500 Naturwissenschaften und Mathematik
Filtern
Dokumenttyp
- Masterarbeit/Diplomarbeit (26)
- Teil eines Buches (Kapitel) (13)
- Wissenschaftlicher Artikel (6)
- Bachelorarbeit (3)
- Sonstiges (2)
- Buch (Monographie) (1)
- Konferenzveröffentlichung (1)
Schlagworte
- Ecosystem services (3)
- Agricultural Farms (2)
- Biogas (2)
- CALB (2)
- Esterification (2)
- Feuchtgebiet (2)
- Hochwasserschutz (2)
- Lipase (2)
- Load shifting (2)
- Nitrification (2)
Fakultäten
- Institut für Technologie in den Tropen (ITT) (22)
- Angewandte Naturwissenschaften (F11) (8)
- Informatik und Ingenieurwissenschaften (F10) (8)
- Anlagen, Energie- und Maschinensysteme (F09) (4)
- Fakultät 09 / Institut für Rettungsingenieurwesen und Gefahrenabwehr (2)
- Sonstige (2)
- Fakultät 06 / Institut für Baustoffe, Geotechnik, Verkehr und Wasser (1)
- Fakultät 09 / Cologne Institute for Renewable Energy (1)
- Fakultät 10 / Institut für Automation & Industrial IT (1)
- Kulturwissenschaften (F02) (1)
The Enhancement of standard dense phase carbon dioxide (DPCD) pasteurization by additional mechanical effects wasassessed in this work. These effects were induced during pasteurization by the sudden depressurization in a narrow mini-tube. The high flow velocities, moderate pressures (40–80 bar) and low temperatures (25–45°C) lead to intense degasifica-tion and shear stress. The inactivation of the test microorganismEscherichia coliDH5a(E. coliDH5a) was determinedbefore and after depressurization in the minitube, representing entirely chemical DPCD via dissolved CO2and total inacti-vation comprising the effects of dissolved CO2and mechanical effects, respectively. Compared to conventional DPCDpasteurization, which is mostly attributed to chemical effects, the additional mechanical effects increased the inactivationefficiency considerably.
Enhancing DPCD in Liquid Products by Mechanical Inactivation Effects: Assessment of Feasibility
(2020)
The enhancement of standard dense phase carbon dioxide (DPCD) pasteurization by additional mechanical effects was assessed in this work. These effects were induced during pasteurization by the sudden depressurization in a narrow minitube. The high flow velocities, moderate pressures (40–80 bar) and low temperatures (25–45 °C) lead to intense degasification and shear stress. The inactivation of the test microorganism Escherichia coli DH5α (E. coli DH5α) was determined before and after depressurization in the minitube, representing entirely chemical DPCD via dissolved CO2 and total inactivation comprising the effects of dissolved CO2 and mechanical effects, respectively. Compared to conventional DPCD pasteurization, which is mostly attributed to chemical effects, the additional mechanical effects increased the inactivation efficiency considerably.
Chagas disease is a parasitic infection endemic to America, caused by the protozoan Trypanosoma cruzi and mainly transmitted to humans by contact with insect species of the Triatominae subfamily (Hemiptera). The disease is known to affect disproportionally rural impoverished human communities where it is known to cause premature death and is considered a social and economic burden. The Mexican government has made important progress into the detection, surveillance, treatment, and prevention of the disease in the last decades, however, Chagas disease has also been reported in areas where it had not been previously reported, and there are still barriers for access to treatment. In the state of San Luis Potosi, the disease is more studied in the east, nevertheless, it has been estimated that the reported cases of the entire state have been underestimated. New approaches to detect Chagas risk areas could help prioritize locations for Chagas disease education and prevention programs, detect cases of the disease in a timely manner, and provide access to the necessary treatments. The objective of this study was to identify risk areas for the transmission of Chagas disease in San Luis Potosí using species distribution modelling to estimate vectors and reservoirs’ distributions. To do this, firstly, important vectors and one reservoir species of T. cruzi were identified by reviewing their reported infection rates in literature and the number of times reported in Mexico. Next, species distribution models were calculated for the chosen vector and reservoir species present in the state. The models were done using the Maxent algorithm. Lastly, the resulting distribution models were combined into a risk map by thresholding the model outputs to produce binary predictions and then performing an overlap spatial analysis. Vector species were found to have suitable areas in 36.08% of the state’s territory while areas suitable for both vectors and reservoir were 7.4% of the state’s total area. While this figure may look small at first glance, the analysis suggests that 30% of the rural population and 52% of the urban population of the state are living in an area suitable for vectors and reservoir and therefore at risk. Species distribution modelling can be a powerful tool for identifying human populations at risk of contracting Chagas disease. In the future, including different species of reservoirs into the analysis could help to discover new risk areas in the state.
