Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Keywords
- Drug Safety and Pharmacovigilance (1)
- Mechatronic Systems (1)
- Model Reduction (1)
- Modeling (1)
- Modellierung (1)
- Pharmacotherapy (1)
- Pharmacy (1)
- Pharmazie (1)
- Steer-by-Wire Systems (1)
- Steer-by-wire (1)
3d printing is capable of providing dose individualization for pediatric medicines and translating the precision medicine approach into practical application. In pediatrics, dose individualization and preparation of small dosage forms is a requirement for successful therapy, which is frequently not possible due to the lack of suitable dosage forms. For precision medicine, individual characteristics of patients are considered for the selection of the best possible API in the most suitable dose with the most effective release profile to improve therapeutic outcome. 3d printing is inherently suitable for manufacturing of individualized medicines with varying dosages, sizes, release profiles and drug combinations in small batch sizes, which cannot be manufactured with traditional technologies. However, understanding of critical quality attributes and process parameters still needs to be significantly improved for this new technology. To ensure health and safety of patients, cleaning and process validation needs to be established. Additionally, adequate analytical methods for the in-process control of intermediates, regarding their printability as well as control of the final 3d printed tablets considering any risk of this new technology will be required. The PolyPrint consortium is actively working on developing novel polymers for fused deposition modeling (FDM) 3d printing, filament formulation and manufacturing development as well as optimization of the printing process, and the design of a GMP-capable FDM 3d printer. In this manuscript, the consortium shares its views on quality aspects and measures for 3d printing from drug-loaded filaments, including formulation development, the printing process, and the printed dosage forms. Additionally, engineering approaches for quality assurance during the printing process and for the final dosage form will be presented together with considerations for a GMP-capable printer design.
Steer-by-wire systems represent a key technology for highly automated and autonomous driving. In this context, robust steering control is a fundamental precondition for automated vehicle lateral control. However, there is a need for improvement due to degrees of freedom, signal delays, and nonlinear characteristics of the plant which are unconsidered in the design models for the design of current steering controls. To be able to design an extremely robust steering control, suitable optimal models of a steer-by-wire system are required. Therefore, this paper presents an innovative nonlinear detail model of a steer-by-wire system. The detail model represents all characteristics of a real steer-by-wire system. In the context of a dominance analysis of the detail model, all dominant characteristics of a steer-by-wire system, including parameter dependencies, are identified. Through model reduction, a reduced model of the steer-by-wire system is then developed that can be used for a subsequent robust control design. Furthermore, this paper compares the steer-by-wire system with a conventional electromechanical power steering and shows similarities as well as differences.