Refine
Document Type
- Article (12)
- Part of a Book (1)
Language
- English (13)
Has Fulltext
- yes (13)
Keywords
- Apple Pomace (2)
- Kinetics (2)
- Kreislaufwirtschaft (2)
- Pellet (2)
- Additive (1)
- Agro-Industrial Wastes (1)
- Alternative feedstock (1)
- Apfelsaft (1)
- Apple Juice (1)
- Bioethanol production (1)
Pelleted biomass has a low, uniform moisture content and can be handled and stored cheaply and safely. Pellets can be made of industrial waste, food waste, agricultural residues, energy crops, and virgin lumber. Despite their many desirable attributes, they cannot compete with fossil fuel sources because the process of densifying the biomass and the price of the raw materials make pellet production costly.
Leaves collected from street sweeping are generally discarded in landfills, but they can potentially be valorized as a biofuel if they are pelleted. However, the lignin content in leaves is not high enough to ensure the physical stability of the pellets, so they break easily during storage and transportation. In this study, the use of eucalyptus kraft lignin as an additive in tree-leaf pellet production was studied. Results showed that when 2% lignin is added the abrasion resistance can be increased to an acceptable value. Pellets with added lignin fulfilled all requirements of European standards for certification except for ash content. However, as the raw material has no cost, this method can add value or contribute to financing continued sweeping and is an example of a circular economy scenario.
Polyimides rank among the most heat-resistant polymers and find application in a variety of fields, including transportation, electronics, and membrane technology. The aim of this work is to study the structural, thermal, mechanical, and gas permeation properties of polyimide based nanocomposite membranes in flat sheet configuration. For this purpose, numerous advanced techniques such as atomic force microscopy (AFM), SEM, TEM, TGA, FT-IR, tensile strength, elongation test, and gas permeability measurements were carried out. In particular, BTDA–TDI/MDI (P84) co-polyimide was used as the matrix of the studied membranes, whereas multi-wall carbon nanotubes were employed as filler material at concentrations of up to 5 wt.% All studied films were prepared by the dry-cast process resulting in non-porous films of about 30–50 μm of thickness. An optimum filler concentration of 2 wt.% was estimated. At this concentration, both thermal and mechanical properties of the prepared membranes were improved, and the highest gas permeability values were also obtained. Finally, gas permeability experiments were carried out at 25, 50, and 100 ◦C with seven different pure gases. The results revealed that the uniform carbon nanotubes dispersion lead to enhanced gas permeation properties.
Enhancing DPCD in Liquid Products by Mechanical Inactivation Effects: Assessment of Feasibility
(2020)
The enhancement of standard dense phase carbon dioxide (DPCD) pasteurization by additional mechanical effects was assessed in this work. These effects were induced during pasteurization by the sudden depressurization in a narrow minitube. The high flow velocities, moderate pressures (40–80 bar) and low temperatures (25–45 °C) lead to intense degasification and shear stress. The inactivation of the test microorganism Escherichia coli DH5α (E. coli DH5α) was determined before and after depressurization in the minitube, representing entirely chemical DPCD via dissolved CO2 and total inactivation comprising the effects of dissolved CO2 and mechanical effects, respectively. Compared to conventional DPCD pasteurization, which is mostly attributed to chemical effects, the additional mechanical effects increased the inactivation efficiency considerably.
Electroplating generates high volumes of rinse water that is contaminated with heavy metals. This study presents an approach for direct metal recovery and recycling from simulated rinse water, made up of an electroplating electrolyte used in industry, using reverse osmosis (RO). To simulate the real industrial application, the process was examined at various permeate fluxes, ranging from 3.75 to 30 L·m−2·h−1 and hydraulic pressures up to 80 bar. Although permeance decreased significantly with increasing water recovery, rejections of up to 93.8% for boric acid, >99.9% for chromium and 99.6% for sulfate were observed. The final RO retentate contained 8.40 g/L chromium and was directly used in Hull cell electroplating tests. It was possible to deposit cold-hued chromium layers under a wide range of relevant current densities, demonstrating the reusability of the concentrate of the rinsing water obtained by RO.
In this work, supported cellulose acetate (CA) mixed matrix membranes (MMMs) were prepared and studied concerning their gas separation behaviors. The dispersion of carbon nanotube fillers were studied as a factor of polymer and filler concentrations using the mixing methods of the rotor–stator system (RS) and the three-roll-mill system (TRM). Compared to the dispersion quality achieved by RS, samples prepared using the TRM seem to have slightly bigger, but fewer and more homogenously distributed, agglomerates. The green γ-butyrolactone (GBL) was chosen as a polyimide (PI) polymer-solvent, whereas diacetone alcohol (DAA) was used for preparing the CA solutions. The coating of the thin CA separation layer was applied using a spin coater. For coating on the PP carriers, a short parameter study was conducted regarding the plasma treatment to affect the wettability, the coating speed, and the volume of dispersion that was applied to the carrier. As predicted by the parameter study, the amount of dispersion that remained on the carriers decreased with an increasing rotational speed during the spin coating process. The dry separation layer thickness was varied between about 1.4 and 4.7 μm. Electrically conductive additives in a non-conductive matrix showed a steeply increasing electrical conductivity after passing the so-called percolation threshold. This was used to evaluate the agglomeration behavior in suspension and in the applied layer. Gas permeation tests were performed using a constant volume apparatus at feed pressures of 5, 10, and 15 bar. The highest calculated CO2/N2 selectivity (ideal), 21, was achieved for the CA membrane and corresponded to a CO2 permeability of 49.6 Barrer.
