Fakultät 10 / Institut Allgemeiner Maschinenbau
Refine
Document Type
- Article (21)
Has Fulltext
- yes (21)
Keywords
- Analytical Solution (2)
- Big Data Platform (2)
- CPPS (2)
- Cognition (2)
- Detonation (2)
- EPDM (2)
- Engineering (2)
- Heat Release (2)
- Industry 4.0 (2)
- Kognition (2)
The crosslink density of elastomers is the essential property that determines many other but especially the mechanical product properties. Different raw materials, especially recycled and bio-based materials, influence the vulcanization and may change the crosslink density when they are used as a substitute to conventional raw materials. Aim of this study is to develop a procedure that allows the reliable determination of the crosslink density in highly filled EPDM compounds as basis for future investigations focussed on substitution with sustainable materials in this compound. Unfortunately, experiences with other rubber compounds like tire treads cannot be directly applied here because of the use of other filler types and amounts as well as the differences in the polymer with regard to active sites (available double bonds). Equilibrium swelling, Flory-stress-strain-measurements, freezing point depression and temperature-scanning-stress-relaxation are applied to a model EPDM compound with high filler and softener amount as typically used for sealings. For sensitivity investigation the amount of the crosslink agent sulfur was varied. Furthermore, the influence of different accelerators was investigated. All methods are able to determine the crosslink density but with different standard deviations due to measurement errors. Partially, they can be optimized for this use case. Based on the results a combination of Flory-stress-strain-measurements and freezing point depression was chosen to be used in the future.
The paper focuses on the analytical analysis of the propagation of a normal shock wave in an adiabatic gas flow with nanoparticles. A modified Rankine–Hugoniot model was used for this purpose. A solution is obtained for the Rankine–Hugoniot conditions in a gas flow with different nanoparticle concentrations, which makes it possible to analyze the dynamics of variation of the parameters of this type of flow under a shock wave. The variation of velocity, pressure and entropy production of the adiabatic gas flow during a direct shock wave depending on the concentration of nanoparticles in the gas was depicted graphically. It was revealed that increasing the nanoparticle concentration to φ ~ 0.1 weakens the effect of the shock wave, and then, after passing the zone of minimum parameters, the intensity of the shock wave increases.
Purpose Langevin transducers are ultrasonic transducers that convert electrical into mechanical energy through the piezoelectric effect. This class of transducers achieves the highest efficiency in their mechanical resonance. Studies have shown that the resonant frequency changes with temperature. The aim of this contribution is to reproduce this temperature-dependence resonance frequency as accurately as possible with FEM simulations. Methods Therefore, the temperature-dependent resonance behavior of Langevin transducers is examined experimentally. A FEM model is created on the basis of temperature-dependent measured material coefficients. Using parameter correlations and optimization algorithms, the FEM model is fitted and validated by experimental results. Six variants of Langevin transducers are examined in the range from 30 °C to 80 °C with resonance frequencies between 34 and 38 kHz. They differ in three geometries and two materials. Results The experimental results show that the resonance frequencies decrease with increasing temperatures by 5.0–19.4 Hz/°C, depending on the material and geometry. As decisive parameters for the model fitting of the FEM results, three function-dependent stiffness coefficients of the piezoelectric material PZT8 and the Young’s moduli of the metallic materials are determined by parameter correlation. Conclusion Through the targeted fitting of these function-dependent parameters, the calculation of the resonance frequencies of Langevin transducers can be qualitatively and quantitatively improved, independent of shape and material.
Ni–Ti alloys are used as functional materials in numerous sectors such as aerospace, automotive engineering, medical technology, and consumer goods. Their properties in terms of shape memory effect and superelasticity offer a great potential for innovative smart products. However, forming and machining of these alloys into concrete products is challenging. Assembling plain structures by laser welding to complex product shapes offers an economical alternative in many cases, but can be associated with negative effects, such as reduction of strength, development of brittle intermetallic compounds, alteration of transformation temperatures, and modification of shape memory effects and superelastic behavior. Against this background, investigations on laser welding of Ni55/Ti45 foil with a thickness of 125 µ m by a fiber laser were conducted. Supported by methods of design of experiments, optimal parameters were determined with respect to laser power, welding speed, focus position, and beam oscillation, and the welding results were analyzed concerning the microstructure and mechanical characteristics of the welded joints. The effect of laser beam oscillation was investigated for the first time for the welding of this alloy. Due to the very low thickness, the preparation of the foils for the microstructure characterization is quite demanding. Best results were obtained by ion milling. Fracture surfaces and the influence of the welding were also investigated.
This contribution provides a detailed comparison of the impact of various rheological models on the filling phase of injection molding simulations in order to enhance the accuracy of flow predictions and improve material processing. The challenge of accurately modeling polymer melt flow behavior under different temperature and shear rate conditions is crucial for optimizing injection molding processes. Therefore, the study examines commonly used rheological models, including Power-Law, Second-Order, Herschel-Bulkley, Carreau and Cross models. Using experimental data for validation, the accuracy of each model in predicting the flow front and viscosity distribution for a quadratic molded part with a PA66 polymer is evaluated. The Carreau-WLF Winter model showed the highest accuracy, with the lowest RMSE values, closely followed by the Carreau model. The Second-Order model exhibited significant deviations in the edge region from experimental results, indicating its limitations. Results indicate that models incorporating both shear rate and temperature dependencies, such as Carreau-WLF Winter, provide superior predictions compared to those including only shear rate dependence. These findings suggest that selecting appropriate rheological models can significantly enhance the predictive capability of injection molding simulations, leading to better process optimization and higher quality in manufactured parts. The study emphasizes the significance of comprehensive rheological analysis and identifies potential avenues for future research and industrial applications in polymer processing.
