500 Naturwissenschaften und Mathematik
Filtern
Dokumenttyp
- Wissenschaftlicher Artikel (33)
- Masterarbeit/Diplomarbeit (27)
- Teil eines Buches (Kapitel) (13)
- Bachelorarbeit (4)
- Sonstiges (2)
- Buch (Monographie) (1)
- Konferenzveröffentlichung (1)
Volltext vorhanden
- ja (81)
Schlagworte
- Risikomanagement (4)
- Ecosystem services (3)
- Katastrophenrisiko (3)
- Lipase (3)
- Agricultural Farms (2)
- Biogas (2)
- CALB (2)
- Disaster risk management (2)
- Disaster risk reduction (2)
- Esterification (2)
Fakultäten
- Fakultät 12 / Institut für Technologie und Ressourcenmanagement in den Tropen und Subtropen (28)
- Angewandte Naturwissenschaften (F11) (16)
- Fakultät 09 / Institut für Rettungsingenieurwesen und Gefahrenabwehr (10)
- Fakultät 09 / Institut Anlagen und Verfahrenstechnik (4)
- Fakultät 10 / :metabolon Institut (4)
- Fakultät 07 / Institut für Nachrichtentechnik (3)
- Fakultät 02 / Cologne Institute of Conservation Sciences (2)
- Fakultät 09 / Cologne Institute for Renewable Energy (2)
- Fakultät 10 / Institut Allgemeiner Maschinenbau (2)
- Fakultät 10 / Institut für Informatik (2)
In this work, supported cellulose acetate (CA) mixed matrix membranes (MMMs) were prepared and studied concerning their gas separation behaviors. The dispersion of carbon nanotube fillers were studied as a factor of polymer and filler concentrations using the mixing methods of the rotor–stator system (RS) and the three-roll-mill system (TRM). Compared to the dispersion quality achieved by RS, samples prepared using the TRM seem to have slightly bigger, but fewer and more homogenously distributed, agglomerates. The green γ-butyrolactone (GBL) was chosen as a polyimide (PI) polymer-solvent, whereas diacetone alcohol (DAA) was used for preparing the CA solutions. The coating of the thin CA separation layer was applied using a spin coater. For coating on the PP carriers, a short parameter study was conducted regarding the plasma treatment to affect the wettability, the coating speed, and the volume of dispersion that was applied to the carrier. As predicted by the parameter study, the amount of dispersion that remained on the carriers decreased with an increasing rotational speed during the spin coating process. The dry separation layer thickness was varied between about 1.4 and 4.7 μm. Electrically conductive additives in a non-conductive matrix showed a steeply increasing electrical conductivity after passing the so-called percolation threshold. This was used to evaluate the agglomeration behavior in suspension and in the applied layer. Gas permeation tests were performed using a constant volume apparatus at feed pressures of 5, 10, and 15 bar. The highest calculated CO2/N2 selectivity (ideal), 21, was achieved for the CA membrane and corresponded to a CO2 permeability of 49.6 Barrer.
The oxidation of cumene and following cleavage of cumene hydroperoxide (CHP) with sulfuric acid (Hock rearrangement) is still, by far, the dominant synthetic route to produce phenol. In 2020, the global phenol market reached a value of 23.3 billion US$ with a projected compound annual growth rate of 3.4% for 2020–2025. From ecological and economical viewpoints, the key step of this process is the cleavage of CHP. One sought-after way to likewise reduce energy consumption and waste production of the process is to substitute sulfuric acid with heterogeneous catalysts. Different types of zeolites, silicon-based clays, heteropoly acids, and ion exchange resins have been investigated and tested in various studies. For every type of these solid acid catalysts, several materials were found that show high yield and selectivity to phenol. In this mini-review, first a brief introduction and overview on the Hock process is given. Next, the mechanism, kinetics, and safety aspects are summarized and discussed. Following, the different types of heterogeneous catalysts and their performance as catalyst in the Hock process are illustrated. Finally, the different approaches to substitute sulfuric acid in the synthetic route to produce phenol are briefly concluded and a short outlook is given.
