailed description that sufficiently describes what role the

values to take on.

2002 Link Opinion

… My intuitive bet is that 90+% accurate algorithms

probably already exist, even we aren't aware of them…

2002 Link Irrelevant

… The transformation into ACTUAL values of the style of

the DOM, is owned by the View, but since it is one-to-one

correspondence to the CSS-OM, then exposing that

properties (also) in DOM using OO techniques is a

convenience and intuitive…

2002 Link Opinion

…I agree that the call should be very simple and intuitive to

do simple things, just not that it is anywhere close to 1:1 if

2002 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2002Aug/0263.html
https://lists.w3.org/Archives/Public/www-style/2002Sep/0147.html
https://lists.w3.org/Archives/Public/www-style/2002Oct/0013.html
https://lists.w3.org/Archives/Public/www-style/2002Oct/0037.html
https://lists.w3.org/Archives/Public/www-style/2002Oct/0118.html
https://lists.w3.org/Archives/Public/www-style/2002Dec/0130.html
https://lists.w3.org/Archives/Public/www-style/2002Dec/0143.html
https://lists.w3.org/Archives/Public/www-style/2002Dec/0143.html

89

you expect to expose information on the view and

formatting. …

…If someone wanted all methods to be in View, so that it is

not possible to do node.Property, then I have no major

qualms with that. I just think it is more intuitive to stick with

the DOM hierarchy.

In the general sense, this is a false intuition, because it

involves questions that cannot be properly answered…

2002 Link Opinion

…What CSS2 has, is what seems the most intuitive to me. Is

the change in CSS3 a mistake or have they changed the

behavior on :first-line from CSS2 to CSS3? …

2003 Link Opinion

…Let me try and make it more concrete with two examples:

Example 1: unintuitive(?) boxes…

2003 Link Opinion

…The text-height property of CSS3 allows the second case

to render the way i see as more intuitive, using the value max-

size…

2003 Link Opinion

…I am uncertain about the syntax, things like foo:lang(),

foo:lang(""), foo:lang(-), foo:lang(none()), etc. aren't that

intuitive…

2003 Link Opinion

…A better workaround than using tables in many cases is

using something like <div>...</div>, and

styling the span. I do think that there should be a more

intuitive way of doing this though…

2003 Link Opinion

…Christoph, who thinks "position: relative parent 1em 2em

1.5em 1.5em;" would be [more] intuitive…

2003 Link Opinion

… (There's also the fact that having a property named

"glyph-orientation" reorder content instead of just rotating

glyphs is IMO just not intuitive.) …

2003 Link Opinion

…I can't use CSS-P because I have content that sits under the

columns and must be automatically positioned underneath

which ever column is longest. Plus the CSS-P approach is

counter-intuitive…

2003 Link Opinion

…John suggested applying CSS table syntax to the three-col

problem. This is a solution, but the content is not tabular data

2003 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2002Dec/0143.html
https://lists.w3.org/Archives/Public/www-style/2003Feb/0212.html
https://lists.w3.org/Archives/Public/www-style/2003Feb/0260.html
https://lists.w3.org/Archives/Public/www-style/2003Feb/0260.html
https://lists.w3.org/Archives/Public/www-style/2003Mar/0088.html
https://lists.w3.org/Archives/Public/www-style/2003Mar/0103.html
https://lists.w3.org/Archives/Public/www-style/2003Mar/0173.html
https://lists.w3.org/Archives/Public/www-style/2003Apr/0046.html
https://lists.w3.org/Archives/Public/www-style/2003Apr/0155.html
https://lists.w3.org/Archives/Public/www-style/2003Apr/0157.html

90

and presenting it as such is a non-intuitive, if effective,

method for layout…

The host of other acronyms aside, that's what /works/, and

that's how web pages /have/to/ be written if they are

addressed to a general audience. But these languages fail to

address many basic web layout problems in a direct, simple

and intuitive way.

2003 Link Opinion

…If we want to get people to stop using depreciated HTML

attributes like "align", having *intuitive* css equivalents

makes sense…

2003 Link Opinion

…This is a special case of the more general parameterization

case discussed a few weeks ago. One of the problems is that

it is likely to invovle non-intuitive interactions with

cascading rules…

2003 Link Opinion

…Looking at the syntax closely, I see one must define an age

in order to use a generic voice (eg, voice:family: child male),

so I can conclude 'announcer' is intended as a specific voice

name. This doesn't seem very intuitive…

2003 Link Opinion

…I fail to see how it would make that task _more_ difficult

if @import rules had their intuitive meaning and no artifical

restrictions…

2003 Link Opinion

…Didn't someone once say that CSS brought an elegant

solution that replaced kludgy HTML tables?

Yes this certainly is worth addressing. Why isn't there a

simple way of doing this in CSS? Neither approach to center

is straightforward (the margin: auto; approach for horizontal

center is far from intuitive) …

2003 Link Opinion

…Some of the things that people seem to want, like liquid

layouts as good as handcrafted layouts, that work whatever

the display technology and user preferences and overrides

are still research topics. Especially if you also want them to

be intuitive to an 18 year old arts student…

2003 Link Opinion

…Many people using margin: auto for centering. It is not an

obscure feature, indeed it appears in several CSS FAQs and

2003 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2003Apr/0158.html
https://lists.w3.org/Archives/Public/www-style/2003Jun/0059.html
https://lists.w3.org/Archives/Public/www-style/2003Jun/0083.html
https://lists.w3.org/Archives/Public/www-style/2003Jun/0137.html
https://lists.w3.org/Archives/Public/www-style/2003Jun/0190.html
https://lists.w3.org/Archives/Public/www-style/2003Jul/0020.html
https://lists.w3.org/Archives/Public/www-style/2003Jul/0041.html
https://lists.w3.org/Archives/Public/www-style/2003Jul/0075.html

91

Wikis, and while I agree it is not intuitive, it is not

complicated either…

…It is also non-intuitive to have a block display:table-cell

outside of another block display:table-row and so on…

2003 Link Opinion

…But it's less obvious what's natural if the picture is on the

left. My intuitive feeling is that the two cases would differ

more visibly…

2003 Link Opinion

…My personal opinion is however that positioning outside

by border-edge is slightly more intuitive and yields slightly

better results in some edge cases…

2003 Link Opinion

…I don't think that the way the definition makes colors of the

underline work is very intuitive either, probably because i see

underline and friends as text-features rather than box

properties of the ancestor setting the text-decoration? …

2003 Link Opinion

…It's really much more intuitive, to me, to put it on the

DocumentStyle interface or extension thereof…

2003 Link Opinion

…I think the behavior specified here for 'scroll' is counter-

intuitive. As an author, I would expect the background to

scroll with the element's content just like it does for the

<body>…

2003 Link Logic

…Constraining the background to the padding area would

allow CSS to define "background-attachment: scroll" more

intuitively…

By locking the proposed clarifications of "background-

attachment: scroll" and the background's boundaries

together, we get a background model that is both more

consistent and more intuitive than the one drafted in

CSS2.1…

The behavior of "scroll" would be most intuitive if the

background scrolled with the content, as it's called "scroll"

and as is how the setting behaves when specified for the main

canvas…

2003 Link Opinion

…This leads to mostly intuitive results when writing

documents and marking them up with CSS…

2003 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2003Jul/0082.html
https://lists.w3.org/Archives/Public/www-style/2003Sep/0023.html
https://lists.w3.org/Archives/Public/www-style/2003Sep/0024.html
https://lists.w3.org/Archives/Public/www-style/2003Oct/0000.html
https://lists.w3.org/Archives/Public/www-style/2003Oct/0013.html
https://lists.w3.org/Archives/Public/www-style/2003Oct/0039.html
https://lists.w3.org/Archives/Public/www-style/2003Oct/0039.html
https://lists.w3.org/Archives/Public/www-style/2003Oct/0071.html