Hybrid nanofluids have caught the attention of scholars and investigators in the present technological period due to their improved thermophysical features and the desire to boost heat transfer rates compared to those of conventional fluids. The present paper is mainly concerned with heat transmission in cone-disk geometry in the presence of a magnetic field, activation energy, and non-uniform heat absorption/generation. In this work, the cone-disk (CD) apparatus is considered to have a rotating cone (RC) and a stretching disk, along with iron oxide and cobalt ferrite-based hybrid nanofluid. Appropriate similarity transformations are employed to change the physically modeled equations into ordinary differential equations (ODEs). Heat transfer rates at both surfaces are estimated by implementing a modified energy equation with non-uniform heat absorption/generation. The outcomes illustrated that the inclusion of such physical streamwise heat conduction variables in the energy equation has a significant impact on the well-known conclusions of heat transfer rates. To understand flow profile behavior, we have resorted to the RKF-45 method and the shooting method, which are illustrated using graphs. The findings provide conclusive evidence that wall stretching alters the flow, heat, and mass profile characteristics within the conical gap. The wall deformation caused by disk stretching was found to have a potential impact of modifying the centripetal/centrifugal flow characteristics of the disk, increasing the flow velocity and swirling angles. A rise in activation energy leads to an improved concentration field.
Three-dimensional printing is ideally suited to produce unique and complex shapes. In this study, the material properties of polysiloxanes, commonly named silicones, produced additively by two different methods, namely, multi-jet fusion (MJF) and material extrusion (ME) with liquid printing heads, are investigated. The chemical composition was compared via Fourier-transform infrared spectroscopy, evolved gas analysis mass spectrometry, pyrolysis gas chromatography coupled to mass spectrometry, and thermogravimetry (TGA). Density and low-temperature flexibility, mechanical properties and crosslink distance via freezing point depression were measured before and after post-treatment at elevated temperatures. The results show significant differences in the chemical composition, material properties, as well as surface quality of the tested products produced by the two manufacturing routes. Chemical analysis indicates that the investigated MJF materials contain acrylate moieties, possibly isobornyl acrylate linking branches. The hardness of the MJF samples is associated with crosslinking density. In the ashes after TGA, traces of phosphorus were found, which could originate from initiators or catalysts of the curing process. The ME materials contain fillers, most probably silica, that differ in their amount. It is possible that silica also plays a role in the processing to stabilize the extrusion strand. For the harder material, a higher crosslink density was found, which was supported also by the other tested properties. The MJF samples have smooth surfaces, while the ME samples show grooved surface structures typical for the material extrusion process. Post-treatment did not improve the material properties. In the MJF samples, significant color changes were observed.
The main objective of this study is to explore the inventive conception of the magnetohydrodynamic flow of a hybrid nanofluid over-porous stretching/shrinking sheet with the effect of radiation and mass suction/injection. The hybrid nanofluid advances both the manufactured nanofluid of the current region and the base fluid. For the current investigation, hybrid nanofluids comprising two different kinds of nanoparticles, aluminium oxide and ferrofluid, contained in water as a base fluid, are considered. A collection of highly nonlinear partial differential equations is used to model the whole physical problem. These equations are then transformed into highly nonlinear ordinary differential equations using an appropriate similarity technique. The transformed differential equations are nonlinear, and thus it is difficult to analytically solve considering temperature increases. Then, the outcome is described in incomplete gamma function form. The considered physical parameters namely, magnetic field, Inverse Darcy number, velocity slip, suction/injection, temperature jump effects on velocity, temperature, skin friction and Nusselt number profiles are reviewed using plots. The results reveal that magnetic field, and Inverse Darcy number values increase as the momentum boundary layer decreases. Moreover, higher values of heat sources and thermal radiation enhance the thermal boundary layer. The present problem has various applications in manufacturing and technological devices such as cooling systems, condensers, microelectronics, digital cooling, car radiators, nuclear power stations, nano-drag shipments, automobile production, and tumour treatments.
The focus of this paper was Jouguet detonation in an ideal gas flow in a magnetic field. A modified Hugoniot detonation equation has been obtained, taking into account the influence of the magnetic field on the detonation process and the parameters of the detonation wave. It was shown that, under the influence of a magnetic field, combustion products move away from the detonation front at supersonic speed. As the magnetic field strength increases, the speed of the detonation products also increases. A dependence has been obtained that allows us to evaluate the influence of heat release on detonation parameters.
Solving problems of detonation control is associated with obtaining detailed information about the gas dynamics accompanying the detonation process. This paper focuses on the dynamics of real gas flow through a plane detonation wave. The influence of real gas parameters on the Chapman–Jouguet detonation process has been studied. The process is described using the Rankine–Hugoniot system of equations. To model the thermodynamic properties of a real gas, the van der Waals equation of state is used. Equations are obtained to determine the ratio of speeds and pressures during the passage of a wave. The influence of van der Waals parameters on changes in the parameters of the detonation process was elucidated. An increase in parameter A slows down the increase in pressure in the detonation wave, and an increase in parameter B enhances it. Differences in the speed of combustion products for ideal and real gases are shown. For an ideal gas, combustion products flow from the detonation front at a critical (sonic) speed. For a van der Waals gas, the speed of combustion products may be greater than the critical one. Moreover, both factors, additional pressure (A) and additional volume (B), lead to acceleration of combustion products. Effects of heat release on the process parameters were elucidated.