Volltext-Downloads (blau) und Frontdoor-Views (grau)
Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 8 von 10
Zurück zur Trefferliste

Harmonization of Landsat and Sentinel 2 for Crop Monitoring in Drought Prone Areas: Case Studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon)

  • Proper satellite-based crop monitoring applications at the farm-level often require near-daily imagery at medium to high spatial resolution. The combination of data from different ongoing satellite missions Sentinel 2 (ESA) and Landsat 7/8 (NASA) provides this unprecedented opportunity at a global scale; however, this is rarely implemented because these procedures are data demanding and computationally intensive. This study developed a robust stream processing for the harmonization of Landsat 7, Landsat 8 and Sentinel 2 in the Google Earth Engine cloud platform, connecting the benefit of coherent data structure, built-in functions and computational power in the Google Cloud. The harmonized surface reflectance images were generated for two agricultural schemes in Bekaa (Lebanon) and Ninh Thuan (Vietnam) during 2018–2019. We evaluated the performance of several pre-processing steps needed for the harmonization including the image co-registration, Bidirectional Reflectance Distribution Functions correction, topographic correction, and band adjustment. We found that the misregistration between Landsat 8 and Sentinel 2 images varied from 10 m in Ninh Thuan (Vietnam) to 32 m in Bekaa (Lebanon), and posed a great impact on the quality of the final harmonized data set if not treated. Analysis of a pair of overlapped L8-S2 images over the Bekaa region showed that, after the harmonization, all band-to-band spatial correlations were greatly improved. Finally, we demonstrated an application of the dense harmonized data set for crop mapping and monitoring. An harmonic (Fourier) analysis was applied to fit the detected unimodal, bimodal and trimodal shapes in the temporal NDVI patterns during one crop year in Ninh Thuan province. The derived phase and amplitude values of the crop cycles were combined with max-NDVI as an R-G-B false composite image. The final image was able to highlight croplands in bright colors (high phase and amplitude), while the non-crop areas were shown with grey/dark (low phase and amplitude). The harmonized data sets (with 30 m spatial resolution) along with the Google Earth Engine scripts used are provided for public use.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar

Statistik

frontdoor_oas
Metadaten
Verfasserangaben:Minh D. Nguyen, Oscar M. Baez-Villanueva, Duong D. Bui, Phong T. Nguyen, Lars Ribbe
URN:urn:nbn:de:hbz:832-epub4-15081
DOI:https://doi.org/10.3390/rs12020281
ISSN:2072-4292
Titel des übergeordneten Werkes (Englisch):Remote Sensing
Jahr der Fertigstellung:2019
Verlag:MDPI
Dokumentart:Wissenschaftlicher Artikel
Sprache:Englisch
Datum des Hochladens:08.07.2020
GND-Schlagwort:Ernte; Libanon; Satellit; Vietnam; Überwachung
Freies Schlagwort / Tag:Ccrop monitoring; Google Earth Engine; Harmonization; Landsat; Sentinel 2
Jahrgang:12
Ausgabe / Heft:2
Seitenzahl:18
Fakultäten und Zentrale Einrichtungen:Institut für Technologie in den Tropen (ITT) / Institut für Technologie- und Ressourcenmanagement in den Tropen und Subtropen
DDC-Sachgruppen:500 Naturwissenschaften und Mathematik / 550 Geowissenschaften
Open Access:Open Access
DeepGreen:DeepGreen
Lizenz (Deutsch):License LogoCreative Commons - CC BY - Namensnennung 4.0 International