92

…In the meantime, it's quite hard to match against colonized

names, which are frequently used in XML. It's certainly not

intuitive…

2003 Link Opinion

…Authoring tools could provide an intuitive interface for

XHTML+CSS, which has the technical potential of replacing

the what-you-see-is-not-what-you-want text processors we

use today…

2003 Link Irrelevant

…In my opinion the path CSS3 takes is to keep (and expand)

the model but make most things any browser currently

implements defined through a property. IMVHO this might

be a misstake, since the model is not quite good enough (not

because it doesn't work, but because it is to difficult and thus

introduce differences and has what i see as unintuitive

parts)…

2004 Link Opinion

…In addition to what i see as issues with the

implementations of the inline rendering, i think the model is

not quite intuitive compared to the box model used for

blocks…

2004 Link Opinion

…Also, having the height of a non-replaced box being

defined by the font(or fonts, a 'should' changed into a 'may'

which i dont think the major browsers implement, except IE

due to using a different model) of its textual contents seem

unintuitive…

2004 Link Opinion

…i'm just trying to say that it seems more intuitive to me that

the link box covers the area which you can click to activate

it, not claiming that the current model stops links from

working…

2004 Link Opinion

…There's no guarantee that the document type will have a

language attribute. CSS has to deal with more than just

HTML. I agree it at least seems more intuitive, though…

2004 Link Opinion

In that case the specification is so counter-intuitive as to be

dangerous (it encourages naive authors to default line-height,

as a relatively obscure property …) …

2004 Link Opinion

…It's counter-intuitive because people expect to be able to

control font-size using only font-size properties…

2004 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2003Oct/0134.html
https://lists.w3.org/Archives/Public/www-style/2003Oct/0256.html
https://lists.w3.org/Archives/Public/www-style/2004Feb/0364.html
https://lists.w3.org/Archives/Public/www-style/2004Feb/0364.html
https://lists.w3.org/Archives/Public/www-style/2004Feb/0364.html
https://lists.w3.org/Archives/Public/www-style/2004Feb/0364.html
https://lists.w3.org/Archives/Public/www-style/2004Mar/0154.html
https://lists.w3.org/Archives/Public/www-style/2004Apr/0095.html
https://lists.w3.org/Archives/Public/www-style/2004Apr/0129.html

93

…This effectively negates the specified inherit default on

line-height, but line-height is the more technical parameter,

so is where any counter-intuitive behaviour should go…

2004 Link Opinion

…The reason i prefer to view the content value as replaced

is probably that i dislike the concept of having a pseudo-

document-fragment in the content value, but also because it

seems to create more intuitive results in most sane cases…

2004 Link Opinion

…If replacement is set, content computes to something

appropriate (there is precedent with the way float affects

display, eg). I _think_ that's more intuitive for authors…

2004 Link Opinion

…I find this idea interesting, and potentially useful, but I

don't think %% is a very intuitive unit….

2004 Link Opinion

…And if anonymous elements do count, the relative

positioning is far from "intuitive"…

2004 Link Opinion

…Overall I believe something like 'previous', 'next' and

'different' would be more useful, more intuitive and more

portable than absolute integer indices…

2004 Link Opinion

…Frankly this makes my head spin. Intellectually I can see

that each of these does a distinct useful thing, but trying to

intuitively grasp which one to use in a document would take

a lot of practice…

2004 Link Opinion

…I'm sorry but i don't understand that having those two

definitions gives more intuitive results, and it seems that

Mozilla 1.7, Opera 7.50 and IE6 disagree so much on this

behavior that i cannot make sense of what that point is…

2004 Link Opinion

…Sounds to me more intuitive than the current draft, if

nothing else…

2004 Link Opinion

…body { background: url(foo), url(bar); }

seems more intuitive: you pass a list of items to something…

2004 Link Opinion

…IMO a more intuitive way to do the "9-area" button is with

just one image…

2004 Link Opinion

…Using multiple, indexed attributes is advantageous over

the proposed comma-separated list as it permits use of the

background-xxx attributes in a more intuitive manner…

2004 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2004Apr/0129.html
https://lists.w3.org/Archives/Public/www-style/2004Apr/0157.html
https://lists.w3.org/Archives/Public/www-style/2004Apr/0171.html
https://lists.w3.org/Archives/Public/www-style/2004May/0059.html
https://lists.w3.org/Archives/Public/www-style/2004May/0445.html
https://lists.w3.org/Archives/Public/www-style/2004Aug/0085.html
https://lists.w3.org/Archives/Public/www-style/2004Aug/0101.html
https://lists.w3.org/Archives/Public/www-style/2004Aug/0164.html
https://lists.w3.org/Archives/Public/www-style/2004Oct/0036.html
https://lists.w3.org/Archives/Public/www-style/2004Oct/0140.html
https://lists.w3.org/Archives/Public/www-style/2004Nov/0063.html
https://lists.w3.org/Archives/Public/www-style/2004Nov/0090.html

94

…I feel if would be preferable to declare backgrounds with

indexes and make this sort of referencing more intuitive…

2004 Link Opinion

…I've scratch my head about a rendering problem and it

turned out that most browser (I've tested Mozilla and

Konqueror, IE is said to do the same) collapse the margin of

the last element and the margin of it's parent even if the

parent has a zero width margin. I find it weird and counter

intuitive…

2004 Link Opinion

…Personally i find the whole concept of nested collapse (and

even more so, collapse-through) unintuitive…

Note: Ian Hickson replied to this noting that margin

collapsing is confusing but too late to change here.

2004 Link Opinion

…The only option here is Intuitive UI. Make it semantic,

don't tell it…

2005 Link Irrelevant

…There's no intuitive way to do that. At least !required is a

timeless syntax that does not depend on the author…

2005 Link Opinion

…in the case of 'scroll', the background does not scroll with

the element's content. This seems counter-intuitive…

2005 Link Opinion

…Once the existence of a universal authoring tool is

postulated, one can only too easly dismiss any suggestion

which is intended solely to make the work of an author

simpler and more intuitive…

2005 Link Opinion

…:alt and its related suggestions seems a bit odd and un-

intuitive to me…

2005 Link Opinion

…The above @require-all-properties { } would cause failure

on superfluous properties (or cause the author to split their

CSS styles into less intuitive blocks, I think)…

2005 Link Opinion

…How would this work? !exclude? That seems kinda

counter-intuitive…

2005 Link Opinion

…I agree that you do gain some clarity from the block

naming there, but I don't think it's as intuitive to use…

2005 Link Opinion

…My reservation remains as before, that consciously

thinking about which styles /don't/ matter (so as to exclude

them from a @require-all block) is more difficult and less

intuitive than thinking about which styles /do matter/…

2005 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2004Nov/0090.html
https://lists.w3.org/Archives/Public/www-style/2004Dec/0079.html
https://lists.w3.org/Archives/Public/www-style/2004Dec/0087.html
https://lists.w3.org/Archives/Public/www-style/2004Dec/0082.html
https://lists.w3.org/Archives/Public/www-style/2005Jan/0006.html
https://lists.w3.org/Archives/Public/www-style/2005Jan/0059.html
https://lists.w3.org/Archives/Public/www-style/2005Feb/0085.html
https://lists.w3.org/Archives/Public/www-style/2005Mar/0046.html
https://lists.w3.org/Archives/Public/www-style/2005Mar/0149.html
https://lists.w3.org/Archives/Public/www-style/2005Apr/0036.html
https://lists.w3.org/Archives/Public/www-style/2005Apr/0036.html
https://lists.w3.org/Archives/Public/www-style/2005Apr/0069.html
https://lists.w3.org/Archives/Public/www-style/2005Apr/0069.html

