Refine
Year of publication
- 2024 (2)
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Keywords
- Chemical Reaction (1)
- Hnf (1)
- Hybrid Nanoparticles (1)
- Joule Heating (1)
- MHD (1)
- Mass Suction/Injection (1)
- Micropolar Fluid Flow (1)
- Prandtl Number (1)
- Radiation (1)
- Velocity sSip (1)
Faculty
The main objective of this study is to explore the inventive conception of the magnetohydrodynamic flow of a hybrid nanofluid over-porous stretching/shrinking sheet with the effect of radiation and mass suction/injection. The hybrid nanofluid advances both the manufactured nanofluid of the current region and the base fluid. For the current investigation, hybrid nanofluids comprising two different kinds of nanoparticles, aluminium oxide and ferrofluid, contained in water as a base fluid, are considered. A collection of highly nonlinear partial differential equations is used to model the whole physical problem. These equations are then transformed into highly nonlinear ordinary differential equations using an appropriate similarity technique. The transformed differential equations are nonlinear, and thus it is difficult to analytically solve considering temperature increases. Then, the outcome is described in incomplete gamma function form. The considered physical parameters namely, magnetic field, Inverse Darcy number, velocity slip, suction/injection, temperature jump effects on velocity, temperature, skin friction and Nusselt number profiles are reviewed using plots. The results reveal that magnetic field, and Inverse Darcy number values increase as the momentum boundary layer decreases. Moreover, higher values of heat sources and thermal radiation enhance the thermal boundary layer. The present problem has various applications in manufacturing and technological devices such as cooling systems, condensers, microelectronics, digital cooling, car radiators, nuclear power stations, nano-drag shipments, automobile production, and tumour treatments.
The present study investigates the entropy generation of chemically reactive micropolar hybrid nanoparticle motion with mass transfer. Magnetic oxide (Fe3O4) and copper oxide (CuO) nanoparticles were mixed in water to form a hybrid nanofluid. The governing equations for velocity, concentration, and temperature are transformed into ordinary differential equations along with the boundary conditions. In the fluid region, the heat balance is kept conservative with a source/sink that relies on the temperature. In the case of radiation, there is a differential equation along with several characteristic coefficients that transform hypergeometric and Kummer’s differential equations by a new variable. Furthermore, the results of the current problem can be discussed by implementing a graphical representation with different factors, namely the Brinkman number, porosity parameter, magnetic field, micropolar parameter, thermal radiation, Schmidt number, heat source/sink parameter, and mass transpiration. The results of this study are presented through graphical representations that depict various factors influencing the flow profiles and physical characteristics. The results reveal that an increase in the magnetic field leads to a reduction in velocity and entropy production. Furthermore, temperature and entropy generation rise with a stronger radiation parameter, whereas the Nusselt number experiences a decline. This study has several industrial applications in technology and manufacturing processes, including paper production, polymer extrusion, and the development of specialized materials.