Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 3
Back to Result List

Digital Twin for HIV-Gag VLP Production in HEK293 Cells

  • The development and adoption of digital twins (DT) for Quality-by-Design (QbD)-based processes with flexible operating points within a proven acceptable range (PAR) and automation through Advanced Process Control (APC) with Process Analytical Technology (PAT) instead of conventional process execution based on offline analytics and inflexible process set points is one of the great challenges in modern biotechnology. Virus-like particles (VLPs) are part of a line of innovative drug substances (DS). VLPs, especially those based on human immunodeficiency virus (HIV), HIV-1 Gag VLPs, have very high potential as a versatile vaccination platform, allowing for pseudotyping with heterologous envelope proteins, e.g., the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As enveloped VLPs, optimal process control with minimal hold times is essential. This study demonstrates, for the first time, the use of a digital twin for the overall production process of HIV-1 Gag VLPs from cultivation, clarification, and purification to lyophilization. The accuracy of the digital twins is in the range of 0.8 to 1.4% in depth filtration (DF) and 4.6 to 5.2% in ultrafiltration/diafiltration (UFDF). The uncertainty due to variability in the model parameter determination is less than 4.5% (DF) and less than 3.8% (UFDF). In the DF, a prediction of the final filter capacity was demonstrated from as low as 5.8% (9mbar) of the final transmembrane pressure (TMP). The scale-up based on DT in chromatography shows optimization potential in productivity up to a factor of 2. The schedule based on DT and PAT for APC has been compared to conventional process control, and hold-time and process duration reductions by a factor of 2 have been achieved. This work lays the foundation for the short-term validation of the DT and PAT for APC in an automated S7 process environment and the conversion from batch to continuous production.

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Alina Hengelbrock, Heribert Helgers, Axel Schmidt, Florian Lukas Vetter, Alex Juckers, Jamila Franca Rosengarten, Jörn Stitz, Jochen Strube
URN:urn:nbn:de:hbz:832-epub4-19824
DOI:https://doi.org/10.3390/pr10050866
ISSN:2227-9717
Parent Title (English):Processes
Publisher:MDPI
Editor:Tao Sun
Document Type:Article
Language:English
Date of first Publication:2022/04/27
Date of Publication (online):2022/05/10
GND-Keyword:Digitaler Zwilling; HIV; Virus-like Particles
Tag:Advanced Process Control (APC); Digital Twin (DT); Human Embryonic Kidney 293 (HEK293); Human Immunodeficiency Virus (HIV); Process Analytical Technology (PAT); Quality-by-Design (QbD); Real-Time-Release Testing (RTRT); Virus-like Particles (VLPs)
Volume:10
Issue:5
Article Number:866
Page Number:23
Institutes:Angewandte Naturwissenschaften (F11)
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften
Open Access:Open Access
DeepGreen:DeepGreen
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International