Refine
Year of publication
- 2024 (2)
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Keywords
- MHD (2)
- 76W05 (1)
- Activation Energy (1)
- Cone-Disk Apparatus (1)
- Hnf (1)
- Hybrid Nanofluid (1)
- Mass Suction/Injection (1)
- Non-Uniform Heat Absorption/Generation (1)
- Prandtl Number (1)
- Radiation (1)
Faculty
Hybrid nanofluids have caught the attention of scholars and investigators in the present technological period due to their improved thermophysical features and the desire to boost heat transfer rates compared to those of conventional fluids. The present paper is mainly concerned with heat transmission in cone-disk geometry in the presence of a magnetic field, activation energy, and non-uniform heat absorption/generation. In this work, the cone-disk (CD) apparatus is considered to have a rotating cone (RC) and a stretching disk, along with iron oxide and cobalt ferrite-based hybrid nanofluid. Appropriate similarity transformations are employed to change the physically modeled equations into ordinary differential equations (ODEs). Heat transfer rates at both surfaces are estimated by implementing a modified energy equation with non-uniform heat absorption/generation. The outcomes illustrated that the inclusion of such physical streamwise heat conduction variables in the energy equation has a significant impact on the well-known conclusions of heat transfer rates. To understand flow profile behavior, we have resorted to the RKF-45 method and the shooting method, which are illustrated using graphs. The findings provide conclusive evidence that wall stretching alters the flow, heat, and mass profile characteristics within the conical gap. The wall deformation caused by disk stretching was found to have a potential impact of modifying the centripetal/centrifugal flow characteristics of the disk, increasing the flow velocity and swirling angles. A rise in activation energy leads to an improved concentration field.
The main objective of this study is to explore the inventive conception of the magnetohydrodynamic flow of a hybrid nanofluid over-porous stretching/shrinking sheet with the effect of radiation and mass suction/injection. The hybrid nanofluid advances both the manufactured nanofluid of the current region and the base fluid. For the current investigation, hybrid nanofluids comprising two different kinds of nanoparticles, aluminium oxide and ferrofluid, contained in water as a base fluid, are considered. A collection of highly nonlinear partial differential equations is used to model the whole physical problem. These equations are then transformed into highly nonlinear ordinary differential equations using an appropriate similarity technique. The transformed differential equations are nonlinear, and thus it is difficult to analytically solve considering temperature increases. Then, the outcome is described in incomplete gamma function form. The considered physical parameters namely, magnetic field, Inverse Darcy number, velocity slip, suction/injection, temperature jump effects on velocity, temperature, skin friction and Nusselt number profiles are reviewed using plots. The results reveal that magnetic field, and Inverse Darcy number values increase as the momentum boundary layer decreases. Moreover, higher values of heat sources and thermal radiation enhance the thermal boundary layer. The present problem has various applications in manufacturing and technological devices such as cooling systems, condensers, microelectronics, digital cooling, car radiators, nuclear power stations, nano-drag shipments, automobile production, and tumour treatments.