Wetlands offer different ecosystem services that contribute to human well-being (Kovács et al., 2015). According to the Ramsar Convention Secretariat (2018) wetland located in urban areas have been threatened by several activities such as drainage, pollution, encroachment, agriculture, among others. On the other hand, wetland degradation reduces the resilience of hazards like floods and storm surges (Kumar et al., 2017). For that reason, ecosystem-based disaster risk reduction (Eco-DRR) is an important strategy which enhances the conservation and restoration of ecosystems to reduce disaster risk aiming to sustainable development and resilience (Estrella & Saalismaa, 2013). Despite international recognition of the importance of wetlands, urban wetlands have diminished their capacity to cope with flood threats (Boyer and Polasky, 2006) due to the aforementioned human impacts.
That is why this thesis aimed to identify the role of urban wetlands in Bogota, Colombia, that has an urban wetland complex that is recognised as a Ramsar site in 2018. However, wetlands in the city reduced its area from 50.000 hectares to less than 800, approximately, in less than 40 years, mainly because of urban expansion and encroachment (IDIGER, 2018). To achieve this objective, an analysis of the city’s risk management framework was conducted, as well as a stakeholder analysis based on semi-structured interviews and a spatial-temporal analysis for the period 1998-2017, for which the Jaboque wetland was used as a case study. This wetland is located near the Bogotá River and is in the area threatened by flooding.
It was possible to determine that national and district policies on wetlands, biodiversity, and climate change adaptation address some ecosystem functions. Still, disaster risk reduction is not strongly linked to them. Thus, based on the case study, the wetlands in Bogota have not played a decisive role in flood risk management in the city.
In nahezu jedem Rettungsdienstbereich lässt sich ein Anstieg an Notfalleinsätzen und damit einhergehend ein höherer Bedarf an Rettungsmitteln beobachten. Daraus resultieren Einsatzspitzen, die durch den Regelrettungsdienst nicht abgedeckt werden können, und es entsteht eine Unterdeckung. Dies wird auch als Risikofall bezeichnet und birgt die Gefahr, dass ein Rettungsmittel nicht innerhalb der vorgeschriebenen Hilfsfrist am Notfallort eintreffen kann. Um einen potenziellen Risikofall im Vorfeld absehen und einsatztaktische Ausgleichsmaßnahmen innerhalb eines Rettungsdienstbereiches ergreifen zu können, soll deshalb die Einsatznachfrage in stündlicher Auflösung prognostiziert werden. Dazu wurde die Einsatz-Zeit-Reihe 2017 der hochfrequentierten Feuer- und Rettungswache 1 in der Kölner Innenstadt analysiert und ein saisonales ARIMA-Modell sowie ein Erwartungswert-Modell auf die Einsatz-Zeit-Reihe des Folgejahres 2018 angewandt. Gezeigt werden konnte, dass sich die Einsatz-Zeit-Reihe mit einer mittleren absoluten Abweichung von etwas mehr als einem Einsatz prognostizieren lässt. Außerdem konnte mit einer Skalierung der Prognose über die Anzahl einsatzbereiter Rettungs-wagen jeder Risikofall in einem einwöchigen Anwendungstest vorhergesagt werden. Dabei zeigte sich, dass nicht die Prognosegüte in der Stunde der Einsatzspitze relevant ist, sondern die Prognosegüte in der Folgestunde. Die Prognosen haben somit, wenn sie skaliert werden, eine hohe einsatztaktische Relevanz und ermöglichen kurz-fristige Ausgleichsmaßnahmen im Tagesgang.