95

…However, I do still think that specifying a particular

property as being !required within that block (opt-in) is more

intuitive than doing the reverse…

2005 Link Opinion

…I found Mikko Rantalainen's !not-required idea very

intuitive indeed…

2005 Link Opinion

…Computed values can not be uniquely identified by

selectors, just like you described. Moreover, I also believe

referencing rules is more intuitive to the CSS designer…

2005 Link Opinion

…It seems to be an intuitive author feature as suggested by

the amount of usage of legacy HTML constructs such as

<center> and <td align="..">…

2005 Link Opinion

…It very frustrating as someone who has to work with these

standards every day. They are not intuitive and overly

complex. I came here to try and understand…

2005 Link Opinion

…I think the discussion has fallen in to a religious debate

about whether your proposal is "easier" or more "intuitive"

than the equivalent CSS, which is an unwinnable, irrelevant

(and terribly uninteresting) debate IMHO…

2005 Link Opinion

…Thought: "opacity" should support percents and floats,

while rgba() would support percents, floats and integers? Not

consistent, but more intuitive…

2005 Link Opinion

…I can kinda see their reasoning for having floats for alpha,

since integers aren't intuitive for opacity…

2005 Link Opinion

…Then again, if they allow all values for opacity, and just

accept that integers, being counterintuitive for opacity, are

going to be little used, then we'd probably be fine…

2005 Link Opinion

…As typical J2EE developers that have used CSS for years,

with most of our knowledge coming from simple online

tutorials, and online references, but having never really

studied CSS from front to back we used the following

"intuitive" approach…

2005 Link Opinion

…however, it still applies because for some authors it is more

intuitive to say, position based on element x or element y…

2005 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2005Apr/0069.html
https://lists.w3.org/Archives/Public/www-style/2005Apr/0070.html
https://lists.w3.org/Archives/Public/www-style/2005May/0125.html
https://lists.w3.org/Archives/Public/www-style/2005Jun/0022.html
https://lists.w3.org/Archives/Public/www-style/2005Jun/0212.html
https://lists.w3.org/Archives/Public/www-style/2005Jul/0272.html
https://lists.w3.org/Archives/Public/www-style/2005Jul/0351.html
https://lists.w3.org/Archives/Public/www-style/2005Jul/0351.html
https://lists.w3.org/Archives/Public/www-style/2005Jul/0351.html
https://lists.w3.org/Archives/Public/www-style/2005Sep/0050.html
https://lists.w3.org/Archives/Public/www-style/2005Sep/0191.html

96

…This would resolve the ambiguity squarely in favor of

IE/Win and Safari; however, I think this resolution makes the

most intuitive sense…

2005 Link Opinion

…In CSS percentage has always been relative to the whole

width (or height) of the containing block. I find it less

intuitive.

2006 Link Opinion

… :not(foo[bar]) could be written as :not(foo):not([bar]), but

that's not very intuitive for authors…

2006 Link Opinion

…Our aim has been to provide a syntax and semantics which

would be as intuitive to web designers as possible…

2006 Link Opinion

…Coupled with max-width and min-width this is pretty

intuitive to use…

2006 Link Opinion

…When it comes to zooming images, however, the "scaling"

property seems more intuitive to me…

2006 Link Opinion

…Instead, the borders, background and contents are stacked

according to the complex rules laid out in Appendix E,

dispersed among descendants with different, specified stack

levels. I had a feeling it would have been too much to ask to

have an intuitive and logical stacking system…

2006 Link Opinion

…One of the solutions I considered for something like this

(because it is un-intuitive right now) was to let percentages

of min-height and max-height be calculated from min-height

or max-height of the containing block if height is auto…

2006 Link Opinion

…Are the numbers right-aligned, or are they in the center of

the column? Positioning them in the center of the column

would already be more intuitive, because now I have the

option to align my column header neatly above the values in

that column…

2006 Link Opinion

…It avoids the horizontal/vertical direction coupling

problems of direction. It's also more intuitive than the

direction property imo.

2007 Link Opinion

…I feel that up/down/left/right is more intuitive for glyph

orientation than specifying an angle…

2007 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2005Nov/0091.html
https://lists.w3.org/Archives/Public/www-style/2006Jun/0060.html
https://lists.w3.org/Archives/Public/www-style/2006Aug/0149.html
https://lists.w3.org/Archives/Public/www-style/2006Aug/0283.html
https://lists.w3.org/Archives/Public/www-style/2006Sep/0193.html
https://lists.w3.org/Archives/Public/www-style/2006Sep/0203.html
https://lists.w3.org/Archives/Public/www-style/2006Oct/0024.html
https://lists.w3.org/Archives/Public/www-style/2006Oct/0072.html
https://lists.w3.org/Archives/Public/www-style/2006Nov/0030.html
https://lists.w3.org/Archives/Public/www-style/2007Jan/0020.html
https://lists.w3.org/Archives/Public/www-style/2007Jan/0020.html

97

…But I thought the term 'contextual kerning' was not

intuitive for Japanese punctuation processing and

'punctuation-trim' was better for it…

2007 Link Opinion

…I'm wondering if we shouldn't add keywords 'top' and

'bottom'. They would technically be aliases for 'left' and

'right', but maybe more intuitive for users…

2007 Link Opinion

…Hm ... that's one of those strange ideas that's counter-

intuitive through naming…

2007 Link Irrelevant

…as there is no mean for me to distinguish between them, it

will be counter-intuitive and frustrating to have different

copy-paste behaviour…

2007 Link Opinion

…It would be easy enough to add support for this to CSS3

'text-emphasis' property by adding something the following

values (not intuitive names and prone to typographic errors)

…

2007 Link Opinion

…If this is the case, the code could be made more

intuitive by adding keywords. For example:

@media screen and (aspect-ratio: portrait) …

2007 Link Opinion

…We have a proposed

last-line-align: size

whose naming isn't as intuitive as we'd like but which means

that the UA adjusts the font size so that the text of the block

fits exactly on one line. Maybe 'text-align: justify; text-

justify: size' is more intuitive.

2007 Link Opinion

…They put any empty element exactly at the same position

where it would be if it wasn't empty (as long as adding

content doesn't prevent its top margin from collapsing with

any children). That has continuity, and it is more intuitive (at

least for me). If the spec says otherwise there must be a

strong reason - what is it?

The strongest reason is that this was what we agreed to. If we

change these rules it could have very subtle effects that might

not be understood for years, at which point we'd be back to

the same position as we are in now: thinking the rules are

unintuitive and wanting to change them in another subtle

way.

2007 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2007Jan/0086.html
https://lists.w3.org/Archives/Public/www-style/2007Feb/0074.html
https://lists.w3.org/Archives/Public/www-style/2007Feb/0131.html
https://lists.w3.org/Archives/Public/www-style/2007Apr/0187.html
https://lists.w3.org/Archives/Public/www-style/2007Jul/0046.html
https://lists.w3.org/Archives/Public/www-style/2007Aug/0107.html
https://lists.w3.org/Archives/Public/www-style/2007Aug/0213.html
https://lists.w3.org/Archives/Public/www-style/2007Sep/0046.html

98

…We could either allow only degree measurements (which

would be odd because all other angle properties accept all

angle units, just like all other length properties accept all

length units) or accept all angle values and simply round to

the nearest 0deg/90deg/180deg/270deg angle. The WG, to

avoid changing parsing behavior and because it seemed more

intuitive, opted for the latter.