In the last few decades raw material molasses, used in large scale fermentations in the production of bioethanol, citric acid, (baker´s) yeast and yeast extracts, has become more and more expensive. That is why agro-industrial wastes have become an interesting alternative. They are being produced in large volumes every day and represent a serious environmental problem considering its high organic content. The present contribution aims to demonstrate how waste products of wine production can be employed as substrate in bioethanol production. Cultivation of yeast and bioethanol production on molasses and grape pomace extract was studied in flasks in laboratory scale. This work should be regarded as an example of integrated sustainability which demonstrates how the waste from one industrial process is used as feedstock for another.
The main scope of this work is to develop nano-carbon-based mixed matrix celluloseacetate membranes (MMMs) for the potential use in both gas and liquid separation processes. Forthis purpose, a variety of mixed matrix membranes, consisting of cellulose acetate (CA) polymerand carbon nanotubes as additive material were prepared, characterized, and tested. Multi-walledcarbon nanotubes (MWCNTs) were used as filler material and diacetone alcohol (DAA) as solvent.The first main objective towards highly efficient composite membranes was the proper preparationof agglomerate-free MWCNTs dispersions. Rotor-stator system (RS) and ultrasonic sonotrode (USS)were used to achieve the nanofillers’ dispersion. In addition, the first results of the application of thethree-roll mill (TRM) technology in the filler dispersion achieved were promising. The filler material,MWCNTs, was characterized by scanning electron microscopy (SEM) and liquid nitrogen (LN2)adsorption-desorption isotherms at 77 K. The derivatives CA-based mixed matrix membranes werecharacterized by tensile strength and water contact angle measurements, impedance spectroscopy,gas permeability/selectivity measurements, and water permeability tests. The studied membranesprovide remarkable water permeation properties, 12–109 L/m2/h/bar, and also good separationfactors of carbon dioxide and helium separations. Specifically, a separation factor of 87 for 10%He/N2feed concentration and a selectivity value of 55.4 for 10% CO2/CH4feed concentrationwere achieved.
Porous polymer membranes substantially contribute to an acceleration of sustainability transformation based on the energy efficient separation of liquid and gaseous mixtures. This rapid shift toward sustainable industrial processes leads to an increased demand for specifically tailored membranes. In order to predict membrane performance factors like permeability, selectivity and durability, the membrane formation process by film casting and phase inversion needs to be understood further. In recent years, computational models of the membrane formation process have been studied intensely. Their high spatial and temporal resolution allows a detailed quantitative description of phase inversion phenomena. New experimental techniques complement this development, as they provide quantitative data, e.g., on compositional changes of the polymer solution during membrane formation as well as the kinetic progression of the phase separation process. This state-of-the-art review compiles computational and experimental approaches that characterize the phase inversion process. We discuss how this methodological pluralism is necessary for improving the tailoring of membrane parameters, but that it is unlikely to be the way to the ultimate goal of a complete description of the evolution of the membrane structure from the initial demixing to the final solidification. Alternatively, we formulate an approach that includes a database of standardized and harmonized membrane performance data based on previously publicized data, as well as the application of artificial neural networks as a new powerful tool to link membrane production parameters to membrane performance.
In the last decade, the utilization of waste by-product apple pomace has been extensively researched (due to its difficult disposal) and currently finds beneficial usage in various industries; as substrate for microbial growth or recovery of pectin, xyloglucan and polyphenols. In this research apple juice was produced at pilot scale. Furthermore, apple pomace was employed as substrate for the production of pectin, biofuel (pellets) and concentrated apple pomace extract. Extensive mass and heat balances were conducted to evaluate the feasibility of this approach on industrial scale. The produced pellets had very similar characteristics to wood pellets (net calorific value of 20.3 MJ/kg). Dried apple pomace contained 11.9% of pectin. Fed-batch cultivation of baker´s yeast with apple pomace extract demonstrated a potential for partial substitution of molasses in industrial bioprocesses. This concept shows how a zero discharge biorefinery process converts waste from apple juice production into three valuable products enabling connections between different industries.
One-step preparation of bilayered films from kraft lignin and cellulose acetate to mimic tree bark
(2020)
This contribution presents the development of a dry-cast method for the one-step preparation of bio-based films from wood polymers that mimic the bilayered structure of tree bark, the natural protective layer of the tree. In a simplified view, natural bark can be considered as the superposition of an external homogeneous and non-porous layer (outer bark) and a porous substructure layer (inner bark). This work is a first step for the future development of bio-based biomimetic wood coatings. The film had a bark-like appearance and its total density, bulk density and porosity were similar to values measured in natural bark. Furthermore, the structural characteristics of the studied film, namely specific surface area (BET) and pore size distribution, as well as the performance of the water adsorption ability were investigated and discussed.