Urbanization processes are one of the main factors for habitat loss and fragmentation, driving global biodiversity loss and species extinction. The neotropical Atlantic forest in Brazil is considered a global key biodiversity hotspot and used to be one of the most extensive forests of the Americas. Due to substantial deforestation over centuries, its landscape was transformed into a mosaic of small forest fragments surrounded by a predominantly agricultural matrix. Urban expansion and rural urbanization have created peri-urban zones, which still can harbor natural habitat remnants,
contributing to biological diversity and thus providing essential ecosystem services to urban and rural areas. The maintenance of such ecosystem services requires an understanding of the ecological processes in the ecosystem. A prerequisite for such an in-depth insight is the quantification of the underlying ecosystem functions. The ecosystem function pest control, a trophic interaction between insectivorous birds and herbivorous arthropods, was quantified in an empirical study using artificial caterpillars as prey models. This technique allows the identification of predator groups and the assessment of their predation rates. A total of 888 plasticine caterpillars were distributed at eight sites in secondary forest fragments surrounding the university campus of the federal university of São Carlos (UFScar) in peri-urban Sorocaba, southeastern Brazil. In sixteen point counts, 72 insect-eating birds, belonging to 19 species, were identified as possible artificial caterpillar attackers. Local habitat variables were measured to describe the forest vegetation structure and the landscape context. The study aimed to assess which structural components of the
forest fragments, together with the recorded bird community variables (abundance, richness, αdiversity), best explain the estimated predation rates by birds. The mean predation rate for birds was 8.25 ± 6.3 % for a reference period of eight days, representing the first quantification of the ecosystem function pest control for the study area. The three treatments of caterpillar placement heights (ground, stem: 0.5 -1.0 m, leaf: 1.5 - 2.0 m) were the best and only estimator to explain bird
predation rates. The little dense understory and ground vegetation might have facilitated the accessibility of artificial caterpillars, especially for carnivorous arthropods and birds. The detected contrast in their foraging and predation patterns suggests that arthropods and birds complement each other in their function of pest control. Bird predation rates were found to be negatively related to the vegetation structure. Thus, more open habitats, with less understory and low tree density, but high canopy cover and including dead trees were correlated with the highest predation rates and also exhibited more specialized forest-dependent bird species. This study confirms the importance of the maintenance of forest fragments in peri-urban areas, even if they are small, to preserve forest-associated birds, to contribute to the biological diversity on a broader scale, and to prevent the loss of ecosystem functions and services, mitigating some of the adverse effects of urbanization. Further investigation of the effect among the three treatments of caterpillar
placement on the predation rates is encouraged, including comparative studies among different habitat types. For future studies, it is recommended to model the avian community variables with the vegetation structure measures to predict habitat preferences of insectivorous birds. Therefore, the sampling of more units and on a bigger scale, including over a more extended period, is necessary to improve the robustness of the results, which could provide the basis for a monetary analysis of the ecosystem service pest control by birds.
