Refine
Year of publication
- 2020 (1)
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Keywords
- Amino Acids (1)
- Aminosäuren (1)
- Antimicrobial Activity (1)
- Bio-Based Surfactants (1)
- Biosurfactants (1)
- Biotensid (1)
- Emulgator (1)
- Emulsifiers (1)
- Fatty alcohols (1)
- Fettalkohole (1)
Faculty
Starmerella bombicola is known to produce sub‐terminally hydroxylated lactonic sophorolipids (SLs), while Candida kuoi synthesizes acidic open chain SLs with terminally hydroxylated fatty acids. Upon feeding glucose and fatty alcohols both strains form long‐chain nonionic SLs. According to structure elucidation the SLs consist of a hydroxylated fatty acid esterified with fatty alcohol and linked via a glycoside bond to the diacetylated sophorose unit. Palmityl, stearyl, and oleyl alcohols lead to products with lipid chain lengths of C32 or C36. Oleyl alcohol is the preferred substrate leading to 45 g L−1 of the double unsaturated C36 SL with S. bombicola and 20 g L−1 with C. kuoi. Scale up from shake flask to 1.5 L fermentations is possible and 65 g L−1 long‐chain SLs are obtained with S. bombicola within 7 days. Mixed feeding of oleic acid and a variety of fatty alcohols leads to new long‐chain SLs. In the presence of oleic acid the yeasts do not oxidize the fatty alcohol and thus the production of biosurfactants with tailored chain length is possible. The long‐chain SLs show good emulsification ability of water/paraffin oil mixtures at low energy input and reduced interfacial tension significantly.
Practical Applications: Sophorolipids are produced by fermentation on industrial scale focusing on cleaning and detergent applications. Mainly lactonic or anionic open‐chain forms are used today. The new long‐chain SLs presented in this manuscript are accessible with existing production technology and can be produced with high titers from cost‐efficient renewable raw materials. In contrast to the commercial products the long‐chain SLs are more hydrophobic and exhibit a strong emulsification behavior. Therefore they have the potential to broaden the application range of SLs in future. They may be useful as novel emulsifiers for cosmetic creams and lotions, pharmaceutical ointments and food products or may find application in oil spill remediation.
Current changes in environmental legislation and customer demands set an urge for the development of more sustainable surfactants. Thus, the objective of this work was the development of novel environmentally friendly amino acid surfactants. Combining Diels–Alder cyclization of myrcene with maleic or citraconic anhydride followed by ring opening with amino acids enabled a synthesis route with a principal 100% atom economy. Variation of amino acids resulted in a large structural variety of anionic and amphoteric surfactants. Lysine gave access to either a mono-acylated product bearing a cationic side chain or a bi-acylated gemini surfactant. First, anhydride precursors were synthesized in yields of >90% in a Diels–Alder reaction under microwave radiation and subsequent amino acid coupling in aqueous environment gave fully bio-based surfactants in good yields and purity. Physicochemical characterization showed an enhanced decrease in surface tension upon addition of amino acids to the myrcene–anhydride backbone, resulting in a minimal value of 31 mN·m−1 for gemini–lysine. Foamabilitiy and foam stability were significantly increased at skin-friendly pH 5.5 by incorporation of amino acids. The carboxylic groups of surfactants with arginine were esterified with ethanol to access cationic compounds. Comparative analysis revealed moderate antimicrobial effects against yeast, Gram-positive bacteria, and Gram-negative bacteria.