500 Naturwissenschaften und Mathematik
Refine
Year of publication
Document Type
- Article (47)
- Master's Thesis (29)
- Part of a Book (13)
- Bachelor Thesis (4)
- Other (2)
- Book (1)
- Conference Proceeding (1)
Has Fulltext
- yes (97)
Keywords
- Risikomanagement (4)
- Ecosystem services (3)
- Katastrophenrisiko (3)
- Klimaänderung (3)
- Lipase (3)
- Nitrification (3)
- Agricultural Farms (2)
- Biogas (2)
- CALB (2)
- Climate Change (2)
Faculty
- Fakultät 12 / Institut für Technologie und Ressourcenmanagement in den Tropen und Subtropen (31)
- Angewandte Naturwissenschaften (F11) (21)
- Fakultät 09 / Institut für Rettungsingenieurwesen und Gefahrenabwehr (10)
- Fakultät 10 / :metabolon Institut (5)
- Fakultät 07 / Institut für Nachrichtentechnik (4)
- Fakultät 09 / Institut Anlagen und Verfahrenstechnik (4)
- Fakultät 10 / Institut Allgemeiner Maschinenbau (4)
- Fakultät 09 / Cologne Institute for Renewable Energy (3)
- Fakultät 02 / Cologne Institute of Conservation Sciences (2)
- Fakultät 07 / Institut für Elektrische Energietechnik (2)
Due to its location at the south-west coast of Ireland County (Co.) Cork is frequently affected by post tropical cyclones (PTCs). There have been several records of these post hurricanes in the past with the last severe PTC being Hurricane Ophelia in 2017. It caused severe disruption in the whole country, especially in Co. Cork with several thousand people without water, power and mobile service for up to 10 days and thousands of uprooted trees which blocked roads. PTCs, like Ophelia, will become more frequent under climate change conditions due to warmer sea surface temperatures and decreased vertical wind shear. Hence, hurricanes can reach northern latitudes more easily and have a higher chance of making landfall in Co. Cork. This thesis assesses the risk perception towards natural hazards (NHs) and the perception of the risk communication of hurricane Ophelia by the citizens of Co. Cork and suggests improvements in communication based on the people’s perception. This was achieved by conducting a standardised survey to analyse the perception. The risk communication chain, its content and media involved were evaluated with interviews with professionals involved in risk management in Ireland. Improvement suggestions were extracted of the survey and the expert interviews as well and have been ranked by the participating experts according to their importance. The people of Co. Cork are not overly concerned about being affected by NHs. The three hazards they feel threatened by most, after Ophelia hit the country, are storms, river floodings and hurricanes. Before Ophelia made landfall, they only ranked hurricanes in the 8th place (out of 8). Ergo, after experiencing Ophelia people are much more aware of hurricane risk in Ireland. People were very satisfied with the information they received during Ophelia. The improvements they wished for are: 1) information on how to deal with and how to prepare for impacts of the storm, 2) the impacts that can be expected locally and 3) information where to go to in case of severe impact to property. These are mostly in line with the improvements the experts ranked as most important for Cork. Experts voted the suggestion to include information on behavioural advice into risk communication before the NH hits and advice on how to organise for impacts afterwards as their number one priority. Their second rank is to have education and training for the citizens in Cork. On third place they voted for a change to impact forecasting. Even there are no central buildings or shelters available in Co. Cork, this improvement suggestion was only voted on rank 13 by the experts (out of 14). Having a participatory approach in risk communication can overcome the discrepancies between the wishes of the population and the ones of the experts and would lead to a better understanding of all stakeholders involved in risk communication and can reduce vulnerability of the people in Co. Cork to the impacts of NHs. The implementation of these activities would be in line with best practice examples and would support the guidelines of the Irish Framework for Major Emergency Management.
Despite intensive research over the last three decades, it has not yet been possible to bring an effective vaccine against human immunodeficiency virus (HIV) and the resulting acquired immunodeficiency syndrome (AIDS) to market. Virus-like particles (VLP) are a promising approach for efficient and effective vaccination and could play an important role in the fight against HIV. For example, HEK293 (human embryo kidney) cells can be used to produce virus-like particles. In this context, given the quality-by-design (QbD) concept for manufacturing, a digital twin is of great importance for the production of HIV-Gag-formed VLPs. In this work, a dynamic metabolic model for the production of HIV-Gag VLPs was developed and validated. The model can represent the VLP production as well as the consumption or formation of all important substrates and metabolites. Thus, in combination with already described process analytical technology (PAT) methods, the final step towards the implementation of a digital twin for process development and design, as well as process automation, was completed.