2007 Link Opinion

…I'm thinking that "end-count" or "max-count" might be a

more intuitive keyword than "total-count"…

2007 Link Opinion

…This vector should be normalized (have a length of 1),

otherwise the results are typically non-intuitive…

2007 Link Opinion

…I guess if it is the SVG one there is a precedent, but it isn't

the standard coordinate geometry space, where y is positive

upwards, and I would have though z positive into the paper

was more intuitive…

2007 Link Opinion

…A line saying that references to the dimensions of the

image refer to the size after background-size has been

applied would suffice I think. For -o-background-size we

currently implement the non-intuitive version and are

planning to change this…

2007 Link Opinion

…"None" would still be useful as a handy and intuitive way

to kill the transition, I would think, either in JavaScript or if

you wanted to prevent the transition in certain elements that

were part of a class that received transitions…

2007 Link Opinion

…I would have thought that in order to be usable, a site has

to be accessible; if it's pretty as well, that's a bonus (for

sighted users) but in the greater scheme of things, I'd look for

"accessible", "navigable", "consistent", "coherent",

"intuitive" and any one of a half-dozen or so similar concepts

before "pretty"…

2007 Link Irrelevant

…> How about 'background-position: 0 0 calc(100%-15px)

calc(100%-15px)'? Not very intuitive, but it does make a

background image of 15 x 15 px using your model :-)…

2007 Link Opinion

…Borders can be big, though often not, so drawing the

shadow only for the box/background-color itself might hide

2007 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2007Sep/0172.html
https://lists.w3.org/Archives/Public/www-style/2007Oct/0103.html
https://lists.w3.org/Archives/Public/www-style/2007Nov/0080.html
https://lists.w3.org/Archives/Public/www-style/2007Nov/0082.html
https://lists.w3.org/Archives/Public/www-style/2007Nov/0091.html
https://lists.w3.org/Archives/Public/www-style/2007Nov/0104.html
https://lists.w3.org/Archives/Public/www-style/2007Nov/0234.html
https://lists.w3.org/Archives/Public/www-style/2007Nov/0265.html
https://lists.w3.org/Archives/Public/www-style/2007Dec/0091.html

99

the shadow when I would expect the border to "cast" it as

well. But, this has problems. If the background color is

rgba(), the shadow might show through, which is counter-

intuitive…

…I like that idea. A bit selfishly, perhaps, since English is

my primary language. I understand the need to support

writing directions other than Roman-style, but I find terms

"start" and "end" (and their perpendicular counterparts) non-

intuitive.

2008 Link Opinion

…For an element that is height:10%, setting center-y:5%

should have the top edge lined up with that of the parent

element. This seems more intuitive for me…

2008 Link Opinion

…I suppose a very careful reading might reveal to authors

what those values do for position:center and how they differ

from position:absolute. I don't think it is as intuitive, though.

2008 Link Opinion

…I think background-size or background-sizing would be

the more intuitive for most designers and developers for the

reason that background-stretch or resize implies that you

must be stretching or resizing when that simply isn't the true

meaning of the property…

2008 Link Opinion

…background-fill (this one is pretty darned intuitive)… 2008 Link Opinion

…I will go with the others who have replied. I like

background-size because more intuitive…

2008 Link Opinion

I'd like to add a few notes on "alignment" proposals:

First, I have mixed feelings on the goals of the new property.

It appears to have multiple reasons to exist: … Provide a

more intuitive alternative to "margin:auto"…

2008 Link Opinion

…If I specify a top, bottom, right and left of 0, then why on

earth should the object's intrinsic width or height override?

It's completely counter-intuitive that you can't use this

pattern to stretch an iframe or image in CSS2.1.

2008 Link Opinion

…CSS already has a way to center blocks, but many authors

find it (use of 'auto' margins) confusing and/or non-

intuitive…

2008 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2008Jan/0054.html
https://lists.w3.org/Archives/Public/www-style/2008Jan/0167.html
https://lists.w3.org/Archives/Public/www-style/2008Jan/0183.html
https://lists.w3.org/Archives/Public/www-style/2008Jan/0373.html
https://lists.w3.org/Archives/Public/www-style/2008Jan/0374.html
https://lists.w3.org/Archives/Public/www-style/2008Jan/0376.html
https://lists.w3.org/Archives/Public/www-style/2008Jan/0430.html
https://lists.w3.org/Archives/Public/www-style/2008Jan/0433.html
https://lists.w3.org/Archives/Public/www-style/2008Jan/0445.html

100

…The intuitive behavior of 200% or 2 as a line-height value

would have been to be twice the value of 'normal.'…

2008 Link Opinion

…I still think background-fill is more intuitive to the

designer mind, but given the example you showed re: fit, I

think that would work as an option, too…

2008 Link Opinion

…Isn't it a bit odd that of one block is wider than its parent,

and the parent is set to "overflow:scroll", that the margins of

the child are shown on the top, bottom, and left, but not on

the right? … Perhaps there is something in the spec that says

it should do this? Does it also say why? It seems counter-

intuitive to me.

2008 Link Opinion

…There may be reasons that it is the way it is, but as a

designer, I find it counter-intuitive that one is missing,

especially when the other three are present.

2008 Link Opinion

…You are entitled to your opinion. I do not share it. I would

rather it be intuitive to the author, even if it complicates the

calculations that the programmer puts into the software.

2008 Link Opinion

…An author would find it easier (and more intuitive) to

change text-shadow "red" and background "url(a.png)" since

they both would occur first…

2008 Link Opinion

…My intuition says that overloading ':checked' is dangerous

and not very intuitive…

2008 Link Opinion

…Even if you didn't call it "checked" (I think "checked" is

as good as any other, and no more overloaded than it is for

radio buttons), if you made it operate the same then it would

be intuitive to set and change…

2008 Link Opinion

…I made a different proposal entirely, mostly based on the

fact that calling a property 'background-origin' and then

having its intended effect have little or nothing to do with

defining an origin point seems counter-intuitive at best. Thus

my suggestion to completely redefine that property and shift

what its currently-drafted values do to a new property with a

(slightly) more intuitively descriptive name.

2008 Link Opinion

…it's intuitive and simple enough so web authors can edit

w/o having to hire an expert to understand the spec…

2008 Link Irrelevant

https://lists.w3.org/Archives/Public/www-style/2008Jan/0482.html
https://lists.w3.org/Archives/Public/www-style/2008Jan/0536.html
https://lists.w3.org/Archives/Public/www-style/2008Feb/0001.html
https://lists.w3.org/Archives/Public/www-style/2008Feb/0022.html
https://lists.w3.org/Archives/Public/www-style/2008Feb/0032.html
https://lists.w3.org/Archives/Public/www-style/2008Feb/0101.html
https://lists.w3.org/Archives/Public/www-style/2008Feb/0250.html
https://lists.w3.org/Archives/Public/www-style/2008Feb/0262.html
https://lists.w3.org/Archives/Public/www-style/2008Feb/0320.html
https://lists.w3.org/Archives/Public/www-style/2008Mar/0364.html

101

…Bert: it does seem we want a separate property

Steve: we are going to need it for vertical

Steve: and not having the same thing for horizontal would be

confusing

Bert: are there any other values?

Anne: left and right

Bert: that's handled by margin auto

Tantek: unintuitive and hard to teach people

…

Jason: because margin auto is not an intuitive way to do it

…

Jason: again it gets back to the intuitiveness of margin auto -

that's the problem.

2008 Link Opinion

Fantasai: Concerned about difference in white space syntax

of nth-child() and calc().

…

Daniel: "7n + 3" looks very intuitive, is used in many other

places that people now.

2008 Link Opinion

…As I said, I don't care what we define, either way will be

non-intuitive to some people…

2008 Link Evidence

…I would suggest using Anne syntax for consistency. A

forward slash "/" would indicate either a fall back or a fall

forward. like.

content: "hello" / url(hello.png);

The fall back to the left I think is more intuitive for authors.

Also using commas would mess with multiple background

strings. This would be better.

2008 Link Evidence

…I think the intuitive way to look at the problem is; that no

matter how or where you break inside the child of element

you also break that element…

2008 Link Opinion

…you should find the best place to break, i.e. or the place

that break as few rules as possible…

I believe this produces the visually best most intuitive

results…

If you have elements with borders stacked inside each other,

and you are forced to break the topmost of them, the most

2008 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2008Apr/0028.html
https://lists.w3.org/Archives/Public/www-style/2008Apr/0028.html
https://lists.w3.org/Archives/Public/www-style/2008Apr/0059.html
https://lists.w3.org/Archives/Public/www-style/2008Apr/0088.html
https://lists.w3.org/Archives/Public/www-style/2008Apr/0305.html
https://lists.w3.org/Archives/Public/www-style/2008Apr/0305.html

102

intuitive thing to do is to try to break between the next level

of bordered elements.

