Refine
Year of publication
Document Type
- Master's Thesis (22)
- Bachelor Thesis (15)
Has Fulltext
- yes (37)
Keywords
- Data Mining (4)
- Datenbank (4)
- Big Data (3)
- Hadoop (3)
- NoSQL-Datenbanksystem (3)
- Agile Softwareentwicklung (2)
- Cloud Computing (2)
- Data Ware House (2)
- Data-Warehouse-Konzept (2)
- E-Learning (2)
Faculty
Im Zusammenhang mit dem Begriff Big Data können nicht nur immer größere Datenmengen verarbeitet werden, sondern auch neue Arten von Datenquellen genutzt werden. Insbesondere Web 2.0-Inhalte bieten dabei vielfältige Potenziale.
So können beispielsweise mit Hilfe einer Sentiment-Analyse Meinungen und Stimmungen zu Produkten und Unternehmen in sozialen Netzwerken beobachtet werden. Diese Infor-mationen sind für sich gesehen bereits wertvoll für viele Unternehmen. Jedoch ist eine effiziente Analyse und Auswertung der Informationen nur in Kombination mit weiteren Unternehmensdaten möglich, die typischerweise in einem Data Warehouse liegen. Diese Arbeit diskutiert die Unter-schiede, Möglichkeiten und Herausforde-rungen diese Kombination zu realisieren. Veranschaulicht wird dies durch einen Show-Case, der eine Ende-zu-Ende-Umsetzung
am Beispiel der Fernsehsendung Tatort zeigt. Dabei werden Zuschauerkommentare
aus Twitter extrahiert, mit einer Sentiment-Analyse bewertet und schließlich in einem Data Warehouse ausgewertet. Dabei können klassische BI-Kennzahlen, wie beispiels- weise Einschaltquoten, Folgen pro Ermittler etc. den Ergebnissen der Sentiment-Analyse gegenübergestellt werden.
Die Menge an Informationen steigt seit Jahren immer weiter an. Dies lässt sich auch leicht an der Entwicklung der Speichermedien feststellen. So bot die erste 5,25-Zoll Festplatte, eine Seagate ST- 506, lediglich 5 MB Speicherkapazität. Heutige 3,5-Zoll Festplatten verfügen hingegen über bis zu 8 TB Speicherkapazität und werden ebenso ausgenutzt wie ihre Vorgänger aus der Anfangszeit der Magnet-festplatten. Zusätzlich geht die Tendenz dorthin, alle Daten jederzeit zur Verfügung zu haben. Sei es daheim am Rechner, auf der Arbeit oder per Tablet oder Smartphone unterwegs, dank der immer mehr verbreiteten Cloud-Speicher stehen die Daten jederzeit zur Verfügung. Mit dem enormen Zuwachs an Dateien und auch an Dateiformaten wird es jedoch immer schwieriger, diese Masse zu überblicken und bestimmte Inhalte in annehmbarer Zeit wiederzufinden. Beispiels- weise hostet der Internetdienst Flikr die schier unüberschaubare Menge von über 6 Milliarden Bilder. Doch nicht nur die großen Servicedienstleister besitzen große Datenmengen, auch Einzelpersonen haben derweil große Musik- und Bildsammlungen, zumal jedes aktuelle Smartphone über eine Kamera verfügt. Jeder ist somit praktisch zu jeder Zeit in der Lage, ein Foto in hochauflösender Qualität zu schießen und direkt in seine Cloud hochzuladen. Diese Datenmengen manuell zu ordnen, erfordert einen sehr hohen Aufwand, den nicht alle Menschen gewillt sind zu leisten. Vor allem am Smartphone geht dieses Benennen und Einsortieren aufgrund der vorhandenen Technik nicht so leicht von der Hand. In der Praxis sammeln sich die Aufnahmen mit der Zeit immer weiter an und letztlich befinden sich mehrere hundert wenn nicht gar tausend Bilder in einem Ordner, welche sich namentlich meist nur durch eine fort- laufende Nummer unterscheiden. Diesen Umstand Rechnung tragend, treten Metainfor-mationen immer mehr in den Vordergrund. So speichern die zuvor genannten mobilen Alleskönner meist viele informative Daten mit in den Bilddateien ab. Beispielsweise kann dank der eingebauten GPS-Module der Ort der Aufnahme aus den Bildern ausgelesen werden. Die Dienstleister für Cloud-speicher nutzen diese Informationen jedoch nur marginal aus und bieten dem Endanwender kaum Unterstützung bei der Suche nach be- stimmten Inhalten, wie etwa beim OX Drive, der Cloudlösung der Firma Open-Xchange.
