Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Keywords
- Aldol Reaction (1)
- Base-Catalyzed (1)
- Basic Ion Exchange Resin (1)
- Catalysis (1)
- Chemical Sciences (1)
- Delf-Condensation (1)
- Diacetone Alcohol (1)
- Isophorone (1)
- Katalyse (1)
- Scetone (1)
Faculty
The Production of Isophorone
(2023)
Isophorone is a technically important compound used as a high-boiling-point solvent for coatings, adhesives, etc., and it is used as a starting material for various valuable compounds, including isophorone diisocyanate, a precursor for polyurethanes. For over 80 years, isophorone has been synthesized via base-catalyzed self-condensation of acetone. This reaction has a complex reaction mechanism with numerous possible reaction steps including the formation of isophorone, triacetone dialcohol, and ketonic resins. This review provides an overview of the different production processes of isophorone in liquid- and vapor-phase and reviews the literature-reported selectivity toward isophorone achieved using different reaction parameters and catalysts.
The aldol reaction of bio acetone in presence of a strongly basic ion exchange resin was carried out with and without the addition of water in a temperature range between − 30 °C and 45 °C. The conversion, selectivity and service time of the ion exchange resins were investigated in a stirred batch reactor and a continuous fixed bed reactor. For the batch experiments, both conversion and selectivity increased with decreasing temperature. Furthermore, the addition of water to the reaction medium has a positive effect on selectivity and catalyst service time of the resins. For the continuous flow experiments carried out in a fixed bed reactor, the selectivity towards diacetone alcohol is higher than in a batch reactor. This high selectivity is favored by a short contact time which inhibits as expected most of the consecutive reactions.