…<body style='position:relative'

onload="alert(a.offsetParent == document.body)">

<div id=a style='position:relative'>a</div>

</body>

The intuitive outcome of the display would be an alert with

the value 'true'. However, CSSOM would make it so that the

outcome would 'false' in the alert…

2008 Link Opinion

…I agree the 'background-origin' name isn't very intuitive.

Not sure what would be better, though, given that we also

have 'background-clip' which can be set to a different value.

2008 Link Opinion

…With enough imagination, one can even imagine a

positive value on the blur being reduced a pixel at a time,

until it passes zero and jumps into being a shadow of the

negative space (also called "white space" or page

background). Minus sign = negative space shadow; has a

certain (only slightly convoluted) logic to it, even if the

"blur" value is not the most intuitive place to put it…

2008 Link Opinion

…Quote: "In graphic representation, an artist uses intuitive,

artistic, scientific, or technical skills to represent the

phenomenon of the visual perception of perspective. In

simpler terms, these skills are used to add a suggestion of

depth to what is ultimately a flat image or drawing."…

2008 Link Irrelevant

…The draft makes no mention of whether variable lookups

occur using every variable defined on the document or only

variables that occurred earlier in a depth first parse of the

stylesheets. I believe it's much easier (and more intuitive

for authors) if lookups occur using every variable available

for the current media (since dynamic re-evaluation when

methods like setVariable get called would be much more

problematic otherwise).…

2008 Link Opinion

…because once this is implemented, how could we ever

add any new features. I suggested highlight initially

because the word *high* would seem intuitive for authors

in what the property is actually doing.

2008 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2008Apr/0370.html
https://lists.w3.org/Archives/Public/www-style/2008May/0065.html
https://lists.w3.org/Archives/Public/www-style/2008May/0181.html
https://lists.w3.org/Archives/Public/www-style/2008Jun/0189.html
https://lists.w3.org/Archives/Public/www-style/2008Jun/0213.html

103

…"content: inhibit" or 'content: ""' should serve just as well

as your "visibility: background". "visibility: foreground"

appears equivalent simply to "background: none", possible

in any browser that supports a CSS background in the first

place.

These solutions seem more intuitive to me…

2008 Link Opinion

…I agree. I think the model of just allowing variables to be

defined at the document-level is simple and intuitive. It

allows for centralized variable definition and reuse…

2008 Link Opinion

…As for whether to use the sigil in the declarations as well,

I don't think there would be any difference in terms of

parsing it, in the syntaxes that have been contemplated so

far. I think it's more intuitive to use the same name in

declaration and use, not require an extra character for one

but not the other.

2008 Link Opinion

… Column rules are only drawn between columns that have

content in the normal flow

With my designer hat on, the WebKit implementation

seems more intuitive.

2008 Link Opinion

…I think displaying the marker makes the most sense from

an authoring perspective. Treating the marker as the

principal block box's child and clipping it is neither useful

nor intuitive…

2008 Link Opinion

…I don't think it is intuitive for the outside marker to affect

the height of a line and then not scroll with the line…

2008 Link Opinion

… The spec says that the ellipsis should be rendered before

the overflow boundary, but this is not the browser behavior

(rendered after the last non-removed character), and also

not the intuitive behavior (in written text, the ellipsis is

always placed right after the text that is truncated). I think

the correct behavior is to visually remove grapheme clusters

until enough space is available for the ellipsis, or until a

block boundary is met (from an inline block, or the

boundary from the overflowing block), and to then render

the ellipsis at the insertion point of the last removed

2008 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2008Jun/0316.html
https://lists.w3.org/Archives/Public/www-style/2008Jun/0364.html
https://lists.w3.org/Archives/Public/www-style/2008Jul/0424.html
https://lists.w3.org/Archives/Public/www-style/2008Jul/0439.html
https://lists.w3.org/Archives/Public/www-style/2008Jul/0578.html
https://lists.w3.org/Archives/Public/www-style/2008Jul/0582.html
https://lists.w3.org/Archives/Public/www-style/2008Aug/0006.html

104

grapheme cluster. That's intuitive, and mostly consistent

with the behavior as implemented…

…This would correspond to @define after being blessed by

an official w3 recommendation I guess. I quite like "define"

as its name is quite intuitive wrt its behaviour, and it avoids

any overloaded interpretations of what to expect from

something named as variable…

2008 Link Opinion

…This problem certainly exists, but I'm not sure how much

attention we should give to it. I would prefer a short and

intuitive syntax like $ and would welcome that some kind

of "damage estimation" be performed for the most popular

alternatives.

2008 Link Opinion

…The intuitive mind is a sacred gift… 2008 Link Irrelevant

…Peter: My concern is what happens when we start getting

rich fonts with multiple weights.

Peter: I want to be sure that result is intuitive for fonts with

more than two weights…

2008 Link Opinion

…Steve: The alternative is that 'last-line-align' doens't

apply.

Fantasai: The 'last-line-align' applies because there is a

forced line break.

Steve: I wouldn't call that an inline element (because it

contains a line break).

David: Maybe the term [inline] is not fully intuitive, but it

is precisely defined.

2008 Link Opinion

Elika: border-corner-shape: [sides | corner] || [round |

sharp]

Alex: border-length is a little more intuitive…

2008 Link Opinion

…david: another way to solve same problem is calc()

alex would find it more intuitive to have a separate property

that defines alignment direction…

2008 Link Opinion

…No, I think we are again in a case when 8.3.1 excludes

collapsing (used height NOT equal to what it would have

been if min-height were its initial value).

2008 Link Logic

https://lists.w3.org/Archives/Public/www-style/2008Aug/0184.html
https://lists.w3.org/Archives/Public/www-style/2008Aug/0184.html
https://lists.w3.org/Archives/Public/www-style/2008Aug/0222.html
https://lists.w3.org/Archives/Public/www-style/2008Sep/0073.html
https://lists.w3.org/Archives/Public/www-style/2008Sep/0073.html
https://lists.w3.org/Archives/Public/www-style/2008Sep/0074.html
https://lists.w3.org/Archives/Public/www-style/2008Sep/0075.html
https://lists.w3.org/Archives/Public/www-style/2008Sep/0085.html

105

Really? That seems counter-intuitive. Compare these 2 test

cases: http://lachy.id.au/dev/css/tests/adhoc/collapsing-

margins-02.html

http://lachy.id.au/dev/css/tests/adhoc/collapsing-margins-

03.html

…Variables as Daniel and I specified them can remain

unresolved until you end up using those rules in a specific

medium. This "global soup" approach is simple and

intuitive for authors, since the variable names always cross

stylesheet boundaries (without ever having to delay the

parsing of a sheet because another sheet hasn't loaded yet),

and the last rule specified in the sheet order wins.

2008 Link Opinion

I think the current method of interpreting percentages is

very intuitive. It seems your concern is with calc()…

2008 Link Opinion

…But consensus is not always a synonym to "intuitive" nor

to "best solution"…

2008 Link Irrelevant

…This allows graceful degradation for browsers that do not

support text-shadow, in the cases where an author would

use the same "color" and "background-color", and rely on a

shadow of a different color to make the text readable.

As it is a fairy common use case (for example, about every

text-shadow demo on the net uses it), I think such an

intuitive way to have graceful degradation would be much

appreciated…

2008 Link Opinion

If we choose nesting of ::selection pseudo-elements, then

we run into the problem that the rules:

 p::selection { background: purple; }

 ::selection { background: blue; }

would cause the selection on any element inside the p to be

blue. However, we could still represent the default selection

as :root::selection rather than as ::selection, although this

seems less intuitive to me.