This study aimed to simulate the sector-coupled energy system of Germany in 2030 with the restriction on CO2 emission levels and to observe how the system evolves with decreasing emissions. Moreover, the study presented an analysis of the interconnection between electricity, heat and hydrogen and how technologies providing flexibility will react when restricting CO2 emissions levels. This investigation has not yet been carried out with the technologies under consideration in this study. It shows how the energy system behaves under different set boundaries of CO2 emissions and how the costs and technologies change with different emission levels. The study results show that the installed capacities of renewable technologies constantly increase with higher limitations on emissions. However, their usage rates decreases with low CO2 emission levels in response to higher curtailed energy. The sector-coupled technologies behave differently in this regard. Heat pumps show similar behaviour, while the electrolysers usage rate increases with more renewable energy penetration. The system flexibility is not primarily driven by the hydrogen sector, but in low CO2 emission level scenarios, the flexibility shifts towards the heating sector and electrical batteries.
Electroplating generates high volumes of rinse water that is contaminated with heavy metals. This study presents an approach for direct metal recovery and recycling from simulated rinse water, made up of an electroplating electrolyte used in industry, using reverse osmosis (RO). To simulate the real industrial application, the process was examined at various permeate fluxes, ranging from 3.75 to 30 L·m−2·h−1 and hydraulic pressures up to 80 bar. Although permeance decreased significantly with increasing water recovery, rejections of up to 93.8% for boric acid, >99.9% for chromium and 99.6% for sulfate were observed. The final RO retentate contained 8.40 g/L chromium and was directly used in Hull cell electroplating tests. It was possible to deposit cold-hued chromium layers under a wide range of relevant current densities, demonstrating the reusability of the concentrate of the rinsing water obtained by RO.
Thioredoxin (Trx) overexpression is known to be a cause of chemotherapy resistance in various tumor entities. However, Trx effects on resistance are complex and depend strictly on tissue type. In the present study, we analyzed the impact of the Trx system on intrinsic chemoresistance of human glioblastoma multiforme (GBM) cells to cytostatic drugs. Resistance of GBM cell lines and primary cells to drugs and signaling inhibitors was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Impact of Trx inhibition on apoptosis was investigated by proteome profiling of a subset of proteins and annexin V apoptosis assays. Trx-interacting protein (TXNIP) was overexpressed by transfection and protein expression was determined by immunoblotting. Pharmacological inhibition of Trx by 1-methyl-2-imidazolyl-disulfide (PX-12) reduced viability of three GBM cell lines, induced expression of active caspase-3, and reduced phosphorylation of AKT-kinase and expression of β-catenin. Sensitivity to cisplatin could be restored by both PX-12 and recombinant expression of the upstream Trx inhibitor TXNIP, respectively.
In addition, PX-12 also sensitized primary human GBM cells to temozolomide. Combined inhibition of Trx and the phosphatidylinositide 3-kinase (PI3K) pathway resulted in massive cell death. We conclude that the Trx system and the PI3K pathway act as a sequential cascade and could potentially present a new drug target.
Microphone arrays consisting of sensors mounted on the surface of a rigid, spherical scatterer are popular tools for the capture and binaural reproduction of spatial sound scenes. However, microphone arrays with a perfectly spherical body and uniformly distributed microphones are often impractical for the consumer sector, in which microphone arrays are generally mounted on mobile and wearable devices of arbitrary geometries. Therefore, the binaural reproduction of sound fields captured with arbitrarily shaped microphone arrays has become an important field of research. In this work, we present a comparison of methods for the binaural reproduction of sound fields captured with non-spherical microphone arrays. First, we evaluated equatorial microphone arrays (EMAs), where the microphones are distributed on an equatorial contour of a rigid, spherical 1.
Second, we evaluated a microphone array with six microphones mounted on a pair of glasses. Using these two arrays, we conducted two listening experiments comparing four rendering methods based on acoustic scenes captured in different rooms2. The evaluation includes a microphone-based stereo approach (sAB stereo), a beamforming-based stereo approach (sXY stereo), beamforming-based binaural reproduction (BFBR), and BFBR with binaural signal matching (BSM). Additionally, the perceptual evaluation included binaural Ambisonics renderings, which were based on measurements with spherical microphone arrays. In the EMA experiment we included a fourth-order Ambisonics rendering, while in the glasses array experiment we included a second-order Ambisonics rendering. In both listening experiments in which participants compared all approaches with a dummy head recording we applied non-head-tracked binaural synthesis, with sound sources only in the horizontal plane. The perceived differences were rated separately for the attributes timbre and spaciousness. Results suggest that most approaches perform similarly to the Ambisonics rendering. Overall, BSM, and microphone-based stereo were rated the best for EMAs, and BFBR and microphone-based stereo for the glasses array.
