Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Keywords
- Characterization (1)
- Engineering (1)
- Laser Beam Oscillation (1)
- Laserschweißen (1)
- Ni-Ti Shape Memory Alloys (1)
Ni–Ti alloys are used as functional materials in numerous sectors such as aerospace, automotive engineering, medical technology, and consumer goods. Their properties in terms of shape memory effect and superelasticity offer a great potential for innovative smart products. However, forming and machining of these alloys into concrete products is challenging. Assembling plain structures by laser welding to complex product shapes offers an economical alternative in many cases, but can be associated with negative effects, such as reduction of strength, development of brittle intermetallic compounds, alteration of transformation temperatures, and modification of shape memory effects and superelastic behavior. Against this background, investigations on laser welding of Ni55/Ti45 foil with a thickness of 125 µ m by a fiber laser were conducted. Supported by methods of design of experiments, optimal parameters were determined with respect to laser power, welding speed, focus position, and beam oscillation, and the welding results were analyzed concerning the microstructure and mechanical characteristics of the welded joints. The effect of laser beam oscillation was investigated for the first time for the welding of this alloy. Due to the very low thickness, the preparation of the foils for the microstructure characterization is quite demanding. Best results were obtained by ion milling. Fracture surfaces and the influence of the welding were also investigated.
Laser welding has become well established for joining Ni-Ti-based shape memory alloys and extends the manufacturability of highly functional components with complex geometries. Published studies on the effect of laser welding on alterations to microstructure and properties of these alloys, however, mainly deal with conventional component dimensions and linear laser beam movement. In view of the increasing importance of microtechnology, research into joining of thin-walled Ni-Ti components is therefore of interest. At the same time, studies comparing oscillating and linear beam movement on other materials and the authors’ own work on Ni-Ti materials suggest that oscillating beam movement has a more favorable effect on alterations in material properties and microstructure. Therefore, laser welding of foils made of Ni55/Ti45 with 125 µm thickness was systematically analyzed using a fiber laser and circular oscillation. Amplitude A and frequency f were varied from 0 to 200 µm and 0 to 2000 Hz, respectively. Microstructural analysis showed that by increasing the frequency, grain refinement could be achieved up to a certain value of f . An increasing amplitude led to decreasing hardness values of the weld seam, while the influence of f was less pronounced. The analysis of the weld material using chip calorimetry (Flash DSC) revealed that the beam oscillation had fewer effects on the change in transformation points compared to a linear beam movement.