Die vorliegende Master Thesis zeigt, wie dieser Cloud-Speicher, welcher in die Hauseigene OX App Suite integriert ist, um sogenannte Smartfeatures erweitert werden kann. Diese Smartfeatures sollen dem Endan-wender helfen, die Daten einfacher – wenn nicht gar automatisch – zu ordnen und somit leichter bestimmte Inhalte wiederzufinden. Kernthema dieser Arbeit ist daher die auto- matische Extraktion von unterschiedlichen Metadaten aus diversen Dateiformaten. Des Weiteren wird gezeigt, wie diese Daten effizient gespeichert und abgefragt werden können. Die Thesis stellt hierzu den Document Store Elasticsearch vor und vergleicht diesen mit seinem Konkurrenten Apache Solr.
Die Bachelorarbeit befasst sich mit der Verwendung der NoSQL Datenbank Apache Cassandra. Dabei werden auf der einen Seite die Unterschiede bei Verwendung und Betrieb von Apache Cassandra im Vergleich mit relationalen SQL Datenbanken und auf der anderen Seite die Aspekte Geschwindigkeit, Ausfallsicherheit und Wiederverwendbarkeit untersucht. Die Verwendung und der Betrieb wird dabei durch die Umsetzung eines Datenimports, damit verbunden ist die Erstellung von entsprechenden Datenmodellen, und der Bereitstellung der Daten für die Darstellung von mobilen Statistiken in Form einer Android App untersucht. Für die Untersuchung der Geschwindigkeit, Ausfallsicherheit und Wiederverwendbarkeit werden zusätzlich zu den durch bereits durch die Umsetzung erhaltenen Ergebnissen noch an den jeweiligen Aspekt angepasste Belastungstest durchgeführt.
Ziel der Arbeit war es, den Nutzen der Google Glass im Alltag und ihr Potenzial als AR-Brille ( Augmented Reality ) aufzuzeigen. Mit der Arbeit wurde ein ortsbasierter AR Ansatz vorgestellt, der innerhalb von Gebäuden zum Einsatz kommt. Als Beispielszenario diente die AR-basierte Navigation innerhalb des Gebaudes der TH Köln. Hierbei wurde ein Umgebungsmodell in Form eines Regular Grids konstruiert, welches eine diskrete Positionsbestimmung im Raum erlaubt. Ferner wurden verschiedene Verfahren zur Positionsbestimmung innerhalb von Gebäuden gegen übergestellt und deren Vor- und Nachteile evaluiert. Hierbei wurden die Erkenntnisse gewonnen, dass die Positionsbestimmung mittels LLA Markern die höchste Stabilität, jedoch die geringste Kontinuität aufweist, da Marker zunächst erkannt werden müssen, bevor die Position bestimmt werden kann.
Der erste Teil dieser Arbeit gibt einen Überblick über die Themenfelder der modellgetriebenen Softwareentwicklung und der objektrelationalen Abbildung. Durch eine Kombination dieser beiden Themen wird schließlich der Begriff der modellgetriebenen O/R-Mapping-Frameworks definiert und näher erläutert. Im zweiten Teil bestätigt ein Vergleich von drei dieser Frameworks (Bold for Delphi, MDriven sowie Texo mit EclipseLink) die Vor- und Nachteile des modellgetriebenen Ansatzes auch in Bezug auf die Persistenz. Der Vergleich macht außerdem deutlich, was aktuell in der Praxis möglich ist (und was nicht) und in welchem Umfang Standards genutzt werden (insbesondere MDA und UML). Daneben werden auch die Schwächen in diesem Bereich aufgezeigt. Abschließend gibt es eine kurze Bewertung der Frameworks, auch im Hinblick auf mögliche Anwendungsszenarien.
