Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 19 of 901
Back to Result List

Effects on the combustion properties of wheat straw after different thermobiological pretreatments

  • Wheat straw could be used for pellet production and therefore as solid fuel. However, it presents challenges due to its inferior combustion properties such as high ash content, low gross calorific value (GCV), and low ash melting temperature. To evaluate its combustion properties and based on recent work that improved methane production, wheat straw was subjected to thermobiological pretreatments. Nine pretreated samples based on wheat straw and nine pretreated samples based on compost-wheat straw mixture were produced. In addition, due to the ability to remove minerals and decrease the ash content, a washing process with water as a solvent was used. Ash content, net calorific value (NCV) and ash melting temperatures were evaluated. For the pretreated wheat straw (SW) samples, a 5,8% reduction in ash content was obtained due to the pretreatments when compared to untreated wheat straw. A 55% decrease in ash content was obtained when comparing the same materials before and after the washing process. No statistically significant changes in GCV were found. As for the ash melting temperatures, due to the incubation pretreatment, an average increase in the shrinkage starting temperature (SST) of 4,4% was obtained for anaerobic conditions and a decrease of 2,5% for aerobic conditions, compared to the same material without heat treatment. In addition, an increase in all ash melting temperatures was observed because of the washing process. It was possible to obtain a pellet complying with standard ISO 17225-6 that can be used in medium or large burners and significantly reduces the effort during combustion. For samples pretreated with a homogeneous compost-wheat straw (SKW) mixture, an average ash content decrease of 27% was obtained after using autoclave pretreatment at 140°C, compared to the same material without thermal pretreatment. The biggest decrease was due to the washing process, reducing the ash content on average by 43% when comparing the same materials before and after washing. GCV were 13% lower than samples pretreated with wheat straw, due to the low calorific value and high ash content of the compost. During ash melting temperature tests, an average 60% increase in SST was observed compared to pretreated SW ashes due to the high melting temperature of compost. Results are considered satisfactory since pellets based on this mixture would not cause ash sintering or slagging. However, counter effects were observed as the addition of compost increased the ash content and decreased the GCV, not complying with ISO 17225-6 for non-woody pellets. To achieve a pellet based on a compost-wheat straw mixture that complies with the standards, it is recommended for future research to control the percentage of compost added to the mixture.
Metadaten
Author:Felipe Antonio Torres Rivera
URN:urn:nbn:de:hbz:832-epub4-20127
DOI:https://doi.org/10.57683/EPUB-2012
Document Type:Master's Thesis
Language:English
Publishing Institution:Hochschulbibliothek der Technischen Hochschule Köln
Granting Institution:Technische Hochschule Köln
Date of first Publication:2022/07/28
Date of Publication (online):2022/09/06
GND-Keyword:Kompost; Pellet; Stroh; Verbrennung
Tag:Combustion; Compost; Pellets; Pretreatment; Wheat straw
Page Number:60
Institutes:Fakultät für Raumentwicklung und Infrastruktursysteme (F12) / Fakultät 12 / Institut für Technologie und Ressourcenmanagement in den Tropen und Subtropen
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften
Open Access:Open Access
Licence (German):License LogoCreative Commons - CC BY-NC - Namensnennung - Nicht kommerziell 4.0 International