Habitat loss due to land use and land cover change (LUCC) has been identified as the main cause of global environmental change, responsible for biodiversity decline and the deterioration of ecological processes. Habitat loss and fragmentation have been driven by
processes of LUCC such as deforestation, agricultural expansion and intensification, urbanization, and globalization. The objective of this research was to determine the effects of LUCC on the process of habitat loss and the patterns of fragmentation in the surrounding landscape of the Pacuare Reserve (PR) in the Caribbean lowlands of Costa Rica. The PR is a protected area of 800 ha surrounded by an agricultural landscape with a history of over 150 years of bananas monocultures. Landsat satellite images from 1978 to 2020 were used to conduct a temporal analysis of LUCC around the PR. Patterns of change were explored using landscape metrics from the land classification images. To explore potential connectivity routes, the least cost path analysis was used to connect the PR to other protected areas. Overall, forest cover decreased in the study area at a rate of -4.8% per year during the period of 1992-1997. In the year 2001 it reached its lowest cover and then increased at a mean annual rate of 1.6%. A mean overall accuracy of 92% was obtained for the land classification process. A clear fragmentation process was observed, as shown by a decreased in forest mean patch area and largest patch index and by the increase in patch density. Although forest cover increased in the last decade, fragmentation metrics suggest this recover happened in a spatially scattered manner, due to agricultural land abandonment. Connectivity maps showed the importance of forest fragments and of the already established biological corridors for the movement of species to and from the PR, however it also evidenced the lack of connectivity between the coastal forest fragments and further inside the country located protected areas, as well as the need to promote reforestation projects, particularly between fragments of the corridors identified.
Resilience in relation to flood risk management (FRM) is not a new concept, yet parts of the FRM community are still struggling to apply it. The main challenge this study addresses is the question as to whether parts of the FRM community should still adopt, or rather “leap‐frog,” resilience. The main purpose is to evaluate whether resilience is a still on‐going trend or, already subsiding. Research suggests that resilience is an on‐going trend that connects research and policy and has gained international recognition as expressed by international guidelines and bodies promoting its research but also its operationalization. Academic literature in the area of FRM also shows a significant continuing development. Resilience enables to analyze dynamics and transformations of riverine areas, or coastal zones in connection to an integrated social‐environmental system approach with more emphasis and conceptual basis than previous concepts. Resilience is more than a short‐lived notion and it appears that FRM researchers cannot avoid addressing it. Resilience often is a convergence of ideas and mainstreaming of efforts, which in many venues is absolutely necessary and can help, for example, to decrease silo‐thinking. But as academics, we have a mandate to remain skeptical and remain on the look‐out for novel ideas, too.
This article is categorized under:
Engineering Water > Planning Water
The quantification of greenhouse gas emissions from aquatic ecosystems requires knowledge about the spatial and temporal dynamics of free gas in sediments. Freezing the sediment in situ offers a promising method for obtaining gas‐bearing sediment samples, unaffected by changes in hydrostatic pressure and sample temperature during core withdrawal and subsequent analysis. This article presents a novel freeze coring technique to preserve the in situ stratigraphy and gas bubble characteristics. Nondestructive X‐ray computed tomography (CT) scans were used to identify and characterize coring disturbances of gravity and freeze cores associated with gassy sediment, as well as the effect of the freezing process on the gas bubble characteristics. Real‐time X‐ray CT scans were conducted to visualize the progression of the freezing process. Additional experiments were conducted to determine the freezing rate to assess the probability of sediment particle/bubble migration, and gas bubble nucleation at the phase transition of pore water to ice. The performance of the freeze coring technique was evaluated under field conditions in Olsberg and Urft Reservoir (Germany). The results demonstrate the capability of the freeze coring technique for the preservation of gas‐bearing sediments and the analysis of gas bubble distribution pattern in both reservoirs. Nevertheless, the obtained cores showed that nearly all gravity and freeze cores show some degree of coring disturbances.
Anaerobic digestion plants have the potential to produce biogas on demand to help balance renewable energy production and energy demand by consumers. A proportional integral (PI) controller is constructed and tuned with a novel tuning method to control biogas production in an optimal manner. In this approach, the proportional part of the controller is a function of the feeding rate and system's degree of stability. To estimate the degree of stability, a simulation‐based soft sensor is developed. By means of the PI controller, the requirement for gas storage capacity of the digester is reduced by approximately 30 % compared to a constant, continuous feeding regime of the digester.