2008 Link Opinion

fantasai: That would not make sense if the min-height is big

enough to contain the margin

Alex: but its behavior is continuous

Discussion about what is intuitive

2008 Link Opinion

http://lachy.id.au/dev/css/tests/adhoc/collapsing-margins-02.html
http://lachy.id.au/dev/css/tests/adhoc/collapsing-margins-02.html
http://lachy.id.au/dev/css/tests/adhoc/collapsing-margins-03.html
http://lachy.id.au/dev/css/tests/adhoc/collapsing-margins-03.html
https://lists.w3.org/Archives/Public/www-style/2008Sep/0207.html
https://lists.w3.org/Archives/Public/www-style/2008Oct/0056.html
https://lists.w3.org/Archives/Public/www-style/2008Oct/0150.html
https://lists.w3.org/Archives/Public/www-style/2008Oct/0266.html
https://lists.w3.org/Archives/Public/www-style/2008Oct/0268.html
https://lists.w3.org/Archives/Public/www-style/2008Nov/0022.html

106

Steve: It really bothers me that we don't have any designers

here

Alex: Min-height is as currently specified has a side-effect

on margin collapsing that is not intuitive to the designer

2008 Link Opinion

… Daniel: I have a <pre>, and I want a minimum height

for my code box

<dbaron> Designers aren't really using min-height in the

wild because of IE support, I think. everybody has a

different idea of what designers would want for min-height

and margin collapsing

fantasai posts to twitter and gives up trying to minute

Discuss dbaron's option E

Alex: That's what IE8 impelements, and I'm not convinced

it's more intuitive

2008 Link Opinion

…Hakon: next, border parts

generated content for paged media spec

Hakon explains example XXXV

bert makes a very funny face

Hakon: this is very very cool

Hakon: needed for footnotes

Hakon: very intuitive

Hakon: way to define dash above footnotes

2008 Link Opinion

…Peter: You can have "7px + -4px"

Haakon: So these spaces here are significant?

Bert: Some of them are.

Peter: Can you nest calc()?

Bert: no

Bert: Seems kind of pointless.

Peter: It's unintuitive to a user to require spaces around - but

not around / or *.

2008 Link Opinion

…15:55 * Bert wonders why HTML5 doesn't add

<toc>...</toc> elements...

Peter: OK, z-index first thing tomorrow, then.

Haakon: I have another issue about the page counter.

<glazou> Bert: hey, that would be a too simple and intuitive

solution :-)

2008 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2008Nov/0022.html
https://lists.w3.org/Archives/Public/www-style/2008Nov/0022.html
https://lists.w3.org/Archives/Public/www-style/2008Nov/0023.html
https://lists.w3.org/Archives/Public/www-style/2008Nov/0023.html
https://lists.w3.org/Archives/Public/www-style/2008Nov/0023.html

107

dbaron: We also need counters work for the HTML5 header

algorithm, counter-set that doesn't create a new scope might

solve it.

…HTML solves this by allowing the onfocus handler to be

attached to the BODY tag, which seems like a sensible,

intuitive place to put it. I could see the argument for putting

it on the HTML element instead, but they didn't.

2008 Link Opinion

…I prefer a way of correcting it that is similar to the way it

was dealt with in HTML (pretending that the BODY is the

WINDOW, for certain things), as that would be familiar

and intuitive for authors…

2008 Link Opinion

…Thirdly, I understand from [1] that clearance was

originally implemented as a change in margin-top.

Superficially this seems intuitive, so there must be some

tricky edge-cases which expose problems with this

implementation.

2008 Link Opinion

…The issue is that you're essentially duplicating the Grid

Positioning Module (http://www.w3.org/TR/css3-grid/).

In many ways Template Layout is just a pretty face on Grid

Positioning, making the whole thing easier and more

intuitive.

2008 Link Opinion

…So the only remaining question is whether

xy := <nowrap>x</nowrap><nowrap>y</nowrap>

should wrap the same as

<nowrap>xy</nowrap>

I think that is more intuitive than the alternative…

2008 Link Opinion

…In Gecko we follow two principles:

1) Break opportunities induced by white space are entirely

governed by the value of the 'white-space' property on the

enclosing element. So, spaces that are white-space:nowrap

never create break opportunities.

But 2) When a break opportunity exists between two non-

white-space characters, e.g. between two Kanji characters,

we consult the value of 'white-space' for the nearest

common ancestor element of the two characters to decide if

the break is allowed.

2008 Link Opinion

https://lists.w3.org/Archives/Public/www-style/2008Nov/0443.html
https://lists.w3.org/Archives/Public/www-style/2008Nov/0443.html
https://lists.w3.org/Archives/Public/www-style/2008Nov/0482.html
https://lists.w3.org/Archives/Public/www-style/2008Nov/0556.html
https://lists.w3.org/Archives/Public/www-style/2008Dec/0039.html
https://lists.w3.org/Archives/Public/www-style/2008Dec/0043.html

108

I think these principles are reasonably intuitive and useful.

To be continued from here…

https://www.w3.org/Search/Mail/Public/advanced_search?keywords=intuitive&hdr-1-name=subject&hdr-2-name=from&hdr-3-name=message-id&index-grp=Public__FULL&index-type=t&type-index=www-style&resultsperpage=20&sortby=date-asc&page=20

109

Appendix B: Experiment Notes

M9Q0L5

Notes

 In the GSS example, found all the equals sign confusing, did not know what they

could mean.

 In the CSS Grid example, everything was reasonably intuitive, just unsure about the

units being used.

 In the Flex example, the shortness of the code appealed to the participant.

 Commented on a preference for background-color to appear at the top of a style

declaration.

Transcript unavailable: recording program crashed before reaching substantive part.

X0Z3C0

Notes

 Grid style sheets: usually much easier to see the units, but don’t see a unit in grid

style sheets

 Looking for differences between the code

 Grid-template-columns looks like Bootstrap, it looks like CSS Grid uses a

framework

 All the properties are very common in the non GSS and CSS Grid examples

 I like tables, but they are not so flexible

 Flex looks basic

 GSS: Too complex using equals signs, too much new stuff. Not so simple to move

from CSS to GSS with the new syntax. However, moving from CSS2 to CSS3, just

need to know new features.

 CSS Grid is not so hard to understand. Think the units are different proportions.

 Noted browser support concerns from Flexbox and that different styles could be used

for different browsers.

Transcript

E: Choose the one that’s the most intuitive, the one that makes the most sense.

P: definitely not the second one probably (Grid Style Sheets). I see it is much clearer when

you see what you (unit) measures are in.

110

E: What are you looking at now?

P: I am looking line by line and seeing what are the differences. Now I am looking at the first

one, grid-template-columns, looks like Bootstrap. The first example looks like some kind of

framework, so you have columns and lines. It depends on which code I should choose…

Let’s go to flex. I would say I would choose the last one, because I can clearly see the height

and width and in pixels… but it is only because I can see what it’s related too. I like Tables,

but they are not so flexible.

E: You would choose flex?

P: Yeah, it is more interesting, you can do more stuff…

E: Does the code make sense?

P: Yep, I don’t see anything special. What about the third one which is Grid Style Sheets

element centring. I don’t know, is it really normal CSS?

E: It’s proposed an extension to CSS that uses constraints.

P: What’s the reason, for example, what is the reason to use double equals? It is more like

C++ or similar. You don’t see the difference… It is too much new stuff. It is not simple to

move from CSS to this one. If you choose CSS3, it’s not such a difference from CSS2 because

it’s just adding new functions… it is not hard to move from one to another, you just need to

know new (functions), but here you need to know much more: how to specify parameters in

a new way. What about the first one, CSS Grid element centring, I think it’s… it looks like…

kind of… yeah, it’s not so hard to understand. It’s okay. I am not sure what grid-template-

columns. I think it is different proportions… I would choose Flexbox…

Internet connection problem

E: (Which was the second code snippet?)

P: The second one is Table Styles. The last one is Flexbox.

