Different mechanisms mediate the toxicity of RNA. Genomic retroviral mRNA hijacks infected host cell factors to enable virus replication. The viral genomic RNA of the human immunodeficiency virus (HIV) encompasses nine genes encoding in less than 10 kb all proteins needed for replication in susceptible host cells. To do so, the genomic RNA undergoes complex alternative splicing to facilitate the synthesis of the structural, accessory, and regulatory proteins. However, HIV strongly relies on the host cell machinery recruiting cellular factors to complete its replication cycle. Antiretroviral therapy (ART) targets different steps in the cycle, preventing disease progression to the acquired immunodeficiency syndrome (AIDS). The comprehension of the host immune system interaction with the virus has fostered the development of a variety of vaccine platforms. Despite encouraging provisional results in vaccine trials, no effective vaccine has been developed, yet. However, novel promising vaccine platforms are currently under investigation.
To date, the establishment of high-titer stable viral packaging cells (VPCs) at large scale for gene therapeutic applications is very time- and cost-intensive. Here we report the establishment of three human suspension 293-F-derived ecotropic MLV-based VPCs. The classic stable transfection of an EGFP-expressing transfer vector resulted in a polyclonal VPC pool that facilitated cultivation in shake flasks of 100 mL volumes and yielded high functional titers of more than 1 × 106 transducing units/mL (TU/mL). When the transfer vector was flanked by transposon terminal inverted repeats (TIRs) and upon co-transfection of a plasmid encoding for the transposase, productivities could be slightly elevated to more than 3 × 106 TU/mL. In contrast and using mRNA encoding for the transposase, as a proof of concept, productivities were drastically improved by more than ten-fold exceeding 5 × 107 TU/mL. In addition, these VPC pools were generated within only 3 weeks. The production volume was successfully scaled up to 500 mL employing a stirred-tank bioreactor (STR). We anticipate that the stable transposition of transfer vectors employing transposase transcripts will be of utility for the future establishment of high-yield VPCs producing pseudotype vector particles with a broader host tropism on a large scale.
To date, the establishment of high-titer stable viral packaging cells (VPCs) at large scale for gene therapeutic applications is very time- and cost-intensive. Here we report the establishment of three human suspension 293-F-derived ecotropic MLV-based VPCs. The classic stable transfection of an EGFP-expressing transfer vector resulted in a polyclonal VPC pool that facilitated cultivation in shake flasks of 100 mL volumes and yielded high functional titers of more than 1 × 106 transducing units/mL (TU/mL). When the transfer vector was flanked by transposon terminal inverted repeats (TIRs) and upon co-transfection of a plasmid encoding for the transposase, productivities could be slightly elevated to more than 3 × 106 TU/mL. In contrast and using mRNA encoding for the transposase, as a proof of concept, productivities were drastically improved by more than ten-fold exceeding 5 × 107 TU/mL. In addition, these VPC pools were generated within only 3 weeks. The production volume was successfully scaled up to 500 mL employing a stirred-tank bioreactor (STR). We anticipate that the stable transposition of transfer vectors employing transposase transcripts will be of utility for the future establishment of high-yield VPCs producing pseudotype vector particles with a broader host tropism on a large scale.
Retroviral vectors derived from murine leukemia virus (MLV) are used in somatic gene therapy applications e.g. for genetic modification of hematopoietic stem cells. Recently, we reported on the establishment of a suspension viral packaging cell line (VPC) for the production of MLV vectors. Human embryonic kidney 293-F (HEK293-F) cells were genetically modified for this purpose using transposon vector technology. Here, we demonstrate the establishment of a continuous high cell density (HCD) process using this cell line. First, we compared different media regarding the maximum achievable viable cell concentration (VCC) in small scale. Next, we transferred this process to a stirred tank bioreactor before we applied intensification strategies. Specifically, we established a perfusion process using an alternating tangential flow filtration system. Here, VCCs up to 27.4E + 06 cells/mL and MLV vector titers up to 8.6E + 06 transducing units/mL were achieved. Finally, we established a continuous HCD process using a tubular membrane for cell retention and continuous viral vector harvesting. Here, the space-time yield was 18-fold higher compared to the respective batch cultivations. Overall, our results clearly demonstrate the feasibility of HCD cultivations for high yield production of viral vectors, especially when combined with continuous viral vector harvesting.
The use of two-component transposon plasmid vector systems, namely, a transposase construct and a donor vector carrying the gene of interest (GOI) can accelerate the development of recombinant cell lines. However, the undesired stable transfection of the transposase construct and the sustained expression of the enzyme can cause genetic instability due to the re-mobilization of the previously transposed donor vectors. Using a Sleeping Beauty -derived vector system, we established three recombinant cell pools and demonstrate stable integration of the transposase construct and sustained expression of the transposase over a period of 48 days. To provide an alternative approach, transcripts of the transposase gene were generated in vitro and co-transfected with donor vector plasmid at different ratios and mediating high GOI copy number integrations and expression levels. We anticipate that the use of transposase mRNA will foster further improvements in future cell line development processes.