Volltext-Downloads (blau) und Frontdoor-Views (grau)

Cognitive capabilities for the CAAI in cyber-physical production systems

  • This paper presents the cognitive module of the Cognitive Architecture for Artificial Intelligence (CAAI) in cyber-physical production systems (CPPS). The goal of this architecture is to reduce the implementation effort of artificial intelligence (AI) algorithms in CPPS. Declarative user goals and the provided algorithm-knowledge base allow the dynamic pipeline orchestration and configuration. A big data platform (BDP) instantiates the pipelines and monitors the CPPS performance for further evaluation through the cognitive module. Thus, the cognitive module is able to select feasible and robust configurations for process pipelines in varying use cases. Furthermore, it automatically adapts the models and algorithms based on model quality and resource consumption. The cognitive module also instantiates additional pipelines to evaluate algorithms from different classes on test functions. CAAI relies on well-defined interfaces to enable the integration of additional modules and reduce implementation effort. Finally, an implementation based on Docker, Kubernetes, and Kafka for the virtualization and orchestration of the individual modules and as messaging technology for module communication is used to evaluate a real-world use case.

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Jan Strohschein, Andreas Fischbach, Andreas Bunte, Heide Faeskorn-Woyke, Natalia Moriz, Thomas Bartz-Beielstein
URN:urn:nbn:de:hbz:832-epub4-21232
DOI:https://doi.org/10.1007/s00170-021-07248-3
ISSN:0268-3768
ISSN:1433-3015
Parent Title (English):The International Journal of Advanced Manufacturing Technology
Publisher:Springer London
Document Type:Article
Language:English
Date of first Publication:2021/08/01
Date of Publication (online):2023/04/20
GND-Keyword:Kognition; Maschinelles Lernen
Tag:Algorithm Selection; Big Data Platform; CPPS; Cognition; Industry 4.0; Machine Learning; Optimization; Simulation
Volume:115
Issue:11-12
Page Number:20
Institutes:Informatik und Ingenieurwissenschaften (F10) / Fakultät 10 / Institut für Data Science, Engineering, and Analytics
Informatik und Ingenieurwissenschaften (F10) / Fakultät 10 / Institut Allgemeiner Maschinenbau
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften
Open Access:Open Access
DeepGreen:DeepGreen
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International