P: I should probably say why it could be better to choose tables. Sometimes you can’t choose

Flexbox if you need to support old browsers. Probably better to use a mix… different styles

for different browsers.

25.07.2016 5:30pm

K1C5C8

Transcript

111

P: So, in the first code snippet, it looks like it’s made with CSS Grid. I have never done

something, so I see grid-template-columns. I can’t… I don’t know what this does. So it’s…

let me look… I just can think… I really don’t know… I see the grid-column: 2… I try to

make sense how a column can fit in there because it is centred horizontally and vertically.

And then inner element p is just padding… and is text align-centred.

P: The second code snippet, Flexbox. With Flexbox, I am familiar and display flex works

like magic. The inner element is with width 60% and the p is centred… Yeah… okay… If I

see this code snippet I would know it centers something in the middle and there are margin

auto. But with flex it’s just ‘display this as flex and it’s there and it’s centred’ but I really

don’t know what… why it does what I want. If that’s…

P: The third code snippet is done with display: table and display: table-cells which for me is

straight forward but I know tables aren’t there to layout something. Tables are there to …

make tabular text alignment. But you know what’s going on. With display table-cell you can

do vertical align middle and vertical align middle speaks for itself… it’s vertically aligned in

the middle. Inner element p is centered with margin auto and has a width… it’s clear what it

does but I know it’s not the most perfect thing to do because it’s a table.

P: And the fourth code snippet, I’ve seen this before, this is GSS. I’ve looked into it. But it’s

kinda ‘whoa’, it’s a completely different attempt to CSS. And… let me look… it has the top,

window[top], left… it’s the outer element. Okay… outer element is on the window top and

window left. The inner element has the background colour, green. Ah, okay, the p is text

align center and then we have inner element is greater than or equals than outer element…

okay… so the inner element depends on the outer element width, but 70%. It’s centered with

the outer element center and the inner element height is like the p height, so it’s… I have

think what it does, but when you see the code, it speaks for itself.

E: So which would you most like to see in a code base, where you see okay, this is doing

what that layout is, what the layout shows?

P: I think for layout, GSS is very good because, like a said, it speaks for itself.

Answers written questions…

I can see… with the CSS Grid, I read it and didn’t know what it did and I went to it with my

cursor. With Flexbox, I knew it does something, it centres it, but hmmm… and if there was

the table styles. I kind of went over it and analyse it and knew what it does. And with GSS, I

went over it and this intrinsic height, I don’t know what this does, that’s because I went with

the cursor. And then I tried to figure out these layout positions.

112

M706W1

Transcript

P: To start with, I don’t know what a CSS grid is to be completely honest.

E: It’ behind flags, like it’s a very new, experimental feature. As you read through it, try and

work through what it could mean.

P: So my guess is that grid is some kind of… um… so template-columns… There’s another

framework we’ve used before… bootcamp? Or something.

E: Bootstrap?

P: Yeah… Bootstrap had the column-layouts system thing going. And you could define

things within a column of a grid. And this looks similar to that. And this would probably

mean 3 some unit (not sure what fr means), 14 and a 3. Which means you have 3, left column

over here, then 14 then 3 here (point cursor to areas on example layout). I am not 100% how

the vertical is calculated. Maybe the height… ah the outer element… So the outer element is

divided into 3. This a bit confusing to me because it defines… it’s interesting… Align items

center. Is that a new too?

E: Yeah, sort of, it can also be used with Flexbox

P: Yeah, which I also don’t know. So, align item centre, I have no idea what that would mean.

This is like implicitly a certain layout, I’m not sure what that would mean if it means this

way… or vertically centred. It’s not explicit. It would take me ages to find that line of code

to do what I want it to do. Height and width are pretty standard across all… I assume we want

a fixed height and width and that’s not important. Inner element… this is interesting… you

pick grid in reference to the outer element (looking at grid-column 2). I assume this means

you go in this slot (middle of layout) here. That’s like super interesting. I don’t particularly

like it because this means that (the column number) is dependent on (the grid-template-

columns value) which could be somewhere else in the CSS. Where, in fact, this should be

nested in here. It is hard to explain what I’m trying to say I guess. It’s weird that we’re moving

the HTML logic into the CSS kinda. It’s scaring me a little bit. You’re basically doing

programmatic… not programmatic… but like ordered layouts in CSS which is not common.

E: An the order is part of the semantics.

P: Yeah… so it’s like 2, grid-column 2. Which I guess makes sense to read, but I don’t like

it in that regard.

113

P: That’s the paragraph…

P: Let’s go to Flexbox. So I don’t know what flex is, right of the bat, so I’ll try to guess what

it means. I think I might have experienced it, I just don’t remember. This is all standard stuff,

it’s no different. So the inner element is green, it will be green. So 70% of its parent width.

So auto means just use whatever remains of the width on both sides. I think that’s typically

what it does even without flex.

E: Do you know what it does with flex?

P: No

E: Also vertical…

P: Oh, vertical alignment. Okay, I just don’t know that. So that means top, bottom, right, left.

That’s super cool. Um… width… yeah, so since I haven’t set the… have I set the height? Is

the height implicitly 100%? No it’s not. Where does it get the height from?

E: Here, height comes from the bottom up, from the paragraph.

P: Sure, fair enough. Text-align… centre…, yeah… same stuff… And here we’re doing the

same thing assumedly? To centre this content? Without being how that works… only because

I know how CSS margins work kinda… but I would not have guessed that flex did the vertical

alignment. I guess if this was a live demo I would probably work it out pretty quickly though.

This one’s alright, less code and that kind of stuff.

P: Ahh, tables… I never code the table display stuff. Vertical align middle. That means

vertically aligned, is that right?

E: Yep, vertical

P: Yeah, but it’s in both middles. Display table cell, um… (sigh)… This one annoys me… It

uses the properties of the table, but it’s not a table and nothing about it kind of says where to

put… uh… I guess that’s what… I am not sure what’s going in this one… What’s giving the

side paddings this time? Ah, width 70, so it wraps the paragraphs content. Margin auto, same

business… Text align centres… Not much to say about this one.

P: Grid Style Sheets element centring, this looks scary. I bet you this is your one isn’t it.

E: It’s not mine. It is a framework, JavaScript, and it has been proposed to used constraint

syntax in CSS:

P: Right. Got it. Alright, so, what’s going on here? I’m not going to pretend I know what’s

going on here. In traditional programming languages the double equals means evaluate the

114

equality between two parameters. I’m guess it means the value… I have no idea honestly.

I’m getting it means it can be calculated. Top, this is what leads me to believe that, is that it’s

on this parameter here. It’s, argh, something like: top should to be the top of the window, and

left should be the left of the window. Intrinsic-height, that’s a fancy keyword looks up

definition of intrinsic, so that’s means the height should be the natural height of the… I’m

guessing it’s going to use the padding and the height of the text rather than all the space

available. Down here we have inner element is greater than or equal to the outer width times

70% (laughs) what? Okay, centre, outer element equals centre. That makes sense. I guess

that’s defining a range (pointing to first of three last constraint statements) for (inner

element), saying that it can be greater than or equal to 70% of (outer element).

E: How would you phrase that statement in an English sentence?

P: OK, let me just… The inner element should be at least… the max width is 70% of the

outer element. And for this one, they should share a center point. This one means infer the

height from height of the p which has an intrinsic height. This is kinda that as well. That’s

interesting. Does this stuff get calculated by the browser or is just JavaScript… then CSS?

E: It’s JavaScript, it’s a framework. The suggestion is that the browser could do it.

P: I feel like this is the sort of thing that someone would type when they are trying to show

off their programming skills. Having just learnt about grids and flex, I would probably use

Flex. Partially because I am lazy and it seems to be the one that works the easiest… with the

littlest… you know… things that confuse me. Like this I don’t like because you have to

consider these (the little fr things). Is that what fr means, fraction?

E: Even in the spec, it’s not exactly clear what fr stands for. But it is a fractional unit… it’s

a fraction of the whole grid.