Abstract
(−)‐Menthol is one of the most popular aroma compounds worldwide. While in the past mostly extracted from mint plants, today (−)‐menthol synthesis from other raw materials is becoming more relevant. Common starting materials for menthol synthesis are m‐cresol, citral and myrcene, but also substrates like menthone, mono‐ and bicyclic terpenes and terpenoids have been used for this purpose in the past. As for many applications (−)‐menthol of high purity is required, asymmetric syntheses and enantiomeric resolution of obtained raw products are applied for menthol production. This review gives an overview on the most important synthetic menthol production processes of the companies Symrise, Takasago and BASF and relevant literature in the field of menthol synthesis with a focus on the last 20 years.
In water electrolyzers, polymer electrolyte membranes (PEMs) such as Nafion can accumulate cations stemming from salt impurities in the water supply, which leads to severe cell voltage increases. This combined experimental and computational study discusses the influence of sodium ion poisoning on the ionic conductivity of Nafion membranes and the ion transport in a thereon based water electrolysis cell. Conductivities of Nafion and aqueous solutions with the same amount of dissolved cations are measured with impedance spectroscopy and compared with respect to Nafion’s microstructure. The dynamic behavior of the voltage of a water electrolysis cell is characterized as a function of the sodium ion content and current density, showing the differences of the ion transport at alternating and direct currents. These experimental results are elucidated with a physical ion transport model for sodium ion poisoned Nafion membranes, which describes a proton depletion and sodium ion accumulation at the cathode. During proton depletion, the cathodic hydrogen evolution is maintained by the water reduction that forms hydroxide ions. Together with sodium ions from the membrane, the formed hydroxide ions can diffuse pairwise into the water supply, so that the membrane’s sodium ions can be at least partly be replaced with anodically formed protons.
Air-blast loading is a serious threat to military and civil vehicles, buildings, containers, and cargo. Applications of sandwich-structured composites have attracted increasing interest in modern lightweight design and in the construction of dynamic loading regimes due to their high resistance against blast and ballistic impacts. The functional properties of such composites are determined by the interplay of their face sheet material and the employed core topology. The core topology is the most important parameter affecting the structural behavior of sandwich composites. Therefore, this contribution presents a thorough numerical investigation of different core topologies in sandwich-structured composites subjected to blast loading. Special emphasis is put on prismatic and lattice core topologies displaying auxetic and classical non-auxetic deformation characteristics in order to illustrate the beneficial properties of auxetic core topologies. Their dynamic responses, elastic and plastic deformations, failure mechanisms, and energy absorption capabilities are numerically analyzed and compared. The numerical studies are performed by means of the commercial finite element code ABAQUS/Explicit, including a model for structural failure.
Conventional individual head-related transfer function (HRTF) measurements are demanding in terms of measurement time and equipment. For more flexibility, free body movement (FBM) measurement systems provide an easy-to-use way to measure full-spherical HRTF datasets with less effort. However, having no fixed measurement installation implies that the HRTFs are not sampled on a predefined regular grid but rely on the individual movements of the subject. Furthermore, depending on the measurement effort, a rather small number of measurements can be expected, ranging, for example, from 50 to 150 sampling points. Spherical harmonics (SH) interpolation has been extensively studied recently as one method to obtain full-spherical datasets from such sparse measurements, but previous studies primarily focused on regular full-spherical sampling grids. For irregular grids, it remains unclear up to which spatial order meaningful SH coefficients can be calculated and how the resulting interpolation error compares to regular grids. This study investigates SH interpolation of selected irregular grids obtained from HRTF measurements with an FBM system. Intending to derive general constraints for SH interpolation of irregular grids, the study analyzes how the variation of the SH order affects the interpolation results. Moreover, the study demonstrates the importance of Tikhonov regularization for SH interpolation, which is popular for solving ill-posed numerical problems associated with such irregular grids. As a key result, the study shows that the optimal SH order that minimizes the interpolation error depends mainly on the grid and the regularization strength but is almost independent of the selected HRTF set. Based on these results, the study proposes to determine the optimal SH order by minimizing the interpolation error of a reference HRTF set sampled on the sparse and irregular FBM grid. Finally, the study verifies the proposed method for estimating the optimal SH order by comparing interpolation results of irregular and equivalent regular grids, showing that the differences are small when the SH interpolation is optimally parameterized.