Different methods have been proposed for in situ root-length density (RLD) measurement. One widely employed is the time-consuming sampling of soil cores or monoliths (MO). The profile wall (PW) method is a less precise, but faster and less laborious alternative. However, depth-differentiated functions to convert PW RLD estimates to MO RLD measurements have not yet been reported. In this study, we perform a regression analysis to relate PW results to MO results and determine whether calibration is possible for distinct crop groups (grasses, brassicas and legumes) consisting of pure and mixed stands, and whether soil depth affects this calibration. The methods were applied over two years to all crop groups and their absolute and cumulative RLD were compared using a linear (LR) and multiple linear (MLR) regression. PW RLD was found to highly underestimate MO RLD in absolute values and in highly rooted areas. However, a close agreement between both methods was found for cumulative root-length (RL) when applying MLR, highlighting the influence of soil depth. The level of agreement between methods varied strongly with depth. Therefore, the application of PW as the main RLD estimation method can provide reliable estimates of cumulative root distribution traits of cover crops.
The increase in greenhouse gas emissions, mainly due to the burning of fossil fuels and land use change, has led to changes in the global climate. Agriculture is one of the economic sectors most vulnerable to the impacts generated by climate change. For this reason, the challenge facing humanity today is to develop innovative solutions to address the complexity of agricultural sustainability.
On the other hand, sugarcane is one of the crops that emits the most pollutants into the atmosphere, mainly due to the burning of sugarcane before and after harvesting. Most of these atmospheric pollutants are precursors of climate change and have an impact on the health and quality of life of communities. Moreover, this agricultural practice causes the gradual deterioration of the soil, directly affecting sugarcane production. Consequently, several sugarcane-producing countries have established regulations or dispositions to eliminate this agricultural practice, and one option to eliminate it is the mechanization of harvesting. However, its implementation implies social, environmental, and economic impacts that must be analyzed systemically to avoid potential failures during the technological transition process. It is for this reason that this research, through the MICMAC method, focused on identifying the variables associated with the reduction of sugarcane burning in Campos dos Goytacazes and Tamasopo, to subsequently analyze their direct and indirect interrelationship, and, thus, determine the opportunities and limitations of each locality for the reduction of sugarcane burning.
Through this analysis, it became evident that although the technological transition is an imminent step for the sustainability of sugarcane cultivation, certain factors such as legislation, technological innovation, and the perception of the stakeholders regarding the consequences of sugarcane burning, is what defines in the study sites the speed and subsequent success of this process of change towards green harvesting.
Table Tennis Tutor: Forehand Strokes Classification Based on Multimodal Data and Neural Networks
(2021)
Beginner table-tennis players require constant real-time feedback while learning the fundamental techniques. However, due to various constraints such as the mentor’s inability to be around all the time, expensive sensors and equipment for sports training, beginners are unable to get the immediate real-time feedback they need during training. Sensors have been widely used to train beginners and novices for various skills development, including psychomotor skills. Sensors enable the collection of multimodal data which can be utilised with machine learning to classify training mistakes, give feedback, and further improve the learning outcomes. In this paper, we introduce the Table Tennis Tutor (T3), a multi-sensor system consisting of a smartphone device with its built-in sensors for collecting motion data and a Microsoft Kinect for tracking body position. We focused on the forehand stroke mistake detection. We collected a dataset recording an experienced table tennis player performing 260 short forehand strokes (correct) and mimicking 250 long forehand strokes (mistake). We analysed and annotated the multimodal data for training a recurrent neural network that classifies correct and incorrect strokes. To investigate the accuracy level of the aforementioned sensors, three combinations were validated in this study: smartphone sensors only, the Kinect only, and both devices combined. The results of the study show that smartphone sensors alone perform sub-par than the Kinect, but similar with better precision together with the Kinect. To further strengthen T3’s potential for training, an expert interview session was held virtually with a table tennis coach to investigate the coach’s perception of having a real-time feedback system to assist beginners during training sessions. The outcome of the interview shows positive expectations and provided more inputs that can be beneficial for the future implementations of the T3.
Remote sensing applications of change detection are increasingly in demand for many areas of land use and urbanization, and disaster risk reduction. The Sendai Framework for Disaster Risk Reduction and the New Urban Agenda by the United Nations call for risk monitoring. This study maps and assesses the urban area changes of 23 Mexican-USA border cities with a remote sensing-based approach. A literature study on existing studies on hazard mapping and social vulnerability in those cities reveals a need for further studies on urban growth. Using a multi-modal combination of aerial, declassified (CORONA, GAMBIT, HEXAGON programs), and recent (Sentinel-2) satellite imagery, this study expands existing land cover change assessments by capturing urban growth back to the 1940s. A Geographic Information System and census data assessment results reveal that massive urban growth has occurred on both sides of the national border. On the Mexican side, population and area growth exceeds the US cities in many cases. In addition, flood hazard exposure has grown along with growing city sizes, despite structural river training. These findings indicate a need for more risk monitoring that includes remote sensing data. It has socio-economic implications, too, as the social vulnerability on Mexican and US sides differ. This study calls for the maintenance and expansion of open data repositories to enable such transboundary risk comparisons. Common vulnerability variable sets could be helpful to enable better comparisons as well as comparable flood zonation mapping techniques. To enable risk monitoring, basic data such as urban boundaries should be mapped per decade and provided on open data platforms in GIS formats and not just in map viewers.