P: So why is it 20, not 10? Ah, right! So whatever number you imply is the total. So it’s 3

twentieths. So could just do one, one, one and it would be equal.

E: Exactly.

P: Um… I have to pick one don’t. Fine this one… (picks CSS Grid).

E: Now, there’s a bit of a reflection…

P: I would not like to write anything…

E: Just talk a little bit more, but answer the last two questions.

115

P: Explain why you chose… ahhh, yeah I will talk. I chose this one (CSS Grid) because after

looking at all of these, it’s the one I understand the most. Despite the fact it is not ideal for

this kind of think. This is more than just centring content, this is a specific layout; like I want

a 14th of a 20th or whatever… (the grid column template value) is not as arbitrary as 70%

essentially. I am not sure… but… I previously said I don’t like this one, but I picked it

anyway. Maybe I don’t like centring with CSS. If I had to go with one, I would use (CSS

Grid) simply because I understand it the most. And I have not used Grid before, but this

makes a lot of sense. You got your fractions of a sum total, I think that’s pretty cool. This I

am not a big fan of, but it makes sense.

P: Okay, that kind of makes sense. You want to put it here (column 2), then you get a grid

like that (grid column template). This I am not a big fan of, align item centre which I assume

lines it this way (vertically) because that should be a part of the grid right, rows or something,

who knows. I’ve actually been in a situation where I have wanted to centre content and had

no solution. The actual solution was to press both halves of the image against each other.

Then you make two boxes, one is pressed against the bottom of the other element, the other

against the top of another element and they just happen to centre the image for you. It’s really

horrible.

P: Characteristics you found counter-intuitive… Despite picking this one, the align items

centre comes out of nowhere and doesn’t make sense. And if I was looking at this and this, I

would not assume that this meant this. There should be grid template rows.

P: Tables stuck. This one has too much JavaScript… it’s not JavaScript… but too much logic

for something so simple. Even if I understand it, I would not want to read this. This one, I

think I just don’t fully understand. It seems like flex is just magic. It might as well say display

magic. Whilst it would be nice if it worked… to be honest I would also pick this one, but

only because it just works.

E: Interesting that you noted that, that it works just like magic. But with grid you can at least

see the columns.

P: Yeah, there’s a defined layout. I don’t entirely like the fact that display affects its laid out.

But (Flexbox) is magic. Display flex, then margin auto, wow amaze. The only value we’re

setting here is width. So that somehow means that by default everything should be pretty.

Z4T2D3

Notes

 dont know what columns means

116

 css grid element

- template columns don't make sense

- Similar to CSS.

- rank 3

 flex

- don't know what flex means

- like flexbox: makes more sense in the inner and outer elements

- everything simple and matches up

- lot easier to remember fewer rules

- rank 1

 table styles

- width of 70%

- rank 2

 grid style sheets

- Immediately, there's a lot more stuff going on, which I don't want to read.

- Not as straight forward as the first three.

- Least intuitive.

- Straightforward

- 70% makes more sense the GSS

- rank 4

- More used to just using the column. Reminds of objective C. ::window

Transcript unavailable, program crashed.

28.07.2016 6:00pm M9T5F6

Transcript

P: reads the task…

P: I see a figure element which has a larger outer element in blue and has a green inner

element with content in it. It is position centred to the out element. The HTML which is

obviously for this cascaded and a paragraph tag… all good… Now I see a table with three

code snippets.

E: There might be a fourth if you scroll down.

P: Ah, there’s a fourth. There’s four code snippets, the first is Flexbox, the next is Table

Styles, the third is CSS Grid and the fourth is Grid Style Sheets element centring. Each of

these boxes contains some CSS code, each for the outer, inner and paragraph element. By the

117

way, the text is also centred in the inner element. The colour is everywhere the same. And

most importantly, it is hard to position centred on the out element. I already knew about

positioning of elements with Flexbox which makes the positioning of elements quite flexible

as the name suggests. But I see that the inner element misses some flex attributes. Therefore,

I would say that the first snippet is not the right one.

E: (Corrects understanding of experiment stating that each snippet produces the same result)

P: Okay, so, actually for the first what captured my curiosity is that the inner element has a

width setting of 70%, maybe that is reasonable for how this is scaled. I would expect some

positioning of the inner element which is not stated there.

P: So for the Table style element, the outer element with a fixed height and width, in all of

those, and you have display table. Actually, then in the inner element we see that there’s a

vertical align CSS property which says middle which seems reasonable for me. And the

display of type table cell and the paragraph is also with the text align centred. That looks

pretty descriptive the second one.

P: The CSS Grid centring, let me check out this. The outer element is of display grid. It uses

some grid template columns with abbreviations: 3fr, 14fr and 3fr. I can only assume that

these are three columns three columns; I can’t quite get what fr means. But that should be

some virtual layout-ing scale numbers. Um… it positions the inner element in grid column

two which might make some sense. But it does not say how wide the inner element should

be. Ah. Now, I think I get it. It says in the grid template columns that there are three layout

elements to the left of the space and 14 layout columns wide centring and then there are 3 to

the right and I think the inner element is in grid column 2, I position it into (indecipherable?

middle of) the layout columns and then having it with 3 spaces to the left and 3 spaces to the

right which obviously seems to centre the inner element. But still it doesn’t say something

about the height of element.

P: Then, for the fourth, we have some meta classes which positions the outer element on the

top left of the window. The inner element has no positioning constraints in the first section.

But (down the bottom) it says that there are some calculation rules which looks a bit complex

for me to figure out what it does. But it seems to calculate the positioning of the width and

height of the inner element based on the width and height of the outer element. And

positioning the inner element in the center of the outer element with an assignment. At least

this assignment looks pretty need. But the rest is a bit strange from the syntax. I would say

the second one is the one that makes the most sense to me.

118

C6Y7Y6

CSS Grid element centring

 three ids

 outer element with colour web

 it's a new thing... grid template columns... I am not too sure what fr means. It makes

sense this.

 inner element

 grid columns - hard to

gss

 This is crazy, I never saw this way to attributes. I think it ... some kind of variables.

 We have same pattern, with width

 sure where variables like top and left come from.

 text element has a height; not sure what it means

table styles

 on the first view, a lot simpler than GSS.

 it's a table layout.

 pretty straight forwad. Table metaphor makes sense.

 inner element has a background.

 colour

Flexbox

 one step easier

 outer element

 margin auto

 if I knew

119

D0K3H9

flexbox

 paragraph, a

 I do this pretty regularly

 outer element,

 margin auto, align items is clearer.

 better semantics

 padding rem is a bit funny. could have made a flex.

 margin won't do anything

css grid

 new layout

 fraction unit. Setting up a grid where columns take up fractions.

 goes into the second column. you can have areas. big fan. from usability, flex is great

for 1 dimensional layout

table

 personally, I don't use it a lot.

Gss

 okay, I have not seen it before.

 height... top... window...

 first impression: not sure about the double equals. I can see what top and left.

Problem, is it always on the top. ::window is confusing, but its not position fixed. I

am not sure what the expected behaviour is. always,

 intrinsic-height,

 assignmnet, but usually boolean operators.

 interesting idea, unfamiliar syntax. == window top

 relationships between

120

Appendix C: Cursor Movements

M9Q0L5d

Note: Flexbox showed movement in this session.

121

X0Z3C0

Note: no activity on image or HTML in this session.

122

K1C5C8

Note: no activity on Flexbox snippet or CSS Grid snippet.

123

M706W1

124

Z4T2D3

Note: no activity on Flexbox code snippet or HTML.

125

M9T5F6

Note: no activity on Flexbox snippet, image or HTML.

126

C6Y7Y6

127

D0K3H9

128

Appendix D: Declaration

I declare that I have independently written this Master’s Thesis and have not used other

sources than the sources and means indicated and stated in quotations.

William Clear 29 July 2016