An empirical evaluation of using the Swift language as the underlying technology of RESTful APIs
(2016)
The purpose of the current thesis is to determine the appropriateness of using the Swift language as the underlying technology for the development of RESTful APIs in a Linux environment. The current paper describes the process of designing, implementing and testing individual RESTful API components based on Node.js, PHP, Python and Swift and seeks to determine whether Swift is a viable alternative.
The thesis begins by defining a methodology for implementing and testing individual RESTful API components based on Node.js, PHP, Python and Swift. It then proceeds to detail the implementation and testing processes, following with an analytic discussion regarding the advantages and drawbacks of using the Swift language as the underlying technology for RESTful APIs and server-side Linux-based applications in general.
Based on the implementation process and on the results of the previously mentioned evaluation phase, it can be stated that the Swift language is not yet ready to be used in a production environment. However, its rapid evolution and potential for surpassing its competitors in the foreseeable future make it an ideal candidate for implementing RESTful APIs to be used in development environments.
The topic for the thesis originated from the CAP4ACCESS project run by the European Commission and its partners, which deals towards the sensiti-zation of people and development of tools for awareness about people with movement disabilities. The explorative analysis is never ending and to explore and find interest-ing patterns and the results is a tedious task. Therefore, a scientific approach was very important. To start with, familiarizing the domain and the data sources were done. Thereafter, selection of methodology for data analysis was done which resulted in the use of CRISP-DM methodology. The data sources are the source of blood to the analysis methodology, and as there were two sources of data that is MICROM and OSM Wheelchair History(OWH), it was important to integrate them together to extract relevant datasets. Therefore a functional and technically impure data warehouse was created, from which the datasets are extracted and analysed.The next task was to select appropriate tools for analysis. This task was very important as the data set although was not big data but con-tained a large number of rows. After careful analysis, Apache spark and its machine learning library were utilized for building and testing supervised models. DataFrame API for Python, Pandas, the machine learning library Sci-kit learn provided unsupervised algorithms for analysis, the association rule analysis was performed using WEKA. Tableau[21] and Matplotlib[24] provide attractive visualizations for representation and analysis.
In der Masterthesis „Sentiment Analyse von informellen Kurztexten im Unternehmenskontext“ werden Ansätze und Methoden aufgezeigt hat mit denen Unternehmen in der Lage sind die Daten aus sozialen Netzwerken zu speichern, zu verarbeiten und schließlich zu analysieren. Praktisch wurde dies anhand des Beispiels mit Amazons Kundendienst auf Twitter mit Hilfe einer Sentiment Analyse aufgezeigt. Die aus der Theorie und den praktischen Ergebnissen gewonnenen Erkenntnisse über Herausforderungen, Nutzen, sowie Methoden zur Umsetzung sind universell in vielen Unternehmen einsetzbar und können wie aufgezeigt unter anderem zu einer Verbesserung der Kundenzufriedenheit führen. Dabei wurde ein lexikonbasietre Ansatz zur Sentimentanalyse benutzt.
Machbarkeitsanalyse über den Aufbau eines Enterprise Data Warehouse auf Basis von Apache Hadoop
(2016)
Die vorliegende Masterthesis liefert eine Einführung in die Themen Data Warehouse, Big Data und Apache Hadoop. Sie präsentiert grundlegende Data-Warehouse-Kon-zepte und überprüft, inwieweit diese mit dem Apache Hadoop Software Framework zu realisieren sind. Hierbei wird sowohl eine technische Überprüfung vorgenommen als auch verschiedene Szenarien veranschaulicht, wie Hadoop inhaltlich sinnvoll in bestehende Systeme integriert werden kann. Inhaltlich wird über das Thema Big Data an die Notwendigkeit einer solchen Überprüfung herangeführt.