Refine
Document Type
- Article (2)
- Part of a Book (1)
Language
- English (3)
Has Fulltext
- yes (3)
Keywords
- Biogas (1)
- Biogas yield potential (1)
- Blue and Green Infrastructure (1)
- Circular Economy (1)
- Dry spent grains (1)
- Institutional Work (1)
- Kreislaufwirtschaft (1)
- Latin America and the Caribbean (1)
- Legitimation (1)
- Multi-Level Perspective (1)
Anaerobic Digestion of spent grains: Potential use in small-scale Biogas Digesters in Jos, Nigeria
(2014)
In order to ascertain biogas yield potential and applicability of spent grains (SG)1 in small-scale biogas production, laboratory batch fermentation was performed with various masses of dry and wet SG using sewage sludge (SS)2 and digested maize silage (DMs) 3 as inoculums. Different volumes of biogas and CH4 were measured with higher volumes observed for batch fermentation with DMs in com-parison to those produced by SS. Results from the study reveals minimum biogas yield of 118.10 L/kg
VS and maximum yields of 769.46 L/kg VS, which are indicative of the possible use of SG for domestic biogas production in Jos, Nigeria. The study established the fact that the use of both dry and wet SG results in the yield of a useful amount of biogas having 40 - 60 % CH4 content depending on the inoculum and amount of volatile solids present. Using the parameters of dry matter and volatile solids contents analysed for SG and DMs, it was estimated that a reactor volume of 6.47 m3 would be capable of meeting the daily cooking needs of rural households in Jos, Nigeria.
In Latin America and the Caribbean, river restoration projects are increasing, but many lack strategic planning and monitoring. We tested the applicability of a rapid visual social–ecological stream assessment method for restoration planning, complemented by a citizen survey on perceptions and uses of blue and green infrastructure. We applied the method at three urban streams in Jarabacoa (Dominican Republic) to identify and prioritize preferred areas for nature-based solutions. The method provides spatially explicit information for strategic river restoration planning, and its efficiency makes it suitable for use in data-poor contexts. It identifies well-preserved, moderately altered, and critically impaired areas regarding their hydromorphological and socio-cultural conditions, as well as demands on green and blue infrastructure. The transferability of the method can be improved by defining reference states for assessing the hydromorphology of tropical rivers, refining socio-cultural parameters to better address river services and widespread urban challenges, and balancing trade-offs between ecological and social restoration goals.
Changing our unsustainable linear water management pattern is necessary to face growing global water challenges. This article proposes an integrated framework to analyse and understand the role of different contextual conditions in the possible transition towards water circularity. Our framework combines a systematic multi-level perspective to explore the water system and the institutional work theory for technology legitimation. The framework consists of the following stages: (1) describing and understanding the water context, (2) assessment of the selected technologies’ circularity level, (3) assessment of the alternative circular technologies’ legitimacy, and (4) identification of the legitimation actions to support the upscale of alternative circular technologies. The practical applicability of the integrated assessment framework and its four assessment stages was demonstrated in the exploration of circular water technologies for the horticulture sector in Westland, the Netherlands. The results revealed the conditions that hinder or enable the legitimation of the circular water technologies, such as political environmentalism, trust in water governing authorities, and technical, financial, and knowledge capabilities.