Ground tire rubber (GTR) is a product obtained by grinding worn tire treads before retreading them or via the cryogenic or ambient temperature milling of end-of-life tires (ELTs). The aim of this study is to evaluate if calcium carbonate can be substituted by GTR and, if so, to what extent. Different types of ground tire rubber are incorporated in an EPDM (ethylene–propylene–diene–rubber) model compound as partial or complete substitutes of calcium carbonate. The raw compounds and the vulcanizates are characterized to identify the limits. In general, it is apparent that increasing amounts of GTR and larger particles degrade the mechanical properties. The GTR also influences the vulcanization kinetics by reducing the scorch time up to 50% and vulcanization time up to nearly 80%. This is significant for production processes. The compounds with one-third substitution with the smaller-particle-size GTR show mostly similar or even better properties than the reference.
The crosslink density of elastomers is the essential property that determines many other but especially the mechanical product properties. Different raw materials, especially recycled and bio-based materials, influence the vulcanization and may change the crosslink density when they are used as a substitute to conventional raw materials. Aim of this study is to develop a procedure that allows the reliable determination of the crosslink density in highly filled EPDM compounds as basis for future investigations focussed on substitution with sustainable materials in this compound. Unfortunately, experiences with other rubber compounds like tire treads cannot be directly applied here because of the use of other filler types and amounts as well as the differences in the polymer with regard to active sites (available double bonds). Equilibrium swelling, Flory-stress-strain-measurements, freezing point depression and temperature-scanning-stress-relaxation are applied to a model EPDM compound with high filler and softener amount as typically used for sealings. For sensitivity investigation the amount of the crosslink agent sulfur was varied. Furthermore, the influence of different accelerators was investigated. All methods are able to determine the crosslink density but with different standard deviations due to measurement errors. Partially, they can be optimized for this use case. Based on the results a combination of Flory-stress-strain-measurements and freezing point depression was chosen to be used in the future.