Pluvial floods claimed more than 180 lives in Germany in July 2021, when a large and slow-moving storm system affected Germany and many neighbouring countries. The death tolls and damages were the highest since 1962 in Germany, and soon after, the crisis management was under public critique. This study has undertaken an online survey to understand crisis management better and identify lessons to learn. It has received a positive interest among operational relief forces and other helpers (n = 2264). The findings reveal an overall satisfaction with the operation in general as well as personal lessons learned. It also reveals shortcomings in many areas, ranging from information distribution, coordination, parallel ongoing COVID-19 pandemic, infrastructure resilience, and other factors. Just as well, areas for improvement of the crisis management system are suggested by the respondents. Cooperation and support by the affected population are perceived as positive. This helps to inform other areas of research that are necessary, such as studies on the perception by the affected people. The gaps in assessments of operational forces and some methodological constraints are discussed to advance future follow-up studies.
Linoleic acid hydroperoxides are versatile intermediates for the production of green note aroma compounds and bifunctional ω-oxo-acids. An enzyme cascade consisting of lipoxygenase, lipase and catalase was developed for one-pot synthesis of 13-hydroperoxyoctadecadienoic acid starting from safflower oil. Reaction conditions were optimized for hydroperoxidation using lipoxygenase 1 from Glycine max (LOX-1) in a solvent-free system. The addition of green surfactant Triton CG-110 improved the reaction more than two-fold and yields of >50% were obtained at linoleic acid concentrations up to 100 mM. To combine hydroperoxidation and oil hydrolysis, 12 lipases were screened for safflower oil hydrolysis under the reaction conditions optimized for LOX-1. Lipases from Candida rugosa and Pseudomonas fluorescens were able to hydrolyze safflower oil to >75% within 5 h at a pH of 8.0. In contrast to C. rugosa lipase, the enzyme from P. fluorescens did not exhibit a lag phase. Combination of P. fluorescens lipase and LOX-1 worked well upon LOX-1 dosage and a synergistic effect was observed leading to >80% of hydroperoxides. Catalase from Micrococcus lysodeikticus was used for in-situ oxygen production with continuous H2O2 dosage in the LOX-1/lipase reaction system. Foam generation was significantly reduced in the 3-enzyme cascade in comparison to the aerated reaction system. Safflower oil concentration was increased up to 300 mM linoleic acid equivalent and 13-hydroperoxides could be produced in a yield of 70 g/L and a regioselectivity of 90% within 7 h.
Water scarcity drives governments in arid and semi-arid regions to promote strategies for improving water use efficiency. Water-related research generally also plays an important role in the same countries and for the same reason. However, it remains unclear how to link the implementation of new government strategies and water-related research. This article’s principal objective is to present a novel approach that defines water-related research gaps from the point of view of a government strategy. The proposed methodology is based on an extensive literature review, followed by a systematic evaluation of the topics covered both in grey and peer-reviewed literature. Finally, we assess if and how the different literature sources contribute to the goals of the water strategy. The methodology was tested by investigating the impact of the water strategy of Jordan’s government (2008–2022) on the research conducted in the Azraq Basin, considering 99 grey and peer-reviewed documents. The results showed an increase in the number of water-related research documents from 37 published between 1985 and 2007 to 62 published between 2008 and 2018. This increase should not, however, be seen as a positive impact of increased research activity from the development of Jordan’s water strategy. In fact, the increase in water-related research activity matches the increasing trend in research production in Jordan generally. Moreover, the results showed that only about 80% of the documents align with the goals identified in the water strategy. In addition, the distribution of the documents among the different goals of the strategy is heterogeneous; hence, research gaps can be identified, i.e., goals of the water-strategy that are not addressed by any of the documents sourced. To foster innovative and demand-based research in the future, a matrix was developed that linked basin-specific research focus areas (RFAs) with the MWI strategy topics. In doing so, the goals that are not covered by a particular RFA are highlighted. This analysis can inspire researchers to develop and apply new topics in the Azraq Basin to address the research gaps and strengthen the connection between the RFAs and the strategy topics and goals. Moreover, the application of the proposed methodology can motivate future research to become demand-driven, innovative, and contribute to solving societal challenges.